skfolio 0.4.2__py3-none-any.whl → 0.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,100 @@
1
+ """Pre-selection SelectKExtremes module"""
2
+
3
+ # Copyright (c) 2023
4
+ # Author: Hugo Delatte <delatte.hugo@gmail.com>
5
+ # License: BSD 3 clause
6
+
7
+ import numpy as np
8
+ import numpy.typing as npt
9
+ import sklearn.base as skb
10
+ import sklearn.feature_selection as skf
11
+ import sklearn.utils.validation as skv
12
+
13
+ import skfolio.typing as skt
14
+ from skfolio.measures import RatioMeasure
15
+ from skfolio.population import Population
16
+ from skfolio.portfolio import Portfolio
17
+
18
+
19
+ class SelectKExtremes(skf.SelectorMixin, skb.BaseEstimator):
20
+ """Transformer for selecting the `k` best or worst assets.
21
+
22
+ Keep the `k` best or worst assets according to a given measure.
23
+
24
+ Parameters
25
+ ----------
26
+ k : int, default=10
27
+ Number of assets to select. If `k` is higher than the number of assets, all
28
+ assets are selected.
29
+
30
+ measure : Measure, default=RatioMeasure.SHARPE_RATIO
31
+ The :ref:`measure <measures_ref>` used to sort the assets.
32
+ The default is `RatioMeasure.SHARPE_RATIO`.
33
+
34
+ highest : bool, default=True
35
+ If this is set to True, the `k` assets with the highest `measure` are selected,
36
+ otherwise it is the `k` lowest.
37
+
38
+ Attributes
39
+ ----------
40
+ to_keep_ : ndarray of shape (n_assets, )
41
+ Boolean array indicating which assets are remaining.
42
+
43
+ n_features_in_ : int
44
+ Number of assets seen during `fit`.
45
+
46
+ feature_names_in_ : ndarray of shape (`n_features_in_`,)
47
+ Names of features seen during `fit`. Defined only when `X`
48
+ has feature names that are all strings.
49
+ """
50
+
51
+ to_keep_: np.ndarray
52
+
53
+ def __init__(
54
+ self,
55
+ k: int = 10,
56
+ measure: skt.Measure = RatioMeasure.SHARPE_RATIO,
57
+ highest: bool = True,
58
+ ):
59
+ self.k = k
60
+ self.measure = measure
61
+ self.highest = highest
62
+
63
+ def fit(self, X: npt.ArrayLike, y=None) -> "SelectKExtremes":
64
+ """Run the SelectKExtremes transformer and get the appropriate assets.
65
+
66
+ Parameters
67
+ ----------
68
+ X : array-like of shape (n_observations, n_assets)
69
+ Price returns of the assets.
70
+
71
+ y : Ignored
72
+ Not used, present for API consistency by convention.
73
+
74
+ Returns
75
+ -------
76
+ self : SelectKExtremes
77
+ Fitted estimator.
78
+ """
79
+ X = self._validate_data(X)
80
+ k = int(self.k)
81
+ if k <= 0:
82
+ raise ValueError("`k` must be strictly positive")
83
+ n_assets = X.shape[1]
84
+ # Build a population of single assets portfolio
85
+ population = Population([])
86
+ for i in range(n_assets):
87
+ weights = np.zeros(n_assets)
88
+ weights[i] = 1
89
+ population.append(Portfolio(X=X, weights=weights))
90
+
91
+ selected = population.sort_measure(measure=self.measure, reverse=self.highest)[
92
+ :k
93
+ ]
94
+ selected_idx = [x.nonzero_assets_index[0] for x in selected]
95
+ self.to_keep_ = np.isin(np.arange(n_assets), selected_idx)
96
+ return self
97
+
98
+ def _get_support_mask(self):
99
+ skv.check_is_fitted(self)
100
+ return self.to_keep_
@@ -0,0 +1,161 @@
1
+ """Pre-selection SelectNonDominated module"""
2
+
3
+ # Copyright (c) 2023
4
+ # Author: Hugo Delatte <delatte.hugo@gmail.com>
5
+ # License: BSD 3 clause
6
+
7
+ import numpy as np
8
+ import numpy.typing as npt
9
+ import sklearn.base as skb
10
+ import sklearn.feature_selection as skf
11
+ import sklearn.utils.validation as skv
12
+
13
+ import skfolio.typing as skt
14
+ from skfolio.population import Population
15
+ from skfolio.portfolio import Portfolio
16
+
17
+
18
+ class SelectNonDominated(skf.SelectorMixin, skb.BaseEstimator):
19
+ """Transformer for selecting non dominated assets.
20
+
21
+ Pre-selection based on the Assets Preselection Process 2 [1]_.
22
+
23
+ Good single asset (for example with high return and low risk) is likely to
24
+ contribute to the final optimized portfolio. Each asset is considered as a portfolio
25
+ and these assets are ranked using the non-domination sorting method. The selection
26
+ is based on the ranks assigned to each asset based on their fitness until the number
27
+ of selected assets reaches the user-defined number.
28
+
29
+ Considering only the fitness of individual asset is insufficient because a pair of
30
+ negatively correlated assets has the potential to reduce the risk. Therefore,
31
+ negatively correlated pairs of assets are also considered.
32
+
33
+ Parameters
34
+ ----------
35
+ min_n_assets : int, optional
36
+ The minimum number of assets to select. If `min_n_assets` is reached before the
37
+ end of the current non-dominated front, we return the remaining assets of this
38
+ front. This is because all assets in the same front have same rank.
39
+ The default (`None`) is to select the first front.
40
+
41
+ threshold : float, default=0.0
42
+ Asset pair with a correlation below this threshold are included in the
43
+ non-domination sorting. The default value is `0.0`.
44
+
45
+ fitness_measures : list[Measure], optional
46
+ A list of :ref:`measure <measures_ref>` used to compute the portfolio fitness.
47
+ The fitness is used to compare portfolios in terms of domination, compute the
48
+ pareto fronts and run the portfolio selection using non-denominated sorting.
49
+ The default (`None`) is to use the list [PerfMeasure.MEAN, RiskMeasure.VARIANCE]
50
+
51
+ Attributes
52
+ ----------
53
+ to_keep_ : ndarray of shape (n_assets, )
54
+ Boolean array indicating which assets are remaining.
55
+
56
+ n_features_in_ : int
57
+ Number of assets seen during `fit`.
58
+
59
+ feature_names_in_ : ndarray of shape (`n_features_in_`,)
60
+ Names of features seen during `fit`. Defined only when `X`
61
+ has feature names that are all strings.
62
+
63
+ References
64
+ ----------
65
+ .. [1] "Large-Scale Portfolio Optimization Using Multi-objective Evolutionary
66
+ Algorithms and Preselection Methods",
67
+ B.Y. Qu and Q.Zhou (2017).
68
+ """
69
+
70
+ to_keep_: np.ndarray
71
+
72
+ def __init__(
73
+ self,
74
+ min_n_assets: int | None = None,
75
+ threshold: float = -0.5,
76
+ fitness_measures: list[skt.Measure] | None = None,
77
+ ):
78
+ self.min_n_assets = min_n_assets
79
+ self.threshold = threshold
80
+ self.fitness_measures = fitness_measures
81
+
82
+ def fit(self, X: npt.ArrayLike, y=None):
83
+ """Run the Non Dominated transformer and get the appropriate assets.
84
+
85
+ Parameters
86
+ ----------
87
+ X : array-like of shape (n_observations, n_assets)
88
+ Price returns of the assets.
89
+
90
+ y : Ignored
91
+ Not used, present for API consistency by convention.
92
+
93
+ Returns
94
+ -------
95
+ self : SelectNonDominated
96
+ Fitted estimator.
97
+ """
98
+ X = self._validate_data(X)
99
+ if not -1 <= self.threshold <= 1:
100
+ raise ValueError("`threshold` must be between -1 and 1")
101
+ n_assets = X.shape[1]
102
+
103
+ if self.min_n_assets is not None and self.min_n_assets >= n_assets:
104
+ self.to_keep_ = np.full(n_assets, True)
105
+ return self
106
+
107
+ # Build a population of portfolio
108
+ population = Population([])
109
+ # Add single assets
110
+ for i in range(n_assets):
111
+ weights = np.zeros(n_assets)
112
+ weights[i] = 1
113
+ population.append(
114
+ Portfolio(X=X, weights=weights, fitness_measures=self.fitness_measures)
115
+ )
116
+
117
+ # Add pairs with correlation below threshold with minimum variance
118
+ # ptf_variance = sigma1^2 w1^2 + sigma2^2 w2^2 + 2 sigma12 w1 w2 (1)
119
+ # with w1 + w2 = 1
120
+ # To find the minimum we substitute w2 = 1 - w1 in (1) and differentiate with
121
+ # respect to w1 and set to zero.
122
+ # By solving the obtained equation, we get:
123
+ # w1 = (sigma2^2 - sigma12) / (sigma1^2 + sigma2^2 - 2 sigma12)
124
+ # w2 = 1 - w1
125
+
126
+ corr = np.corrcoef(X.T)
127
+ covariance = np.cov(X.T)
128
+ for i, j in zip(*np.triu_indices(n_assets, 1), strict=True):
129
+ if corr[i, j] < self.threshold:
130
+ cov = covariance[i, j]
131
+ var1 = covariance[i, i]
132
+ var2 = covariance[j, j]
133
+ weights = np.zeros(n_assets)
134
+ weights[i] = (var2 - cov) / (var1 + var2 - 2 * cov)
135
+ weights[j] = 1 - weights[i]
136
+ population.append(
137
+ Portfolio(
138
+ X=X, weights=weights, fitness_measures=self.fitness_measures
139
+ )
140
+ )
141
+
142
+ fronts = population.non_denominated_sort(
143
+ first_front_only=self.min_n_assets is None
144
+ )
145
+ new_assets_idx = set()
146
+ i = 0
147
+ while i < len(fronts):
148
+ if (
149
+ self.min_n_assets is not None
150
+ and len(new_assets_idx) > self.min_n_assets
151
+ ):
152
+ break
153
+ for idx in fronts[i]:
154
+ new_assets_idx.update(population[idx].nonzero_assets_index)
155
+ i += 1
156
+ self.to_keep_ = np.isin(np.arange(n_assets), list(new_assets_idx))
157
+ return self
158
+
159
+ def _get_support_mask(self):
160
+ skv.check_is_fitted(self)
161
+ return self.to_keep_
@@ -0,0 +1,148 @@
1
+ """pre-selection estimators module"""
2
+
3
+ # Copyright (c) 2023
4
+ # Author: Hugo Delatte <delatte.hugo@gmail.com>
5
+ # Implementation derived from:
6
+ # Conway-Yu https://github.com/skfolio/skfolio/discussions/60
7
+ # License: BSD 3 clause
8
+
9
+ import datetime as dt
10
+
11
+ import numpy as np
12
+ import pandas as pd
13
+ import sklearn.base as skb
14
+ import sklearn.feature_selection as skf
15
+ import sklearn.utils.validation as skv
16
+
17
+
18
+ class SelectNonExpiring(skf.SelectorMixin, skb.BaseEstimator):
19
+ """
20
+ Transformer to select assets that do not expire within a specified lookahead period
21
+ after the end of the observation period.
22
+
23
+ This transformer removes assets (columns) that have expiration dates within a
24
+ given lookahead period from the end of the dataset, allowing only assets that
25
+ remain active beyond this lookahead period to be selected.
26
+
27
+ This is useful when an exit strategy is needed before asset expiration, such as
28
+ for bonds or options with known end dates, or when applying WalkForward
29
+ cross-validation. It ensures that assets expiring during the test period are
30
+ excluded, so that only live assets are included in each training and test period.
31
+
32
+ Parameters
33
+ ----------
34
+ expiration_dates : dict[str, dt.datetime | pd.Timestamp], optional
35
+ Dictionary with asset names as keys and expiration dates as values.
36
+ Used to check if each asset expires within the date offset.
37
+ Assets with no expiration date will be retained by default.
38
+
39
+ expiration_lookahead : pd.offsets.BaseOffset | dt.timedelta, optional
40
+ The lookahead period after the end of the dataset within which assets with
41
+ expiration dates will be removed.
42
+
43
+ Attributes
44
+ ----------
45
+ to_keep_ : ndarray of shape (n_assets, )
46
+ Boolean array indicating which assets are remaining.
47
+
48
+ n_features_in_ : int
49
+ Number of assets seen during `fit`.
50
+
51
+ feature_names_in_ : ndarray of shape (`n_features_in_`,)
52
+ Names of features seen during `fit`. Defined only when `X`
53
+ has feature names that are all strings.
54
+
55
+ Notes
56
+ -----
57
+ This transformer only supports DataFrames with a DateTime index.
58
+
59
+ Examples
60
+ --------
61
+ >>> import pandas as pd
62
+ >>> import datetime as dt
63
+ >>> from sklearn import set_config
64
+ >>> set_config(transform_output="pandas")
65
+ >>> X = pd.DataFrame(
66
+ ... {
67
+ ... 'asset1': [1, 2, 3, 4],
68
+ ... 'asset2': [2, 3, 4, 5],
69
+ ... 'asset3': [3, 4, 5, 6],
70
+ ... 'asset4': [4, 5, 6, 7]
71
+ ... }, index=pd.date_range("2023-01-01", periods=4, freq="D")
72
+ ...)
73
+ >>> expiration_dates = {
74
+ ... 'asset1': pd.Timestamp("2023-01-10"),
75
+ ... 'asset2': pd.Timestamp("2023-01-02"),
76
+ ... 'asset3': pd.Timestamp("2023-01-06"),
77
+ ... 'asset4': dt.datetime(2023, 5, 1)
78
+ ... }
79
+ >>> selector = SelectNonExpiring(
80
+ ... expiration_dates=expiration_dates,
81
+ ... expiration_lookahead=pd.DateOffset(days=5)
82
+ ...)
83
+ >>> selector.fit_transform(X)
84
+ asset1 asset4
85
+ 2023-01-01 1 4
86
+ 2023-01-02 2 5
87
+ 2023-01-03 3 6
88
+ 2023-01-04 4 7
89
+ """
90
+
91
+ to_keep_: np.ndarray
92
+
93
+ def __init__(
94
+ self,
95
+ expiration_dates: dict[str, dt.datetime | pd.Timestamp] | None = None,
96
+ expiration_lookahead: pd.offsets.BaseOffset | dt.timedelta | None = None,
97
+ ):
98
+ self.expiration_dates = expiration_dates
99
+ self.expiration_lookahead = expiration_lookahead
100
+
101
+ def fit(self, X: pd.DataFrame, y=None) -> "SelectNonExpiring":
102
+ """Run the SelectNonExpiring transformer and get the appropriate assets.
103
+
104
+ Parameters
105
+ ----------
106
+ X : pd.DataFrame of shape (n_observations, n_assets)
107
+ Returns of the assets.
108
+
109
+ y : Ignored
110
+ Not used, present for API consistency by convention.
111
+
112
+ Returns
113
+ -------
114
+ self : SelectNonExpiring
115
+ Fitted estimator.
116
+ """
117
+ _ = self._validate_data(X, force_all_finite="allow-nan")
118
+
119
+ # Validate by allowing NaNs
120
+ if not hasattr(X, "index") or not isinstance(X.index, pd.DatetimeIndex):
121
+ raise ValueError(
122
+ "X must be a DataFrame with an index of type DatetimeIndex"
123
+ )
124
+
125
+ if self.expiration_dates is None:
126
+ raise ValueError("`expiration_lookahead` must be provided")
127
+
128
+ if self.expiration_lookahead is None:
129
+ raise ValueError("`expiration_lookahead` must be provided")
130
+
131
+ # Calculate the cutoff date
132
+ end_date = X.index[-1]
133
+ cutoff_date = end_date + self.expiration_lookahead
134
+ self.to_keep_ = np.array(
135
+ [
136
+ self.expiration_dates.get(asset, pd.Timestamp.max) > cutoff_date
137
+ for asset in X.columns
138
+ ]
139
+ )
140
+
141
+ return self
142
+
143
+ def _get_support_mask(self):
144
+ skv.check_is_fitted(self)
145
+ return self.to_keep_
146
+
147
+ def _more_tags(self):
148
+ return {"allow_nan": True}
@@ -17,6 +17,7 @@ def prices_to_returns(
17
17
  nan_threshold: float = 1,
18
18
  join: Literal["left", "right", "inner", "outer", "cross"] = "outer",
19
19
  drop_inceptions_nan: bool = True,
20
+ fill_nan: bool = True,
20
21
  ) -> pd.DataFrame | tuple[pd.DataFrame, pd.DataFrame]:
21
22
  r"""Transforms a DataFrame of prices to linear or logarithmic returns.
22
23
 
@@ -64,11 +65,15 @@ def prices_to_returns(
64
65
  this threshold. The default (`1.0`) is to keep all the observations.
65
66
 
66
67
  drop_inceptions_nan : bool, default=True
67
- If this is set to True, observations at the beginning are dropped if any of
68
+ If set to True, observations at the beginning are dropped if any of
68
69
  the asset values are missing, otherwise we keep the NaNs. This is useful when
69
70
  you work with a large universe of assets with different inception dates coupled
70
71
  with a pre-selection Transformer.
71
72
 
73
+ fill_nan : bool, default=True
74
+ If set to True, missing prices (NaNs) are forward filled using the previous
75
+ price. Otherwise, NaNs are kept.
76
+
72
77
  Returns
73
78
  -------
74
79
  X : DataFrame
@@ -106,7 +111,8 @@ def prices_to_returns(
106
111
  df.drop(to_drop, axis=0, inplace=True)
107
112
 
108
113
  # Forward fill missing values
109
- df.ffill(inplace=True)
114
+ if fill_nan:
115
+ df.ffill(inplace=True)
110
116
  # Drop rows according to drop_inceptions_nan
111
117
  # noinspection PyTypeChecker
112
118
  df.dropna(how="any" if drop_inceptions_nan else "all", inplace=True)
@@ -114,7 +120,7 @@ def prices_to_returns(
114
120
  df.dropna(axis=1, how="all", inplace=True)
115
121
 
116
122
  # returns
117
- all_returns = df.pct_change().iloc[1:]
123
+ all_returns = df.pct_change(fill_method=None).iloc[1:]
118
124
  if log_returns:
119
125
  all_returns = np.log1p(all_returns)
120
126
 
skfolio/utils/stats.py CHANGED
@@ -10,9 +10,11 @@ import warnings
10
10
  # Statsmodels, Copyright (C) 2006, Jonathan E. Taylor, Licensed under BSD 3 clause.
11
11
  from enum import auto
12
12
 
13
+ import cvxpy as cp
13
14
  import numpy as np
14
15
  import scipy.cluster.hierarchy as sch
15
16
  import scipy.optimize as sco
17
+ import scipy.sparse.linalg as scl
16
18
  import scipy.spatial.distance as scd
17
19
  import scipy.special as scs
18
20
  from scipy.sparse import csr_matrix
@@ -34,6 +36,7 @@ __all__ = [
34
36
  "compute_optimal_n_clusters",
35
37
  "rand_weights",
36
38
  "rand_weights_dirichlet",
39
+ "minimize_relative_weight_deviation",
37
40
  ]
38
41
 
39
42
 
@@ -488,3 +491,87 @@ def compute_optimal_n_clusters(distance: np.ndarray, linkage_matrix: np.ndarray)
488
491
  # k=0 represents one cluster
489
492
  k = np.argmax(gaps) + 2
490
493
  return k
494
+
495
+
496
+ def minimize_relative_weight_deviation(
497
+ weights: np.ndarray,
498
+ min_weights: np.ndarray,
499
+ max_weights: np.ndarray,
500
+ solver: str = "CLARABEL",
501
+ solver_params: dict | None = None,
502
+ ) -> np.ndarray:
503
+ r"""
504
+ Apply weight constraints to an initial array of weights by minimizing the relative
505
+ weight deviation of the final weights from the initial weights.
506
+
507
+ .. math::
508
+ \begin{cases}
509
+ \begin{aligned}
510
+ &\min_{w} & & \Vert \frac{w - w_{init}}{w_{init}} \Vert_{2}^{2} \\
511
+ &\text{s.t.} & & \sum_{i=1}^{N} w_{i} = 1 \\
512
+ & & & w_{min} \leq w_i \leq w_{max}, \quad \forall i
513
+ \end{aligned}
514
+ \end{cases}
515
+
516
+ Parameters
517
+ ----------
518
+ weights : ndarray of shape (n_assets,)
519
+ Initial weights.
520
+
521
+ min_weights : ndarray of shape (n_assets,)
522
+ Minimum assets weights (weights lower bounds).
523
+
524
+ max_weights : ndarray of shape (n_assets,)
525
+ Maximum assets weights (weights upper bounds).
526
+
527
+ solver : str, default="CLARABEL"
528
+ The solver to use. The default is "CLARABEL" which is written in Rust and has
529
+ better numerical stability and performance than ECOS and SCS.
530
+ For more details about available solvers, check the CVXPY documentation:
531
+ https://www.cvxpy.org/tutorial/advanced/index.html#choosing-a-solver
532
+
533
+ solver_params : dict, optional
534
+ Solver parameters. For example, `solver_params=dict(verbose=True)`.
535
+ The default (`None`) is to use the CVXPY default.
536
+ For more details about solver arguments, check the CVXPY documentation:
537
+ https://www.cvxpy.org/tutorial/advanced/index.html#setting-solver-options
538
+ """
539
+ if not (weights.shape == min_weights.shape == max_weights.shape):
540
+ raise ValueError("`min_weights` and `max_weights` must have same size")
541
+
542
+ if np.any(weights < 0):
543
+ raise ValueError("Initial weights must be strictly positive")
544
+
545
+ if not np.isclose(np.sum(weights), 1.0):
546
+ raise ValueError("Initial weights must sum to one")
547
+
548
+ if np.any(max_weights < min_weights):
549
+ raise ValueError("`min_weights` must be lower or equal to `max_weights`")
550
+
551
+ if np.all((weights >= min_weights) & (weights <= max_weights)):
552
+ return weights
553
+
554
+ if solver_params is None:
555
+ solver_params = {}
556
+
557
+ n = len(weights)
558
+ w = cp.Variable(n)
559
+
560
+ objective = cp.Minimize(cp.norm(w / weights - 1))
561
+ constraints = [cp.sum(w) == 1, w >= min_weights, w <= max_weights]
562
+ problem = cp.Problem(objective, constraints)
563
+
564
+ try:
565
+ problem.solve(solver=solver, **solver_params)
566
+
567
+ if w.value is None:
568
+ raise cp.SolverError("No solution found")
569
+
570
+ except (cp.SolverError, scl.ArpackNoConvergence):
571
+ raise cp.SolverError(
572
+ f"Solver '{solver}' failed. Try another"
573
+ " solver, or solve with solver_params=dict(verbose=True) for more"
574
+ " information"
575
+ ) from None
576
+
577
+ return w.value
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: skfolio
3
- Version: 0.4.2
3
+ Version: 0.5.0
4
4
  Summary: Portfolio optimization built on top of scikit-learn
5
5
  Author-email: Hugo Delatte <delatte.hugo@gmail.com>
6
6
  Maintainer-email: Hugo Delatte <delatte.hugo@gmail.com>
@@ -599,7 +599,7 @@ K-fold Cross-Validation
599
599
  # mmp is the predicted MultiPeriodPortfolio object composed of 5 Portfolios (1 per testing fold)
600
600
 
601
601
  mmp.plot_cumulative_returns()
602
- print(mmp.summary()
602
+ print(mmp.summary())
603
603
 
604
604
 
605
605
  Combinatorial Purged Cross-Validation
@@ -45,9 +45,9 @@ skfolio/optimization/_base.py,sha256=LoRONJP70AwbFpdgqVS_g145pCx0JGkazjWvkQzT_iM
45
45
  skfolio/optimization/cluster/__init__.py,sha256=M3xVdYhNKp4e9CB7hzb4yjTxkkNCHh7Mt_KGFFrkOgs,388
46
46
  skfolio/optimization/cluster/_nco.py,sha256=J3pPd9XkrAcWaKPSW5vMdtaFpDshBvOdUudbDGQSoNI,16366
47
47
  skfolio/optimization/cluster/hierarchical/__init__.py,sha256=YnfcPHvjwB6kcG4hoQqc0NqIJKaG7OjBtmXNbOxCq08,405
48
- skfolio/optimization/cluster/hierarchical/_base.py,sha256=ioOBsHA-kRFV_Bvl0-PcqLOytjwy6JhAX1UV454Hfss,18079
49
- skfolio/optimization/cluster/hierarchical/_herc.py,sha256=gFmliW8YJZbbIjHwZ5IqTmTBIt9voLUGCZKdy8RoTvw,17956
50
- skfolio/optimization/cluster/hierarchical/_hrp.py,sha256=nB3W5Zm1TaKTLyRMqN6irAbXD-y-bL2b78d7VFYASa8,16511
48
+ skfolio/optimization/cluster/hierarchical/_base.py,sha256=l8rJHCH_79FOPdDL2I0dmAWcVWnNkcXHtzt0U-L7BN8,16280
49
+ skfolio/optimization/cluster/hierarchical/_herc.py,sha256=LPtUrvyW9G60OZhMWlZH_GHZHdX8mJHksrYGB-WPRVg,20358
50
+ skfolio/optimization/cluster/hierarchical/_hrp.py,sha256=dn6EKiTJ1wkoFhPdst6vlXnSQvXSYsMtB2zaGNVPpyA,18115
51
51
  skfolio/optimization/convex/__init__.py,sha256=F6BPFikTo0B-7JCKazqLGEwM3RkgTNbFm5GAGkaq9Uo,570
52
52
  skfolio/optimization/convex/_base.py,sha256=2at6Ll4qHkN_1wvYjl-yXWTbiRJj8fhNS-bfAT88YSw,76055
53
53
  skfolio/optimization/convex/_distributionally_robust.py,sha256=tw_UNSDfAXP02khE10hpmcdlz3DQXQD7ttDqFDSHV1E,17811
@@ -60,15 +60,19 @@ skfolio/optimization/ensemble/_stacking.py,sha256=ZoICUnc_MwoXDQAR2kewCg-KIezSOI
60
60
  skfolio/optimization/naive/__init__.py,sha256=Dkr55R48urC-jfYN007NTbei16N91Na_EDYLVqzhGgQ,147
61
61
  skfolio/optimization/naive/_naive.py,sha256=AhEyYKEUAm-Fjn4p8SHwhp7yE9iF0tRyDZIjKYV4EeU,6390
62
62
  skfolio/population/__init__.py,sha256=rsPPMUv95aTK7vmpPeQwF8NzFuBwk6RDo5g4HNaPzNM,80
63
- skfolio/population/_population.py,sha256=WYT6yTVmarzMH3nj1-rQCvD-X2nH6q9bo928-lenUXs,30426
63
+ skfolio/population/_population.py,sha256=ej45tdk_CcMlNToCsx2VUk2YRktK3k4cRczGBpjlnDE,30427
64
64
  skfolio/portfolio/__init__.py,sha256=YYtcAPmA2zeCxFGTXegg2FXcA7py6CxOX7IMTdYuXl0,586
65
65
  skfolio/portfolio/_base.py,sha256=EFLsvHoxZmDvGPOKePr6hQGXU7y7TWsALvzYP9qt0fQ,39588
66
66
  skfolio/portfolio/_multi_period_portfolio.py,sha256=K2JfEwlPD9iGO58lOdk7WUbWuXZDWw2prPT5T7pOdto,24387
67
67
  skfolio/portfolio/_portfolio.py,sha256=gqvCKM6ZVfwZrgixiYdahgbQ1DRNW2LkGHkXOpjleb4,32753
68
- skfolio/pre_selection/__init__.py,sha256=VtUtDn-U-Mn_xR2k7yfld0Yb0rPhLakEAiBwUyi-4Z8,189
69
- skfolio/pre_selection/_pre_selection.py,sha256=w84T14nKmzkgzbw5CW_AIlci741lXYxKUwB5pBjhTTI,12163
68
+ skfolio/pre_selection/__init__.py,sha256=_H0jziIOq0nUETFQvjBP4AtKGzdh0EGGSXaECTcUhxY,482
69
+ skfolio/pre_selection/_drop_correlated.py,sha256=EDwRVqmkU-52VXQ-u350PYgjWCI5QnB8CfR1taLWffY,3818
70
+ skfolio/pre_selection/_select_complete.py,sha256=sE9TCitUA5KbEqPssl0qsCBD-oV_5Vx-b-kdU0hsFHI,3885
71
+ skfolio/pre_selection/_select_k_extremes.py,sha256=25FGievaDqlAHAxUmyznAd3LIq_7D3ajaSVD6E7luSI,3061
72
+ skfolio/pre_selection/_select_non_dominated.py,sha256=HLGNS14vgQlg5I5zj-b1QpgCaZROd0FALQSmyXGpK7o,5983
73
+ skfolio/pre_selection/_select_non_expiring.py,sha256=RAWnuW2u7y0ibsimJp5mRM9JQFOn0hHp-mWsp0FLPbs,4995
70
74
  skfolio/preprocessing/__init__.py,sha256=15A1bzfPsbfxxXgGP1gstf4R0E_347Wn18z5W5jH-hk,94
71
- skfolio/preprocessing/_returns.py,sha256=oo1Mm-UCHwq4ECjfmsRxWzzK1EPsuv-EEtnimvv_nXo,4345
75
+ skfolio/preprocessing/_returns.py,sha256=6mdNi7Dun5eNK4LdqKAxP4CCZEVfAEz40HXVrOiAaLA,4561
72
76
  skfolio/prior/__init__.py,sha256=jql8NTiWlykPKJUXTOPdqm531mP8Pul1QAR6hXTXA6c,446
73
77
  skfolio/prior/_base.py,sha256=u9GLCKJl-Txiem5rIO-qkH3VIyem3taD6T9kMzsYPRY,1941
74
78
  skfolio/prior/_black_litterman.py,sha256=W3HbpvkViEiD7AOgpdVmNYTlWKSGDgo9Y3BfSrbMIQ4,10347
@@ -82,10 +86,10 @@ skfolio/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
82
86
  skfolio/utils/bootstrap.py,sha256=3zY2kO_GQURKEcQMCasJOSByde9Mt2IAi3KJH0_a4mk,3550
83
87
  skfolio/utils/equations.py,sha256=MQ1w3VSM2n_j9bTIKAQA716aWKYyUqtw5yM2bU-9t-M,13745
84
88
  skfolio/utils/sorting.py,sha256=lSjMvH2L-sSj-06B3MlwBrH1rtjCeGEe4hG894W7TE0,3504
85
- skfolio/utils/stats.py,sha256=wuOmSt5panMMTw_pFYizLbmrclsE_4PHQfamkzJ5J2s,13937
89
+ skfolio/utils/stats.py,sha256=bzKlF2U7BN2WonwtuwG_cL_16Z3cTAxCAw5pZgbib54,17005
86
90
  skfolio/utils/tools.py,sha256=4KrmBR9jOLiI6j0hb27gsPC--OHXo4Sp1xl-6i-k9Tg,20925
87
- skfolio-0.4.2.dist-info/LICENSE,sha256=F6Gi-ZJX5BlVzYK8R9NcvAkAsKa7KO29xB1OScbrH6Q,1526
88
- skfolio-0.4.2.dist-info/METADATA,sha256=g_b6XH3HiwSCz8DawgN2HWHKQIZQMBdhVhbY_TOERUo,19610
89
- skfolio-0.4.2.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
90
- skfolio-0.4.2.dist-info/top_level.txt,sha256=NXEaoS9Ms7t32gxkb867nV0OKlU0KmssL7IJBVo0fJs,8
91
- skfolio-0.4.2.dist-info/RECORD,,
91
+ skfolio-0.5.0.dist-info/LICENSE,sha256=F6Gi-ZJX5BlVzYK8R9NcvAkAsKa7KO29xB1OScbrH6Q,1526
92
+ skfolio-0.5.0.dist-info/METADATA,sha256=yHEHbXE0miG8QngS1WprxyB9QrKnml44TPGScw8SqqM,19611
93
+ skfolio-0.5.0.dist-info/WHEEL,sha256=P9jw-gEje8ByB7_hXoICnHtVCrEwMQh-630tKvQWehc,91
94
+ skfolio-0.5.0.dist-info/top_level.txt,sha256=NXEaoS9Ms7t32gxkb867nV0OKlU0KmssL7IJBVo0fJs,8
95
+ skfolio-0.5.0.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (75.1.0)
2
+ Generator: setuptools (75.3.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5