skfolio 0.2.0__py3-none-any.whl → 0.2.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -156,7 +156,7 @@ class BlackLitterman(BasePrior):
156
156
  check_type=BasePrior,
157
157
  )
158
158
  # fitting prior estimator
159
- self.prior_estimator_.fit(X)
159
+ self.prior_estimator_.fit(X, y)
160
160
 
161
161
  prior_mu = self.prior_estimator_.prior_model_.mu
162
162
  prior_covariance = self.prior_estimator_.prior_model_.covariance
@@ -120,11 +120,11 @@ class EmpiricalPrior(BasePrior):
120
120
  "`is_log_normal` is `False`"
121
121
  )
122
122
  # Expected returns
123
- self.mu_estimator_.fit(X)
123
+ self.mu_estimator_.fit(X, y)
124
124
  mu = self.mu_estimator_.mu_
125
125
 
126
126
  # Covariance
127
- self.covariance_estimator_.fit(X)
127
+ self.covariance_estimator_.fit(X, y)
128
128
  covariance = self.covariance_estimator_.covariance_
129
129
  else:
130
130
  if self.investment_horizon is None:
@@ -134,14 +134,15 @@ class EmpiricalPrior(BasePrior):
134
134
  )
135
135
  # Convert linear returns to log returns
136
136
  X_log = np.log(1 + X)
137
+ y_log = np.log(1 + y) if y is not None else None
137
138
 
138
139
  # Estimates the moments on the log returns
139
140
  # Expected returns
140
- self.mu_estimator_.fit(X_log)
141
+ self.mu_estimator_.fit(X_log, y_log)
141
142
  mu = self.mu_estimator_.mu_
142
143
 
143
144
  # Covariance
144
- self.covariance_estimator_.fit(X_log)
145
+ self.covariance_estimator_.fit(X_log, y_log)
145
146
  covariance = self.covariance_estimator_.covariance_
146
147
 
147
148
  # Using the property of aggregation across time we scale this distribution
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: skfolio
3
- Version: 0.2.0
3
+ Version: 0.2.1
4
4
  Summary: Portfolio optimization built on top of scikit-learn
5
5
  Author-email: Hugo Delatte <delatte.hugo@gmail.com>
6
6
  Maintainer-email: Hugo Delatte <delatte.hugo@gmail.com>
@@ -563,7 +563,7 @@ Black & Litterman Factor Model
563
563
  ------------------------------
564
564
  .. code-block:: python
565
565
 
566
- factor_views = ["MTUM - QUAL == 0.03 ", "SIZE - TLT == 0.04", "VLUE == 0.06"]
566
+ factor_views = ["MTUM - QUAL == 0.03 ", "VLUE == 0.06"]
567
567
  model = MeanRisk(
568
568
  objective_function=ObjectiveFunction.MAXIMIZE_RATIO,
569
569
  prior_estimator=FactorModel(
@@ -59,8 +59,8 @@ skfolio/preprocessing/__init__.py,sha256=15A1bzfPsbfxxXgGP1gstf4R0E_347Wn18z5W5j
59
59
  skfolio/preprocessing/_returns.py,sha256=_7UtXugQPWitNrrZ3M2dUOAun8aVr0lI45Ms6KFiS94,3826
60
60
  skfolio/prior/__init__.py,sha256=jql8NTiWlykPKJUXTOPdqm531mP8Pul1QAR6hXTXA6c,446
61
61
  skfolio/prior/_base.py,sha256=Dx6rX0X6ymDiieFOI-ik3xMNNFhYEtwLSXOdajf5wZY,1927
62
- skfolio/prior/_black_litterman.py,sha256=JuwVXLXY5qHETBZDg0wmBGMSQehJp_1t7c1-kanKaiU,9397
63
- skfolio/prior/_empirical.py,sha256=YhCYW8R3vqs3ntF4WSokuwLW6Gd98df7f8LL8zCS-D0,5740
62
+ skfolio/prior/_black_litterman.py,sha256=sVx8113xeP4B6LA4rICKp0cgw7w3F46aQzIQY_34QwQ,9400
63
+ skfolio/prior/_empirical.py,sha256=eHBSXVzIEvA2oBAnv6HW9D8iy3xKDxpCN_xsg8j8Ye8,5821
64
64
  skfolio/prior/_factor_model.py,sha256=xC-womM7oC91jRaIQP7MSiRPkwm5b7pkWHi-5mOb2jY,9665
65
65
  skfolio/uncertainty_set/__init__.py,sha256=LlMHtYv9G9fgtM7m4sCSToS9et57Pm2Q2gGchTVrj6c,617
66
66
  skfolio/uncertainty_set/_base.py,sha256=rZ3g2AhDKFQTPajgh6Fz5S5TTf0qM4Ie6RGxPhp32D8,3301
@@ -74,8 +74,8 @@ skfolio/utils/stats.py,sha256=IP36nMc5j5Hcqjbg7lvDIsGp1GWRdOh5jU3W6Z8nkYs,13132
74
74
  skfolio/utils/tools.py,sha256=xa42f7U3Ki8-CJS6g8w7bKCLI_QMJ8D6LxLBjlEM7Ok,15374
75
75
  skfolio/utils/fixes/__init__.py,sha256=knHau8PRZP07XDHR59CW8VWxkpTP0gdr6RAHJrO-zaA,95
76
76
  skfolio/utils/fixes/_dendrogram.py,sha256=9aIhSnMwpQHJhQx7IpXC3jlw6YJ3H4XQnnx_d4nMllQ,13551
77
- skfolio-0.2.0.dist-info/LICENSE,sha256=F6Gi-ZJX5BlVzYK8R9NcvAkAsKa7KO29xB1OScbrH6Q,1526
78
- skfolio-0.2.0.dist-info/METADATA,sha256=mTx4X6Oymgb_VzpoAXdel_WnafJFUR6Q5rKuL9Td4l8,19607
79
- skfolio-0.2.0.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
80
- skfolio-0.2.0.dist-info/top_level.txt,sha256=NXEaoS9Ms7t32gxkb867nV0OKlU0KmssL7IJBVo0fJs,8
81
- skfolio-0.2.0.dist-info/RECORD,,
77
+ skfolio-0.2.1.dist-info/LICENSE,sha256=F6Gi-ZJX5BlVzYK8R9NcvAkAsKa7KO29xB1OScbrH6Q,1526
78
+ skfolio-0.2.1.dist-info/METADATA,sha256=OzW5QNHb_EG_jHtP5lPqWas8EAMyl6FPgS3XP6CXulQ,19585
79
+ skfolio-0.2.1.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
80
+ skfolio-0.2.1.dist-info/top_level.txt,sha256=NXEaoS9Ms7t32gxkb867nV0OKlU0KmssL7IJBVo0fJs,8
81
+ skfolio-0.2.1.dist-info/RECORD,,