sinapsis-data-readers 0.1.16__py3-none-any.whl → 0.1.19__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -135,7 +135,7 @@ class SKLearnDatasets(BaseDynamicWrapperTemplate):
135
135
  @staticmethod
136
136
  def split_dataset(
137
137
  results: pd.DataFrame, feature_name_cols: list, target_name_cols: list, n_features: int, split_size: float
138
- ) -> TabularDatasetSplit:
138
+ ) -> dict:
139
139
  """Method to split the dataset into training and testing samples"""
140
140
  if feature_name_cols:
141
141
  X = results[feature_name_cols]
@@ -144,8 +144,7 @@ class SKLearnDatasets(BaseDynamicWrapperTemplate):
144
144
  X = results.iloc[:, :n_features]
145
145
  y = results.iloc[:, n_features:]
146
146
 
147
- # x_vals = results.drop(columns=[TARGET], axis=1)
148
- # y_vals = results[TARGET]
147
+
149
148
  x_train, x_test, y_train, y_test = train_test_split(X, y, train_size=split_size, random_state=0)
150
149
  split_data = TabularDatasetSplit(
151
150
  x_train=pd.DataFrame(x_train),
@@ -154,7 +153,7 @@ class SKLearnDatasets(BaseDynamicWrapperTemplate):
154
153
  y_test=pd.DataFrame(y_test),
155
154
  )
156
155
 
157
- return split_data
156
+ return split_data.model_dump_json(indent=2)
158
157
 
159
158
  def execute(self, container: DataContainer) -> DataContainer:
160
159
  sklearn_dataset = self.wrapped_callable.__func__(**self.dataset_attributes.model_dump())
@@ -94,7 +94,7 @@ class SKTimeDatasets(BaseDynamicWrapperTemplate):
94
94
 
95
95
  def initialize_attributes(self):
96
96
  return getattr(self.attributes, self.wrapped_callable.__name__)
97
- def split_time_series_dataset(self, dataset: Any) -> TabularDatasetSplit:
97
+ def split_time_series_dataset(self, dataset: Any) -> dict:
98
98
  """Split a time series dataset into training and testing sets
99
99
 
100
100
  Args:
@@ -104,12 +104,13 @@ class SKTimeDatasets(BaseDynamicWrapperTemplate):
104
104
  TabularDatasetSplit: Object containing the split time series data
105
105
  """
106
106
  y_train, y_test = temporal_train_test_split(dataset, train_size=self.attributes.train_size)
107
- return TabularDatasetSplit(
107
+ split_dataset = TabularDatasetSplit(
108
108
  x_train=pd.DataFrame(index=y_train.index),
109
109
  x_test=pd.DataFrame(index=y_test.index),
110
110
  y_train=pd.DataFrame(y_train),
111
111
  y_test=pd.DataFrame(y_test),
112
112
  )
113
+ return split_dataset.model_dump_json(indent=2)
113
114
 
114
115
  def split_classification_dataset(self, X: Any, y: Any) -> TabularDatasetSplit:
115
116
  """Split a classification dataset into training and testing sets
@@ -55,8 +55,7 @@ class CocoImageDatasetBaseCV2(FolderImageDatasetCV2):
55
55
  annotations_path: str
56
56
 
57
57
  def __init__(self, attributes: TemplateAttributeType) -> None:
58
- self.annotations_file = os.path.join(attributes.get("root_dir", SINAPSIS_CACHE_DIR),
59
- attributes.get("data_dir"), attributes.get("annotations_path"))
58
+ self.annotations_file = os.path.join(attributes.get("root_dir", SINAPSIS_CACHE_DIR), attributes.get("data_dir"), attributes.get("annotations_path"))
60
59
  self.raw_annotations_dict: list[dict[str, dict[str, Any]]] = self.read_annotations_file(self.annotations_file)
61
60
  self.annotations = self.images_annotations()
62
61
  super().__init__(attributes)
@@ -134,19 +134,19 @@ class VideoReaderDali(BaseVideoReader):
134
134
  del self.video_reader
135
135
 
136
136
  def _read_video_frames(self) -> list[ImagePacket]:
137
- """Reads video frames from the dali pipeline.
138
-
139
- This method runs the video reader pipeline and adds the frames to a list
140
- of ImagePacket objects.
141
-
142
- Returns:
143
- list[ImagePacket]: A list of ImagePacket objects representing the video frames.
144
- """
137
+ """Reads video frames from the dali pipeline."""
145
138
  video_frames: list[ImagePacket] = []
146
139
  sequences_out = self.video_reader.run()
140
+ tensor_batch = sequences_out[0]
141
+
142
+ shape_result = tensor_batch.shape()
143
+ batch_size = shape_result[0][0]
147
144
 
148
- for idx, frame in enumerate(sequences_out[0]):
145
+ for idx in range(batch_size):
146
+ frame_tensor = tensor_batch.at(idx)
147
+ frame = torch.as_tensor(frame_tensor, device="cuda")
149
148
  video_frames.append(self._make_image_packet(frame, frame_index=self.frame_count + idx))
149
+
150
150
  return video_frames
151
151
 
152
152
  def reset_state(self, template_name: str | None = None) -> None:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: sinapsis-data-readers
3
- Version: 0.1.16
3
+ Version: 0.1.19
4
4
  Summary: Templates to read data in different formats
5
5
  Author-email: SinapsisAI <dev@sinapsis.tech>
6
6
  Project-URL: Homepage, https://sinapsis.tech
@@ -14,8 +14,8 @@ Requires-Dist: sinapsis>=0.1.1
14
14
  Provides-Extra: nvidia-dali
15
15
  Requires-Dist: nvidia-dali-cuda120>=1.43.0; extra == "nvidia-dali"
16
16
  Provides-Extra: torch-codec
17
- Requires-Dist: torch<=2.5.1; extra == "torch-codec"
18
- Requires-Dist: torchcodec>=0.3.0; extra == "torch-codec"
17
+ Requires-Dist: torch>=2.4.1; extra == "torch-codec"
18
+ Requires-Dist: torchcodec>=0.0.3; extra == "torch-codec"
19
19
  Provides-Extra: sklearn-datasets
20
20
  Requires-Dist: pandas>=2.2.3; extra == "sklearn-datasets"
21
21
  Requires-Dist: scikit-learn>=1.5.2; extra == "sklearn-datasets"
@@ -4,7 +4,6 @@ sinapsis_data_readers/helpers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5N
4
4
  sinapsis_data_readers/helpers/coco_dataclasses.py,sha256=D5HVWQP95TdHpa9UnTYAClfaqsIYrODKDGbITCvYXsc,2290
5
5
  sinapsis_data_readers/helpers/csv_reader.py,sha256=f_fk2Wgukdh93Um1Q5qczUD27iC3A71vKbhWxXe6Fyk,558
6
6
  sinapsis_data_readers/helpers/file_path_helpers.py,sha256=ayuFe-AAEa4immcY19FcubAtKzZ3BtYkBus-QP5dADo,2205
7
- sinapsis_data_readers/helpers/image_color_space_converter.py,sha256=SABsol7jp6veA_T13MSr0fQFVrI-NJdXkNYyX4YL90E,2099
8
7
  sinapsis_data_readers/helpers/sklearn_dataset_subset.py,sha256=XpzdVTBr5OgG57oOz3W7eLpoj2vWlTKbX6NIH0OP3qc,792
9
8
  sinapsis_data_readers/helpers/sktime_datasets_subset.py,sha256=aMmsaPuHuWkEP5BCAzeP6vV--y0UehBZL_fRHlDJweA,397
10
9
  sinapsis_data_readers/helpers/tags.py,sha256=YeddHmiX9kq2wDUhQ6-elIDNxt3ojBs8oHQugzyjM3s,620
@@ -19,11 +18,11 @@ sinapsis_data_readers/templates/audio_readers/base_audio_reader.py,sha256=-3biMc
19
18
  sinapsis_data_readers/templates/datasets_readers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
20
19
  sinapsis_data_readers/templates/datasets_readers/csv_datasets.py,sha256=jn2x8QXpDn-wLoXML24xcfJ29WHT2OhRuFNrU105lOs,1210
21
20
  sinapsis_data_readers/templates/datasets_readers/dataset_splitter.py,sha256=6FqN1x6V748Q_ESFfxfaCRJKJQY8cK-gwRHvzuYdVqI,8860
22
- sinapsis_data_readers/templates/datasets_readers/sklearn_datasets.py,sha256=yQqQFL_mfcRzdPX6Ebq1ZflvMVt5Fpq573_ZhOGWEx8,8325
23
- sinapsis_data_readers/templates/datasets_readers/sktime_datasets.py,sha256=lkH55Fhc4u6w0FlRW23Z41K_g3iTkxeXTAWrUy3Vb8s,9450
21
+ sinapsis_data_readers/templates/datasets_readers/sklearn_datasets.py,sha256=Nr3RjdXxjtRz-mf2SwLDlpZ_AvWsno476n0j9GuLaOc,8244
22
+ sinapsis_data_readers/templates/datasets_readers/sktime_datasets.py,sha256=TEUQVBP7sCYh6hvCX3W1N6c3Cn_v012dfaFKzJFqek4,9500
24
23
  sinapsis_data_readers/templates/image_readers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
25
24
  sinapsis_data_readers/templates/image_readers/base_image_folder_data_loader.py,sha256=UM2SmBX7B2RE1OgwRtBn-GZdKmrgZILdN32itHIJKQI,4832
26
- sinapsis_data_readers/templates/image_readers/coco_dataset_reader.py,sha256=_UnV7NyQp_Qms-4MG7iBVabTvygEGyy6r2yNacFkKgk,14720
25
+ sinapsis_data_readers/templates/image_readers/coco_dataset_reader.py,sha256=cFVP50LeRSu9tppy4RYZbAmN775f6AuGUdDTzAHRf3k,14675
27
26
  sinapsis_data_readers/templates/image_readers/csv_dataset_reader.py,sha256=k2eVDSLnX3dDkkq0ILgaB6X_sf0wgPyYbKTFX3rGBxo,4966
28
27
  sinapsis_data_readers/templates/image_readers/image_folder_reader_cv2.py,sha256=XLoYT_5AZvqxaltek_MMUgA0gtJIzyKLL7YpUIvHaIU,2337
29
28
  sinapsis_data_readers/templates/image_readers/image_folder_reader_kornia.py,sha256=LxrveCcVjtM7d3-tely03sfmATfSXOm0Smzdm7EugZI,2466
@@ -32,11 +31,11 @@ sinapsis_data_readers/templates/text_readers/text_input.py,sha256=d3NXeErhNqY9dY
32
31
  sinapsis_data_readers/templates/video_readers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
33
32
  sinapsis_data_readers/templates/video_readers/base_video_reader.py,sha256=QhW_VDzqA5YCDKdOxqzFFyEW8-LC1XAdeRGuQYWvMlw,14422
34
33
  sinapsis_data_readers/templates/video_readers/video_reader_cv2.py,sha256=n3EYBYgKNC2zua7IHF6KCcIj41Mqpjp5sFRZLuPNeUs,4037
35
- sinapsis_data_readers/templates/video_readers/video_reader_dali.py,sha256=0nmHGPLCC4DXolwLpYdL5vExms3jOGyY_54HGPUXWHM,8815
34
+ sinapsis_data_readers/templates/video_readers/video_reader_dali.py,sha256=TIsV1h4eYVOocdwC8tqW3aYz_9l5XJq5nTVc4rWlFUQ,8804
36
35
  sinapsis_data_readers/templates/video_readers/video_reader_ffmpeg.py,sha256=uAnV02i9gy7p9mxTVcx20F6ily4JhBtJSDJ93Reyi4w,5046
37
36
  sinapsis_data_readers/templates/video_readers/video_reader_torchcodec.py,sha256=wMCjRCaMknDYPOsspuf7NVEhy49h818lVq__AHTsFA8,4036
38
- sinapsis_data_readers-0.1.16.dist-info/licenses/LICENSE,sha256=hIahDEOTzuHCU5J2nd07LWwkLW7Hko4UFO__ffsvB-8,34523
39
- sinapsis_data_readers-0.1.16.dist-info/METADATA,sha256=7Xlsk_TmpRiYG4SNYDB0h-TTKWK9XP8YTFa2Hzm3ddA,6520
40
- sinapsis_data_readers-0.1.16.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
41
- sinapsis_data_readers-0.1.16.dist-info/top_level.txt,sha256=3R3oDiABqDVBW2Fc-SpWXYHkRdYFGZjT_wo6Q0Uqnhw,41
42
- sinapsis_data_readers-0.1.16.dist-info/RECORD,,
37
+ sinapsis_data_readers-0.1.19.dist-info/licenses/LICENSE,sha256=hIahDEOTzuHCU5J2nd07LWwkLW7Hko4UFO__ffsvB-8,34523
38
+ sinapsis_data_readers-0.1.19.dist-info/METADATA,sha256=BAgUowN5EKwL35zhcJQB-O3YazivmRbiEpDtRBGWALs,6520
39
+ sinapsis_data_readers-0.1.19.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
40
+ sinapsis_data_readers-0.1.19.dist-info/top_level.txt,sha256=3R3oDiABqDVBW2Fc-SpWXYHkRdYFGZjT_wo6Q0Uqnhw,41
41
+ sinapsis_data_readers-0.1.19.dist-info/RECORD,,
@@ -1,53 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
- from enum import Enum
3
-
4
- import cv2
5
- from sinapsis_core.data_containers.data_packet import ImageColor, ImagePacket
6
- from sinapsis_core.utils.logging_utils import sinapsis_logger
7
-
8
- color_mapping = {
9
- (ImageColor.RGB, ImageColor.BGR): cv2.COLOR_RGB2BGR,
10
- (ImageColor.RGB, ImageColor.GRAY): cv2.COLOR_RGB2GRAY,
11
- (ImageColor.RGB, ImageColor.RGBA): cv2.COLOR_RGB2RGBA,
12
- (ImageColor.BGR, ImageColor.RGB): cv2.COLOR_BGR2RGB,
13
- (ImageColor.BGR, ImageColor.GRAY): cv2.COLOR_BGR2GRAY,
14
- (ImageColor.BGR, ImageColor.RGBA): cv2.COLOR_BGR2RGBA,
15
- (ImageColor.GRAY, ImageColor.RGB): cv2.COLOR_GRAY2RGB,
16
- (ImageColor.GRAY, ImageColor.BGR): cv2.COLOR_GRAY2BGR,
17
- (ImageColor.GRAY, ImageColor.RGBA): cv2.COLOR_GRAY2RGBA,
18
- (ImageColor.RGBA, ImageColor.RGB): cv2.COLOR_RGBA2RGB,
19
- (ImageColor.RGBA, ImageColor.BGR): cv2.COLOR_RGBA2BGR,
20
- (ImageColor.RGBA, ImageColor.GRAY): cv2.COLOR_RGBA2GRAY,
21
- }
22
-
23
-
24
- def convert_color_space_cv(image: ImagePacket, desired_color_space: Enum) -> ImagePacket:
25
- """Converts an image from one color space to another, provided
26
- they are in the color mapping options.
27
-
28
- Args:
29
- image (ImagePacket): Image packet to apply the conversion
30
- desired_color_space (Enum): Color space to convert the image
31
-
32
- Returns:
33
- ImagePacket: Updated ImagePacket with content converted into the new color space
34
-
35
- Raises:
36
- ValueError: If the conversion is not possible, return an error.
37
-
38
- """
39
- current_color_space = image.color_space
40
-
41
- if (current_color_space, desired_color_space) in color_mapping:
42
- conversion_code = color_mapping[(current_color_space, desired_color_space)]
43
- try:
44
- image.content = cv2.cvtColor(image.content, conversion_code)
45
- image.color_space = desired_color_space
46
-
47
- except cv2.error:
48
- sinapsis_logger.error(f"Invalid conversion between {current_color_space} and {desired_color_space}")
49
-
50
- else:
51
- raise ValueError(f"Conversion from {current_color_space} to {desired_color_space} is not supported.")
52
-
53
- return image