sinapsis-data-analysis 0.1.8__py3-none-any.whl → 0.1.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -7,6 +7,7 @@ import numpy as np
7
7
  from sinapsis_core.data_containers.data_packet import DataContainer
8
8
  from sinapsis_core.template_base.base_models import TemplateAttributes
9
9
  from sinapsis_core.template_base.dynamic_template import BaseDynamicWrapperTemplate
10
+ from sinapsis_core.utils.env_var_keys import WORKING_DIR
10
11
  from sinapsis_data_readers.templates.datasets_readers.dataset_splitter import TabularDatasetSplit
11
12
  from sklearn.base import is_classifier, is_regressor
12
13
  from sklearn.metrics import (
@@ -34,6 +35,7 @@ class MLBaseAttributes(TemplateAttributes):
34
35
  """
35
36
 
36
37
  generic_field_key: str
38
+ root_dir : str = WORKING_DIR
37
39
  model_save_path: str
38
40
 
39
41
 
@@ -81,7 +83,7 @@ class MLBaseTraining(BaseDynamicWrapperTemplate):
81
83
  """
82
84
  return dataset is not None
83
85
 
84
- def process_dataset(self, dataset: TabularDatasetSplit) -> tuple | None:
86
+ def process_dataset(self, dataset: TabularDatasetSplit | dict) -> tuple | None:
85
87
  """
86
88
  Extracts x_train, y_train, x_test, y_test from the dataset
87
89
 
@@ -92,6 +94,8 @@ class MLBaseTraining(BaseDynamicWrapperTemplate):
92
94
  tuple | None: A tuple containing (x_train, y_train, x_test, y_test)
93
95
  or None if the dataset doesn't have the expected attributes
94
96
  """
97
+ if isinstance(dataset, dict):
98
+ dataset = TabularDatasetSplit(**dataset)
95
99
  try:
96
100
  x_train = dataset.x_train
97
101
  y_train = dataset.y_train
@@ -213,9 +217,9 @@ class MLBaseTraining(BaseDynamicWrapperTemplate):
213
217
  if self.trained_model is None:
214
218
  self.logger.error("No model to save")
215
219
  return
216
-
220
+ full_path = os.path.join(self.attributes.root_dir, self.attributes.model_save_path)
217
221
  try:
218
- os.makedirs(os.path.dirname(self.attributes.model_save_path), exist_ok=True)
222
+ os.makedirs(os.path.dirname(full_path), exist_ok=True)
219
223
  self._save_model_implementation()
220
224
  self.logger.info(f"Model saved at {self.attributes.model_save_path}")
221
225
  except (MemoryError, TypeError) as e:
@@ -255,7 +259,7 @@ class MLBaseTraining(BaseDynamicWrapperTemplate):
255
259
  results = self.handle_model_training(processed_data)
256
260
 
257
261
  if results is not None:
258
- self._set_generic_data(container, results)
262
+ self._set_generic_data(container, results.model_dump())
259
263
  self.save_model()
260
264
 
261
265
  return container
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: sinapsis-data-analysis
3
- Version: 0.1.8
3
+ Version: 0.1.9
4
4
  Summary: Templates to work with models for classification, regression and clustering with xgboost and sklearn.
5
5
  Author-email: SinapsisAI <dev@sinapsis.tech>
6
6
  Project-URL: Homepage, https://sinapsis.tech
@@ -5,14 +5,14 @@ sinapsis_data_analysis/helpers/model_metrics.py,sha256=mR-ZLD8PrGgOh1PrYG8TOjFhJ
5
5
  sinapsis_data_analysis/helpers/tags.py,sha256=ICJNmbNAtwn5BfMvGHh6eLuq5Ro3hCIbwd-Y63qOmC0,372
6
6
  sinapsis_data_analysis/templates/__init__.py,sha256=z1-E6V4f6MqoGY0_cPwSurDpXDdMOAEOvSS4ogrl1DM,840
7
7
  sinapsis_data_analysis/templates/ml_base_inference.py,sha256=CMAebWYKAyNWWdJFEc4zAjFH5z5RlEbsunvYhlunYno,3467
8
- sinapsis_data_analysis/templates/ml_base_training.py,sha256=sZfYuYo1z19PqoMXKVM1zO_y4BuucuptK6m6eu94o2U,9055
8
+ sinapsis_data_analysis/templates/ml_base_training.py,sha256=3-YfNie6kyWHmpn9Dn2okfpOoGQsjY1iH-a3hwxt5aw,9325
9
9
  sinapsis_data_analysis/templates/sklearn_inference.py,sha256=rf-HsWYE4_g9KM_BZbP3f2jKyKz_MLj9-eZ1CAGHqp8,931
10
10
  sinapsis_data_analysis/templates/sklearn_manifold.py,sha256=whYTvwDnVacSh4N2XBXVgn8O1dG-KnQsx6htm5DFEbQ,5519
11
11
  sinapsis_data_analysis/templates/sklearn_train.py,sha256=WIF7DIslVIRHCmDAXfVUZkiVtLRPRbg6Snq0Di7Ln3w,6757
12
12
  sinapsis_data_analysis/templates/xgboost_inference.py,sha256=rFk44jHFCr-EuqDg74TInjlHDCstvA0V422gQmgbd0I,1028
13
13
  sinapsis_data_analysis/templates/xgboost_train.py,sha256=VQSztloGAW4Xcx8MZCoRKdqa5jn4NL857jHTeMRuMwA,2513
14
- sinapsis_data_analysis-0.1.8.dist-info/licenses/LICENSE,sha256=hIahDEOTzuHCU5J2nd07LWwkLW7Hko4UFO__ffsvB-8,34523
15
- sinapsis_data_analysis-0.1.8.dist-info/METADATA,sha256=TV0eu_VZ0tIHq79PEhjkw-jz-_LY99SFiK_nDXM6ysA,6296
16
- sinapsis_data_analysis-0.1.8.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
17
- sinapsis_data_analysis-0.1.8.dist-info/top_level.txt,sha256=Mc5OyqBINgXFLrAyVBmjg25MQd6Lbg7z-rwotzEeygQ,23
18
- sinapsis_data_analysis-0.1.8.dist-info/RECORD,,
14
+ sinapsis_data_analysis-0.1.9.dist-info/licenses/LICENSE,sha256=hIahDEOTzuHCU5J2nd07LWwkLW7Hko4UFO__ffsvB-8,34523
15
+ sinapsis_data_analysis-0.1.9.dist-info/METADATA,sha256=pDujcd32nUV7LV78m8cSCgOm8wDpqo2ztvwkKcI0VZY,6296
16
+ sinapsis_data_analysis-0.1.9.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
17
+ sinapsis_data_analysis-0.1.9.dist-info/top_level.txt,sha256=Mc5OyqBINgXFLrAyVBmjg25MQd6Lbg7z-rwotzEeygQ,23
18
+ sinapsis_data_analysis-0.1.9.dist-info/RECORD,,