simba-uw-tf-dev 4.6.6__py3-none-any.whl → 4.6.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (49) hide show
  1. simba/assets/.recent_projects.txt +1 -0
  2. simba/data_processors/blob_location_computer.py +1 -1
  3. simba/data_processors/circling_detector.py +30 -13
  4. simba/data_processors/cuda/image.py +53 -25
  5. simba/data_processors/cuda/statistics.py +57 -19
  6. simba/data_processors/cuda/timeseries.py +1 -1
  7. simba/data_processors/egocentric_aligner.py +1 -1
  8. simba/data_processors/freezing_detector.py +54 -50
  9. simba/feature_extractors/feature_subsets.py +2 -2
  10. simba/feature_extractors/mitra_feature_extractor.py +2 -2
  11. simba/feature_extractors/straub_tail_analyzer.py +4 -4
  12. simba/labelling/standard_labeller.py +1 -1
  13. simba/mixins/config_reader.py +5 -2
  14. simba/mixins/geometry_mixin.py +8 -8
  15. simba/mixins/image_mixin.py +14 -14
  16. simba/mixins/plotting_mixin.py +28 -10
  17. simba/mixins/statistics_mixin.py +39 -9
  18. simba/mixins/timeseries_features_mixin.py +1 -1
  19. simba/mixins/train_model_mixin.py +65 -27
  20. simba/model/inference_batch.py +1 -1
  21. simba/model/yolo_seg_inference.py +3 -3
  22. simba/outlier_tools/skip_outlier_correction.py +1 -1
  23. simba/plotting/gantt_creator.py +29 -10
  24. simba/plotting/gantt_creator_mp.py +50 -17
  25. simba/plotting/heat_mapper_clf_mp.py +2 -2
  26. simba/pose_importers/simba_blob_importer.py +3 -3
  27. simba/roi_tools/roi_aggregate_stats_mp.py +1 -1
  28. simba/roi_tools/roi_clf_calculator_mp.py +1 -1
  29. simba/third_party_label_appenders/transform/coco_keypoints_to_yolo.py +3 -3
  30. simba/third_party_label_appenders/transform/coco_keypoints_to_yolo_bbox.py +2 -2
  31. simba/ui/pop_ups/clf_plot_pop_up.py +2 -2
  32. simba/ui/pop_ups/gantt_pop_up.py +31 -6
  33. simba/ui/pop_ups/video_processing_pop_up.py +1 -1
  34. simba/utils/custom_feature_extractor.py +1 -1
  35. simba/utils/data.py +2 -2
  36. simba/utils/read_write.py +32 -18
  37. simba/utils/yolo.py +10 -1
  38. simba/video_processors/blob_tracking_executor.py +2 -2
  39. simba/video_processors/clahe_ui.py +1 -1
  40. simba/video_processors/egocentric_video_rotator.py +3 -3
  41. simba/video_processors/multi_cropper.py +1 -1
  42. simba/video_processors/video_processing.py +27 -10
  43. simba/video_processors/videos_to_frames.py +2 -2
  44. {simba_uw_tf_dev-4.6.6.dist-info → simba_uw_tf_dev-4.6.8.dist-info}/METADATA +3 -2
  45. {simba_uw_tf_dev-4.6.6.dist-info → simba_uw_tf_dev-4.6.8.dist-info}/RECORD +49 -49
  46. {simba_uw_tf_dev-4.6.6.dist-info → simba_uw_tf_dev-4.6.8.dist-info}/LICENSE +0 -0
  47. {simba_uw_tf_dev-4.6.6.dist-info → simba_uw_tf_dev-4.6.8.dist-info}/WHEEL +0 -0
  48. {simba_uw_tf_dev-4.6.6.dist-info → simba_uw_tf_dev-4.6.8.dist-info}/entry_points.txt +0 -0
  49. {simba_uw_tf_dev-4.6.6.dist-info → simba_uw_tf_dev-4.6.8.dist-info}/top_level.txt +0 -0
@@ -87,9 +87,9 @@ class BlobTrackingExecutor():
87
87
  :param bool center: If True, compute center coordinates. Default: True.
88
88
 
89
89
  :example:
90
- >>> tracker = BlobTrackingExecutor(data=r"C:\troubleshooting\mitra\test\.temp\blob_definitions.pickle")
90
+ >>> tracker = BlobTrackingExecutor(data=r"C:/troubleshooting/mitra/test/.temp/blob_definitions.pickle")
91
91
  >>> tracker.run()
92
- >>> tracker = BlobTrackingExecutor(data=r"C:\troubleshooting\mitra\test\.temp\blob_definitions.pickle", batch_size=5000)
92
+ >>> tracker = BlobTrackingExecutor(data=r"C:/troubleshooting/mitra/test/.temp/blob_definitions.pickle", batch_size=5000)
93
93
  >>> tracker.run()
94
94
  """
95
95
 
@@ -29,7 +29,7 @@ def interactive_clahe_ui(data: Union[str, os.PathLike]) -> Tuple[float, int]:
29
29
  :return Tuple[float, int]: Tuple containing the chosen clip limit and tile size.
30
30
 
31
31
  :example:
32
- >>> video = cv2.imread(r"D:\EPM\sample_2\video_1.mp4")
32
+ >>> video = cv2.imread(r"D:/EPM/sample_2/video_1.mp4")
33
33
  >>> interactive_clahe_ui(data=video)
34
34
  """
35
35
  global original_img, font_size, x_spacer, y_spacer, txt
@@ -94,9 +94,9 @@ class EgocentricVideoRotator():
94
94
  :param Optional[Union[str, os.PathLike]] save_path: The location where to store the rotated video. If None, saves the video as the same dir as the input video with the `_rotated` suffix.
95
95
 
96
96
  :example:
97
- >>> DATA_PATH = "C:\501_MA142_Gi_Saline_0513.csv"
98
- >>> VIDEO_PATH = "C:\501_MA142_Gi_Saline_0513.mp4"
99
- >>> SAVE_PATH = "C:\501_MA142_Gi_Saline_0513_rotated.mp4"
97
+ >>> DATA_PATH = "C:/501_MA142_Gi_Saline_0513.csv"
98
+ >>> VIDEO_PATH = "C:/501_MA142_Gi_Saline_0513.mp4"
99
+ >>> SAVE_PATH = "C:/501_MA142_Gi_Saline_0513_rotated.mp4"
100
100
  >>> ANCHOR_LOC = np.array([250, 250])
101
101
 
102
102
  >>> df = read_df(file_path=DATA_PATH, file_type='csv')
@@ -49,7 +49,7 @@ class MultiCropper(object):
49
49
 
50
50
 
51
51
  :example:
52
- >>> cropper = MultiCropper(file_type='mp4', input_folder=r'C:\troubleshooting\mitra\test', output_folder=r'C:\troubleshooting\mitra\test\cropped', crop_cnt=2, gpu=True)
52
+ >>> cropper = MultiCropper(file_type='mp4', input_folder=r'C:/troubleshooting/mitra/test', output_folder=r'C:/troubleshooting/mitra/test/cropped', crop_cnt=2, gpu=True)
53
53
  >>> cropper.run()
54
54
  """
55
55
 
@@ -676,7 +676,7 @@ def change_single_video_fps(file_path: Union[str, os.PathLike],
676
676
 
677
677
  :param Union[str, os.PathLike] file_path: Path to video file
678
678
  :param Union[int, float] fps: FPS of the new video file.
679
- :param bool gpu: If True, use NVIDEA GPU codecs. Default False.
679
+ :param bool gpu: If True, use NVIDEA GPU codecs. Default False. GPU can provide significant speedup (3-4x faster) for FPS conversion, especially for longer videos.
680
680
  :param Optional[str] codec: Video codec to use. If None, automatically selects based on file extension (libvpx-vp9 for .webm, mpeg4 for .avi, libx264 for others). Default None.
681
681
  :param Optional[Union[str, os.PathLike]] save_path: Path where to save the converted video. If None, saves in the same directory as input file with ``_fps_{fps}`` suffix. Default None.
682
682
  :param Optional[int] quality: Video quality (CRF value). Lower values = higher quality. Range 0-52. Default 23.
@@ -702,7 +702,7 @@ def change_single_video_fps(file_path: Union[str, os.PathLike],
702
702
  else:
703
703
  check_if_dir_exists(in_dir=os.path.dirname(save_path), raise_error=True)
704
704
  quality = 23 if not check_int(name='quality', value=quality, min_value=0, max_value=52, raise_error=False)[0] else int(quality)
705
- if verbose: print(f"Converting the FPS to {fps} for video {file_name} ...")
705
+ if verbose: print(f"Converting the FPS {video_meta_data['fps']} -> {fps} for video {file_name} ...")
706
706
  if codec is None:
707
707
  if ext.lower() == '.webm':
708
708
  codec = 'libvpx-vp9'
@@ -713,10 +713,14 @@ def change_single_video_fps(file_path: Union[str, os.PathLike],
713
713
  if os.path.isfile(save_path):
714
714
  FileExistWarning(msg=f"Overwriting existing file at {save_path}...", source=change_single_video_fps.__name__,)
715
715
  if gpu:
716
- cmd = f'ffmpeg -hwaccel auto -c:v h264_cuvid -i "{file_path}" -vf "fps={fps}" -c:v h264_nvenc -rc vbr -cq {quality} -c:a copy "{save_path}" -loglevel error -stats -hide_banner -y'
717
- else:
716
+ cmd = f'ffmpeg -hwaccel auto -i "{file_path}" -vf "fps={fps}" -c:v h264_nvenc -preset p4 -cq {quality} -c:a copy "{save_path}" -loglevel error -stats -hide_banner -y'
717
+ result = subprocess.run(cmd, shell=True)
718
+ if result.returncode != 0:
719
+ if verbose: SimBAGPUError(msg=f'FPS convertion ({video_meta_data["fps"]}->{fps}) GPU for video {file_name} failed, using CPU instead...')
720
+ gpu = False
721
+ if not gpu:
718
722
  cmd = f'ffmpeg -i "{file_path}" -filter:v fps=fps={fps} -c:v {codec} -crf {quality} -c:a aac "{save_path}" -loglevel error -stats -hide_banner -y'
719
- subprocess.call(cmd, shell=True)
723
+ subprocess.call(cmd, shell=True)
720
724
  timer.stop_timer()
721
725
  if verbose: stdout_success(msg=f'SIMBA COMPLETE: FPS of video {file_name} changed from {str(video_meta_data["fps"])} to {str(fps)} and saved in directory {save_path}', elapsed_time=timer.elapsed_time_str, source=change_single_video_fps.__name__)
722
726
 
@@ -725,7 +729,8 @@ def change_fps_of_multiple_videos(path: Union[str, os.PathLike, List[Union[str,
725
729
  fps: int,
726
730
  quality: int = 23,
727
731
  save_dir: Optional[Union[str, os.PathLike]] = None,
728
- gpu: Optional[bool] = False) -> None:
732
+ gpu: Optional[bool] = False,
733
+ verbose: bool = True) -> None:
729
734
  """
730
735
  Change the fps of all video files in a folder. Results are stored in the same directory as in the input files with
731
736
  the suffix ``_fps_new_fps``.
@@ -735,6 +740,7 @@ def change_fps_of_multiple_videos(path: Union[str, os.PathLike, List[Union[str,
735
740
  :param int quality: Video quality (CRF value). Lower values = higher quality. Range 0-52. Default 23.
736
741
  :param Optional[Union[str, os.PathLike]] save_dir: If not None, then the directory where to store converted videos. If None, then stores the new videos in the same directory as the input video with the ``_fps_{fps}.file_extension`` suffix.
737
742
  :param Optional[bool] gpu: If True, use NVIDEA GPU codecs. Default False.
743
+ :param bool verbose: If True, prints conversion progress. Default True.
738
744
  :returns: None.
739
745
 
740
746
  :example:
@@ -764,7 +770,7 @@ def change_fps_of_multiple_videos(path: Union[str, os.PathLike, List[Union[str,
764
770
  video_meta_data = get_video_meta_data(video_path=file_path)
765
771
  if int(fps) == int(video_meta_data["fps"]):
766
772
  SameInputAndOutputWarning(msg=f"The new FPS ({fps}) is the same or lower than the original FPS ({video_meta_data['fps']}) for video {file_name}", source=change_fps_of_multiple_videos.__name__)
767
- print(f"Converting FPS from {video_meta_data['fps']} to {fps} for {file_name}...")
773
+ if verbose: print(f"Converting the FPS {video_meta_data['fps']} -> {fps} for video {file_name} ...")
768
774
  if save_dir is None:
769
775
  save_path = os.path.join(dir_name, file_name + f"_fps_{fps}{ext}")
770
776
  else:
@@ -772,15 +778,26 @@ def change_fps_of_multiple_videos(path: Union[str, os.PathLike, List[Union[str,
772
778
  if ext.lower() == '.webm': codec = 'libvpx-vp9'
773
779
  elif ext.lower() == '.avi': codec = 'mpeg4'
774
780
  else: codec = 'libx264'
781
+ if os.path.isfile(save_path):
782
+ FileExistWarning(msg=f"Overwriting existing file at {save_path}...", source=change_single_video_fps.__name__, )
783
+ if gpu:
784
+ cmd = f'ffmpeg -hwaccel auto -i "{file_path}" -vf "fps={fps}" -c:v h264_nvenc -preset p4 -cq {quality} -c:a copy "{save_path}" -loglevel error -stats -hide_banner -y'
785
+ result = subprocess.run(cmd, shell=True)
786
+ if result.returncode != 0:
787
+ if verbose: SimBAGPUError(msg=f'FPS convertion ({video_meta_data["fps"]}->{fps}) GPU for video {file_name} failed, using CPU instead...')
788
+ gpu = False
789
+ if not gpu:
790
+ cmd = f'ffmpeg -i "{file_path}" -filter:v fps=fps={fps} -c:v {codec} -crf {quality} -c:a aac "{save_path}" -loglevel error -stats -hide_banner -y'
791
+ subprocess.call(cmd, shell=True)
775
792
  if gpu:
776
793
  command = f'ffmpeg -hwaccel auto -c:v h264_cuvid -i "{file_path}" -vf "fps={fps}" -c:v h264_nvenc -rc vbr -cq {quality} -c:a copy "{save_path}" -loglevel error -stats -hide_banner -y'
777
794
  else:
778
795
  command = f'ffmpeg -i "{file_path}" -filter:v fps=fps={fps} -c:v {codec} -crf {quality} -c:a aac "{save_path}" -loglevel error -stats -hide_banner -y'
779
796
  subprocess.call(command, shell=True)
780
797
  video_timer.stop_timer()
781
- print(f"Video {file_name} complete (saved at {save_path})... (elapsed time: {video_timer.elapsed_time_str}s)")
798
+ if verbose: print(f"Video {file_name} complete (saved at {save_path})... (elapsed time: {video_timer.elapsed_time_str}s)")
782
799
  timer.stop_timer()
783
- stdout_success(msg=f"SIMBA COMPLETE: FPS of {len(video_paths)} video(s) changed to {fps}", elapsed_time=timer.elapsed_time_str, source=change_fps_of_multiple_videos.__name__,)
800
+ if verbose: stdout_success(msg=f"SIMBA COMPLETE: FPS of {len(video_paths)} video(s) changed to {fps}", elapsed_time=timer.elapsed_time_str, source=change_fps_of_multiple_videos.__name__,)
784
801
 
785
802
 
786
803
  def convert_video_powerpoint_compatible_format(file_path: Union[str, os.PathLike], gpu: Optional[bool] = False) -> None:
@@ -1174,7 +1191,7 @@ def clip_video_in_range(file_path: Union[str, os.PathLike],
1174
1191
  else:
1175
1192
  cmd = f'ffmpeg -i "{file_path}" -ss {start_time} -to {end_time} -async 1 -c:v {codec} -crf {quality_crf} "{save_name}" -loglevel error -stats -hide_banner -y'
1176
1193
  if verbose: print(f"Clipping video {file_name} between {start_time} and {end_time}... ")
1177
- subprocess.call(cmd, shell=True, stdout=subprocess.PIPE)
1194
+ subprocess.call(cmd, shell=True)
1178
1195
  timer.stop_timer()
1179
1196
  if verbose: stdout_success(msg=f"Video converted! {save_name} generated!", elapsed_time=timer.elapsed_time_str, source=clip_video_in_range.__name__)
1180
1197
 
@@ -87,8 +87,8 @@ def video_to_frames(video_path: Union[str, os.PathLike],
87
87
  :return: None. Frames are saved to disk in the specified directory.
88
88
 
89
89
  :example:
90
- >>> video_to_frames(video_path=r"C:\troubleshooting\SDS_pre_post\project_folder\videos\SDI100 x ALR2 post_d7.mp4",
91
- ... save_dir=r'C:\troubleshooting\SDS_pre_post\project_folder\videos\test',
90
+ >>> video_to_frames(video_path=r"C:/troubleshooting/SDS_pre_post/project_folder/videos/SDI100 x ALR2 post_d7.mp4",
91
+ ... save_dir=r'C:/troubleshooting/SDS_pre_post/project_folder/videos/test',
92
92
  ... black_and_white=False,
93
93
  ... verbose=True,
94
94
  ... img_format='webp',
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: simba-uw-tf-dev
3
- Version: 4.6.6
3
+ Version: 4.6.8
4
4
  Summary: Toolkit for computer classification and analysis of behaviors in experimental animals
5
5
  Home-page: https://github.com/sgoldenlab/simba
6
6
  Author: Simon Nilsson, Jia Jie Choong, Sophia Hwang
@@ -138,11 +138,12 @@ Requires-Dist: numexpr (==2.10.0) ; (python_version >= "3.9") and extra == 'arm'
138
138
  Requires-Dist: statsmodels (==0.14.2) ; (python_version >= "3.9") and extra == 'arm'
139
139
  Requires-Dist: tables (==3.9.2) ; (python_version >= "3.9") and extra == 'arm'
140
140
  Provides-Extra: gpu
141
- Requires-Dist: cupy-cuda12x (==13.3.0) ; extra == 'gpu'
141
+ Requires-Dist: cupy-cuda12x (>=13.6.0) ; extra == 'gpu'
142
142
  Requires-Dist: shap (==0.46.1.dev78) ; extra == 'gpu'
143
143
  Requires-Dist: cuml-cu12 (==24.12.0) ; extra == 'gpu'
144
144
  Requires-Dist: torch (==2.5.0) ; extra == 'gpu'
145
145
  Requires-Dist: ultralytics (==8.3.156) ; extra == 'gpu'
146
+ Requires-Dist: nvidia-cuda-runtime-cu12 ; extra == 'gpu'
146
147
 
147
148
  # SimBA (Simple Behavioral Analysis)
148
149
  ![SimBA Splash](https://raw.githubusercontent.com/sgoldenlab/simba/master/docs/tutorials_rst/img/index/landing_page_1.png)
@@ -13,7 +13,7 @@ simba/__init__.py,sha256=Zbw277SaA4dLpF3IDQnIjzOb-GWKgF-V6caod95b4YA,539
13
13
  simba/requirements.txt,sha256=Ou1KKYqIsOaqQ10UeqxTPorpHWBH5rTMGzpFif1VRWc,2072
14
14
  simba/assets/.DS_Store,sha256=ElS4pjNueynnfN3F6ibhpIe9tS-jrVEx88jASA9_DYo,14340
15
15
  simba/assets/.env,sha256=bI_XK4TDnRDnV1M5SyZrEfeayi9ZK7rX2lrYQcJnH0s,538
16
- simba/assets/.recent_projects.txt,sha256=eLf1Tm1n8YEK7s4eI0KiVei7gwVHZdBGEY-7Lfgvda4,123
16
+ simba/assets/.recent_projects.txt,sha256=iUE8T6XQxOEGrK-r53XVeuz3xdjHgxeQPBogS4yZIyk,193
17
17
  simba/assets/TheGoldenLab.PNG,sha256=Dwg7zXASz_XDhJ_gDgKyBmAINxLL-Zkg-3xzy94YEsc,31812
18
18
  simba/assets/UbuntuMono-Regular.ttf,sha256=N0xTF4v7xLE_m2rVu8gaQ5OqZSZf_H0zqnvYnxKjDfg,189004
19
19
  simba/assets/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -516,17 +516,17 @@ simba/data_processors/advanced_interpolator.py,sha256=p1Rv8D9bXwvvwaCqjkItO_JKUa
516
516
  simba/data_processors/advanced_smoothing.py,sha256=T_y-soZzH1gFkhmXTwTkbS9p-u1APd3gMtax71OdsOg,14359
517
517
  simba/data_processors/agg_clf_calculator.py,sha256=QR94LzQxrJ8eEyMZy4O5pSTgVUwrUUnzj1mK3tHcacQ,17362
518
518
  simba/data_processors/agg_clf_counter_mp.py,sha256=rjjdJUGh6ODjwY3BtPK4AuK8XsoCoZHHxYtbE6q-vGk,19982
519
- simba/data_processors/blob_location_computer.py,sha256=NJ5ODuueYn3qGMtaLorq3Y02uMG0LXIv5Hfy4WJu-Z8,7812
519
+ simba/data_processors/blob_location_computer.py,sha256=5Uc83h5t55OWXBePS1lQ3bAmivXYJ19AEdnGYb62D9s,7812
520
520
  simba/data_processors/boolean_conditional_calculator.py,sha256=_uDuznm3JS7npqcNcmieH53ZOzoJ7mDqX8QwSaAWlIc,9685
521
- simba/data_processors/circling_detector.py,sha256=LLHulslIy6S1BdoCB40MxWmy8M25qscH7qmmrqv-Qc8,8936
521
+ simba/data_processors/circling_detector.py,sha256=dG6JuqwCsuB_J_JL05TGVQmpfv_iZms4Yzr9GqIDblM,9877
522
522
  simba/data_processors/cue_light_analyzer.py,sha256=NeiYq5gUKxsZrmIewfpyPjivwRQis0vKaVyRPHd8vs4,15082
523
523
  simba/data_processors/cue_light_clf_statistics.py,sha256=Msv1xe3tq4yn3j5sFswso-vS8UegcFC8wR4Ln0RgIoA,8582
524
524
  simba/data_processors/cue_light_movement_statistics.py,sha256=xQKJNdA2i1MOhMwct-MdTbJPPP75O-aOnHT292Zl1c4,9058
525
525
  simba/data_processors/directing_animal_to_bodypart.py,sha256=xsB5jiAUg4sIYBhEyINvxofJo6xL2zP554t_ysi7MCQ,11079
526
526
  simba/data_processors/directing_other_animals_calculator.py,sha256=Ikif_lPh0RfOj7q5ijMcPGh5kEBLse1P91gaz30UXcs,18234
527
- simba/data_processors/egocentric_aligner.py,sha256=bry1SuiBSYRZX-bjLGpSY2xYJ2l5OYInst_kVxWREHU,13265
527
+ simba/data_processors/egocentric_aligner.py,sha256=SwLQiisC66_-HCnB06ei4uYICtf9PKVIXNaoI1MlWr4,13265
528
528
  simba/data_processors/find_animal_blob_location.py,sha256=whSxaCSLtRQGZchMBffYSlTI7LIFE7YphNaztmMzMv0,27698
529
- simba/data_processors/freezing_detector.py,sha256=p9H44jfyzkuEFCHyAKee-xcvFNrw_a5vSSZm9FMLaZk,10199
529
+ simba/data_processors/freezing_detector.py,sha256=JlYKFLW5C70fqIaTZV9geOD8L6ddxyiONDRJpFNWl_8,12089
530
530
  simba/data_processors/fsttc_calculator.py,sha256=fW09KZ62GiBNgwEPV1n5SsIImRzPpbiP0yiNeTiexL0,20639
531
531
  simba/data_processors/gibbs_sampler.py,sha256=Lj3lJJ0LWYLoeMRU2oniTHJSRpdG8oMIENm7FA4gJ3w,9241
532
532
  simba/data_processors/interpolate.py,sha256=GaLvrqS-iVB9TA0eEsCO3dnUCxVD_0KwWqWYZsRlyOM,8006
@@ -552,9 +552,9 @@ simba/data_processors/cuda/circular_statistics.py,sha256=EYhnkL0Fe_Ec9PU2kciv7Ry
552
552
  simba/data_processors/cuda/create_shap_log.py,sha256=yQlWb1RKjagwCKtahifSw8Esr4VOVsTuCAx7fLSfSvU,9603
553
553
  simba/data_processors/cuda/data.py,sha256=tZLunARZVlk1plh7atR3PY5QADMPZXfbYE92uvYkx1g,11831
554
554
  simba/data_processors/cuda/geometry.py,sha256=jkocYwWcweQ1U6DxVDxP3vifuZdxpyZHQ5_J_GeNgGU,25522
555
- simba/data_processors/cuda/image.py,sha256=s0XwQkY1_D23PCBMk-zrSDOW4FlSsDq3QeIFYvuSsdE,84379
556
- simba/data_processors/cuda/statistics.py,sha256=YnexlgHdi-GSezUfU8il0vgaW8mwVffIOR3be_t6r2A,46383
557
- simba/data_processors/cuda/timeseries.py,sha256=12UWvjSrnriOsT9UmDJJVyWSito_ueIrH1Gy5m1cCCA,16416
555
+ simba/data_processors/cuda/image.py,sha256=YpYWO9OdMKuvdQp_tvWlnuU9FWiN1d7VIiBCBZ6eGnc,86107
556
+ simba/data_processors/cuda/statistics.py,sha256=ZEGoMMJVQ_Keui6h6G2jj6ngT8wsH0T3WdL_j3ipkfc,49151
557
+ simba/data_processors/cuda/timeseries.py,sha256=pcOoc14iTh_ofnh0rw-G5HI0PZFdyc3c9e4HX2exZNg,16415
558
558
  simba/data_processors/cuda/utils.py,sha256=0Z51kEItgDl9MfPQ9_jvClzR2_pvIWxFkLcjb3xdDE8,8584
559
559
  simba/feature_extractors/.DS_Store,sha256=SiyR4U0h7Ehg8KGJf5cXr85BYdcZfvGGcRmp1GMVuzQ,6148
560
560
  simba/feature_extractors/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -570,13 +570,13 @@ simba/feature_extractors/feature_extractor_8bp.py,sha256=ZWVpoa2X-bzzJKEP3aHznXz
570
570
  simba/feature_extractors/feature_extractor_8bps_2_animals.py,sha256=0mlOUPStO3LfdlmU970Wmw5x40o9sVJ6UzrKg248mtI,36308
571
571
  simba/feature_extractors/feature_extractor_9bp.py,sha256=dMzigppwKODXpVPKwkqZoboAR3roYik1LYKWBnhZwnQ,37327
572
572
  simba/feature_extractors/feature_extractor_user_defined.py,sha256=w8hgtYGk6Ux_X1mIYleEABVmxkLPUf23TfWYe-G75UI,9917
573
- simba/feature_extractors/feature_subsets.py,sha256=CXoGuhZNfQmEhrgm8kb0rZi755buO-IGKVTAzpF6BV4,27471
573
+ simba/feature_extractors/feature_subsets.py,sha256=axA_cjqXMOjoUynqR9K67HD4cv4xSPAf11lXn30odlo,27471
574
574
  simba/feature_extractors/gerbil_featurizer.py,sha256=EeBlAXiTsM2oHMfs0M1wlm9LWrQVZuLUY2WuOQIDMnw,11994
575
- simba/feature_extractors/mitra_feature_extractor.py,sha256=pmLp2A5jfkia6wtD7X39TmMDukeCxbmUPmdVFgmCUZ4,30027
575
+ simba/feature_extractors/mitra_feature_extractor.py,sha256=q9A8uMeu_ZJVZtwt8NcpLDadQXk2UEg5wQaEOqtgTpg,30037
576
576
  simba/feature_extractors/perimeter_jit.py,sha256=Pe7IlxeGTEQfpkt9iiAq97OG9r0mQ4kE6VderLyNFmg,8621
577
577
  simba/feature_extractors/rat_social_featurizer.py,sha256=eOJt6O4QR8kY0fJ2tAmRGLYAQSLkZoc3VoQ5F6MSN90,7345
578
578
  simba/feature_extractors/riptortus_featurizer.py,sha256=3XA_GfxmcuZOSkC1HxOebcGh5Y47pZtgaFR8Kb6lexQ,34518
579
- simba/feature_extractors/straub_tail_analyzer.py,sha256=aovJwwxUKsYHmynhkbjhR-G4cau9TxobKgu9cDLAw00,9813
579
+ simba/feature_extractors/straub_tail_analyzer.py,sha256=-nHeir_KL97PUYxHIh9KcPICELKjj4ejgcHOn8r0qNA,9813
580
580
  simba/feature_extractors/misc/add_probability_cnt_features.py,sha256=5mHH7IEA7a_vv9i1q7nUOYfY5FT9o6RF0LwSEaW6CUM,2932
581
581
  simba/feature_extractors/misc/convex_hull_3_scratch_3.py,sha256=dco5-DbYeMixhMvwGklYrC8yg7SvkHDecFqFPkX5qYY,2144
582
582
  simba/feature_extractors/misc/convex_hull_scratch_1.py,sha256=zSniBxi3v8Lpmrm4cgwHIb2QJWvz2-slyOVp94b_fC0,5762
@@ -608,30 +608,30 @@ simba/labelling/labelling_interface.py,sha256=uS4AaEwP1DjNSrLBiDniMpm7LMA54SjeVz
608
608
  simba/labelling/mitra_style_appender.py,sha256=64_P9cfQd6wyGD6ofqaNUMaf-K29H8GFBx3PujGYdbU,4174
609
609
  simba/labelling/play_annotation_video.py,sha256=lLpxkug-b7UGEuSgohjsyXPXO4-xCgbWhTsCD7tYPPo,10546
610
610
  simba/labelling/single_clf_appender_excel.py,sha256=T2x81OCjpEBCQLhoY52K2Z6LWkJ_E7aaS-JURTuwZ5w,5462
611
- simba/labelling/standard_labeller.py,sha256=C-_dQrbc84VX4Po90oM-L6UhnbxinoodLK__87S2JJI,31202
611
+ simba/labelling/standard_labeller.py,sha256=Ug0EmK_KLVhZso5IG3Zy33Xzgw8Frigv4U_VTlChArs,31202
612
612
  simba/labelling/targeted_annotations_clips.py,sha256=A4OIkPtsNKafBUgfXFwYSr2yt9xEwz34LnU2-2GhN7g,2362
613
613
  simba/mixins/.DS_Store,sha256=MSP8bMgYEkPLQ_xoFCOmQX2Yhc6jYF9B-0exf-0u84A,6148
614
614
  simba/mixins/__init__.py,sha256=ll2tlUV4MCtu58dno-wM26r2uUmVuxnx3mQKb6QElx8,1052
615
615
  simba/mixins/abstract_classes.py,sha256=umpVIU7EG_jZ1DU8x5zkTb8A-KH46jlCISowfrT4PMY,391
616
616
  simba/mixins/annotator_mixin.py,sha256=TQWqBZ5UVR5blI5CUyr3nuxsB3HyrxYimPg3rXcOHfU,40917
617
617
  simba/mixins/circular_statistics.py,sha256=yzYRKsuY3xK_LgDC7rpu4OQnbSQpjXO0EiLv4kH6cp8,77336
618
- simba/mixins/config_reader.py,sha256=oXxrIm09k236EIuLTd5I7hzOclk-atPwaqc2g8PFmTI,52050
618
+ simba/mixins/config_reader.py,sha256=9su8ZGnGWghk5bAl12iaTQdqIOVfcW2ZQcxeEXmXtcI,52362
619
619
  simba/mixins/feature_extraction_mixin.py,sha256=rUwHEG3wKpyreme8nXAeBEhktHG_Q75v3OJI2aFOOOA,59587
620
620
  simba/mixins/feature_extraction_supplement_mixin.py,sha256=6dPi1WFi26y-rmccsMgDe5sULm4fTQaBcSiH91DEkN0,44770
621
- simba/mixins/geometry_mixin.py,sha256=-dsittLxTLJzP817Uh1wnR2yfPkiJ2m9pL58VqUdUv0,234551
622
- simba/mixins/image_mixin.py,sha256=Vp40GIohQLB0QjRCYnx6p2NpQvjGKof8peYelUGeiFA,117636
621
+ simba/mixins/geometry_mixin.py,sha256=pBOCFZvq_AF2Snmmy8izmtOG6xy6KOu1td0lm5c6uNg,234551
622
+ simba/mixins/image_mixin.py,sha256=CLhtCeDzLPVeRWUEzybBVG9-1Ll8Nl2OgN2PTfTZybM,117953
623
623
  simba/mixins/network_mixin.py,sha256=s_OsF6VSlsa2vb5sysDQKErLp4D5EfBF1MVQ_yKWC_Y,41125
624
- simba/mixins/plotting_mixin.py,sha256=3sgEYn-tVTRzrg_k5eFGeyp0Xb2c8HnEnyqE16cV0Pw,94837
624
+ simba/mixins/plotting_mixin.py,sha256=br3nWggOM776Ki30kq71P2geoGGgCLDn4MjDuiJ5IWs,95714
625
625
  simba/mixins/pop_up_mixin.py,sha256=tAKC3Axp1jgQ8VH2GfvKO5HbLUpZzo_aWou2xS-SYxc,24701
626
626
  simba/mixins/pose_importer_mixin.py,sha256=bYl17qQcJAdd93_q-tDof8V1f5-OGeI9id7K8YGmN1E,22358
627
- simba/mixins/statistics_mixin.py,sha256=-5_qPcmFmApcBxnqYg6CXL6j8N9BZ2FI9n-bIoaBA_Q,271327
628
- simba/mixins/timeseries_features_mixin.py,sha256=O3RMAfOHNSTr1cGEGDcaOCE8wpcKrDD_1rRbbqZb5yU,139305
629
- simba/mixins/train_model_mixin.py,sha256=d9iESYZmF1E888I82qwUirtf-xTvJfvhGYSIClKUtsY,174970
627
+ simba/mixins/statistics_mixin.py,sha256=nVrTwxPnRY-SkPqcIfG5Oxm85AkWGTbCN-kxfRBGhHw,272831
628
+ simba/mixins/timeseries_features_mixin.py,sha256=MlRWfuFW8v0tWqeMZBxp026-OmsDunUDE9E4ar3lMkM,139305
629
+ simba/mixins/train_model_mixin.py,sha256=XaWj8doujxd2-5vjwfROb0aUn1cr2DhbRcwEo56xpMg,177427
630
630
  simba/mixins/unsupervised_mixin.py,sha256=2R1pV4UxFxxwQcM_PzrdQNcx3NMcLDhLu4llGZUTDfY,5370
631
631
  simba/model/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
632
632
  simba/model/grid_search_multiclass_rf.py,sha256=NEneqrtsaZmybUNqDGJ1E3CwCSy4z34Cv7H8CG6-WGQ,16543
633
633
  simba/model/grid_search_rf.py,sha256=bZkd50Nx50m0qyRNuJ54Pc-g-luuMOZXXfjsB_Yh-K0,15789
634
- simba/model/inference_batch.py,sha256=jowiBbH_QzNUzGa0T6AMWmqhT2rx4DlzliTesAiEiRY,8519
634
+ simba/model/inference_batch.py,sha256=vhYPoucdZZ5fDT1fSlly5TAXu-rUuZSJOF8gDlbdBLM,8519
635
635
  simba/model/inference_multiclass_batch.py,sha256=1HgccBwLlmDAMrT8SOwfHfPSeX-c7mk9q9FVBBn7SUA,3959
636
636
  simba/model/inference_validation.py,sha256=sODm8hFAy7TvtxhhlQG_aDxb7dlBUWOO2Tg3rStcBEY,3830
637
637
  simba/model/ordinal_clf.py,sha256=Zxu8pX5q_AC49-JY8woSkLeDlZGDJS7Rqap-RJWfVkg,10190
@@ -643,7 +643,7 @@ simba/model/yolo_fit.py,sha256=CICRVTO3f_kJtJsTmyCX8A85vUSIPP3nhOmeRWXCv_M,10604
643
643
  simba/model/yolo_inference.py,sha256=ZD-43PZB1Ja5f7W_kPWyRr4j8YvQkTkNsq7ois9JuHw,13565
644
644
  simba/model/yolo_pose_inference.py,sha256=58Pb9atXEzl53PVNkMVsDcDg_L34mVqRhxSpOVetWKg,27790
645
645
  simba/model/yolo_pose_track_inference.py,sha256=gOopeNEUggqJfH73dDkjetHlpwsU-VrjCH4B4gKOktw,22917
646
- simba/model/yolo_seg_inference.py,sha256=s-R4071CXa21E0Hw2i_GwVjwfJy0gZ9QmO64qGfDZQg,10831
646
+ simba/model/yolo_seg_inference.py,sha256=WANkhx71iJA5hv85nRU353WERwL8lh6kYBH8_I76lRE,10833
647
647
  simba/model/regression/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
648
648
  simba/model/regression/metrics.py,sha256=XLT98LgDe-BKmWBQtUFIR5N30e6pFCqBRED7Pt_4fic,8208
649
649
  simba/model/regression/model.py,sha256=Ndpq_QflxYWaFQrltTrvoaZzpf74zXGyaM4hz_Xl7tU,11653
@@ -654,7 +654,7 @@ simba/outlier_tools/outlier_corrector_location_mp.py,sha256=1ihvGk2DJvvztFRjnRcJ
654
654
  simba/outlier_tools/outlier_corrector_movement.py,sha256=e30nD2tmdkvk7f5TV2YP71XDORCkVRwh5cg0X7l51iE,7913
655
655
  simba/outlier_tools/outlier_corrector_movement_advanced.py,sha256=r2a8RJv5rJ3bQfiHwPCJHTTVdUki4zFgm2DjIoJOwqE,13273
656
656
  simba/outlier_tools/outlier_corrector_movement_mp.py,sha256=FVtEFt3rZIFDWl7ljddPeYblvhtfHMBXo8DxldaIP40,9587
657
- simba/outlier_tools/skip_outlier_correction.py,sha256=KNVSnhpJ7kROa0jALgZJv8lJjN8DN5lNGMLNXpasvyw,2584
657
+ simba/outlier_tools/skip_outlier_correction.py,sha256=GE7J6xhBxbYRajBt6KwcfMWkGd9AwBXF6Bg9EU4TQ-I,2571
658
658
  simba/plotting/.DS_Store,sha256=ypUfSvW8NoWzmtXtzErKXxo-mQf4-T8F8B8mrpnPrEY,6148
659
659
  simba/plotting/ROI_feature_visualizer.py,sha256=evDHQ-OEp4Lt-mBHoaA4StRSiVWyqm2CIyKdFxEt1L0,19025
660
660
  simba/plotting/ROI_feature_visualizer_mp.py,sha256=bscn29if3ZMfMXlAZpaNEG3kLVm0TIuoqFmiLEwkCDg,27387
@@ -674,12 +674,12 @@ simba/plotting/distance_plotter.py,sha256=Qa4sVjw43NTnaqW-ge9dDx4i0_ElSmoYBI-C1t
674
674
  simba/plotting/distance_plotter_mp.py,sha256=7tbp63Jn9JGkox0fCaqeunE3027pEl0xI7uNK51cMH8,17422
675
675
  simba/plotting/ez_path_plot.py,sha256=OSQSniIKdr55iO5-BMqmrgnEOfLIjxq0-ojrJn1y7lE,10350
676
676
  simba/plotting/frame_mergerer_ffmpeg.py,sha256=AqfUQ_Lx83VfOZbz89qa1tM1WK8ETNhNITPTjnTqqeY,8485
677
- simba/plotting/gantt_creator.py,sha256=mbTonMIbhdHHGh9e4zzaLljp2haoKWxgwfWwZ2IVh0s,11297
678
- simba/plotting/gantt_creator_mp.py,sha256=a5ZBWaV0pl-PcgtePBC4mZR9v6NU8WQ2waD3xBomy5k,16668
677
+ simba/plotting/gantt_creator.py,sha256=myEcLFzXhEWjC-CPbFLUJJLkbpv3NoH20J8d8ftKub4,12415
678
+ simba/plotting/gantt_creator_mp.py,sha256=5d3-O8yp8bUnULMhgSKVdBmzu97APLuymIJg9aQJPdk,18125
679
679
  simba/plotting/gantt_plotly.py,sha256=s727fBblZnMksHvJpmbb4_G_Eq8J3bMhlNzyL1xap_M,8406
680
680
  simba/plotting/geometry_plotter.py,sha256=Jsl_695-ZWcba9_c3MiXq6S8MufWsKUcaGbCv9HYSoo,15499
681
681
  simba/plotting/heat_mapper_clf.py,sha256=rYFWuBS3v8v14EnXhaKKzPml4lJzkPBP5FJ8RxdnKik,10675
682
- simba/plotting/heat_mapper_clf_mp.py,sha256=v-hTtW4BjnB88kO5dhtKmnAxuCihbcAUgK2M5ptfwtI,15849
682
+ simba/plotting/heat_mapper_clf_mp.py,sha256=wNkDbFVpYXRMTkyNU8F6MNMkKV1hLAb45O-Plwslq2Q,15849
683
683
  simba/plotting/heat_mapper_location.py,sha256=j134hrFgpqPJ4tEpjVaMPw9zFwrmxbjj3KGSubYHs9o,12813
684
684
  simba/plotting/heat_mapper_location_mp.py,sha256=zrxVh2o7dhdDUyZqbxhyo-fHIftAiKvE1fW41JWE_VQ,15917
685
685
  simba/plotting/interactive_probability_grapher.py,sha256=5nROkdhKuxCKtE4FbgYFX3CbRchQo1-rS0FrKWaaSgM,12726
@@ -736,7 +736,7 @@ simba/pose_importers/facemap_h5_importer.py,sha256=PGs1yFlvhPNLhgvmp31UeuwawwYcf
736
736
  simba/pose_importers/import_mars.py,sha256=_j1czY7TRM0e9OyJP4wrLVcj-xUVY5mg2yhPYgi5vaU,8667
737
737
  simba/pose_importers/madlc_importer.py,sha256=g9BMPBKKQCTPelGxEIr8hJ0FN13OH3UV2gZOnaWn_Pw,9238
738
738
  simba/pose_importers/read_DANNCE_mat.py,sha256=J99MXdlj0SvtgWwafRCMMnQY9H9Etu_7wfcdCZsgnPI,2599
739
- simba/pose_importers/simba_blob_importer.py,sha256=GU_YLr2mFgRNioBNdQDbMT7dHABMQYzbim6GqNd_59Y,9623
739
+ simba/pose_importers/simba_blob_importer.py,sha256=d8PEqNkrtZovVWftkvMpH_XEGElKTC-fQtjgJ7lcedM,9623
740
740
  simba/pose_importers/simba_yolo_importer.py,sha256=sWvTAT3bHcjxPMKhtP9VLYQG1KzKjr28fXb8wjHHuQA,11499
741
741
  simba/pose_importers/sleap_csv_importer.py,sha256=jKLUCbXQ5m0QSMNQQwwC_p4JHx2eNGYuAyzDtW5lBxM,13155
742
742
  simba/pose_importers/sleap_h5_importer.py,sha256=4SR_dQrQVo7BmRMpF_lHulO7GZ5rDrBtqZSy4ad0jX4,14376
@@ -762,9 +762,9 @@ simba/roi_tools/interactive_modifier_ui.py,sha256=8oAtparRN8wEi1JS_jPIVt6ZvS0Agi
762
762
  simba/roi_tools/interactive_roi_bufferer.py,sha256=IcEVv1R8K2-zmw3ouK4sk3Tk46TZbUg0ElV436tK4ec,11604
763
763
  simba/roi_tools/interactive_roi_modifier_tkinter.py,sha256=_F3vRcYN8obggFdAlSt2L6ZiwF1Atkci-AAqldDkx14,41633
764
764
  simba/roi_tools/roi_aggregate_statistics_analyzer.py,sha256=qNSKublSxPuMatqpUplEU5chRg1uycM-pYMZMwj9GkI,22303
765
- simba/roi_tools/roi_aggregate_stats_mp.py,sha256=48EuqRBwbWPSaEE4lMKFrLOD6_CQNlUW2frX6melis4,23500
765
+ simba/roi_tools/roi_aggregate_stats_mp.py,sha256=xXE81W8XVvrMBM5W7hvZ95LscL-Z6HSj3YLChsiWh-0,23500
766
766
  simba/roi_tools/roi_clf_calculator.py,sha256=pOvUbKCPSPOEkAoxeJ_LQM4PXHODkp8IU56iwghm4qo,17634
767
- simba/roi_tools/roi_clf_calculator_mp.py,sha256=nYIKTqTAX68sZwDO-CLkSPp1HyBd3P20jk8dyj-VM-I,20630
767
+ simba/roi_tools/roi_clf_calculator_mp.py,sha256=AcO8LYkZgG9xnEQYGrRzT56GxCfpkUvPDjUBGQ6TRQo,20630
768
768
  simba/roi_tools/roi_ruler.py,sha256=3sBFBQx7gwKAw9Pk_5c4NxAdFwSEZusYEX62xKNo2JU,10956
769
769
  simba/roi_tools/roi_selector_circle_tkinter.py,sha256=aS_1g8bK7cL7SAyvHFeSyGJf9ODYYqmWkoVEtUzKp9Y,4859
770
770
  simba/roi_tools/roi_selector_polygon_tkinter.py,sha256=uZ7fi-2sOjHYcjYHTSOcubHf2mxfGO8CHv79Ej2htW4,6148
@@ -1332,8 +1332,8 @@ simba/third_party_label_appenders/solomon_importer.py,sha256=YkHUgtQhLEzMVPvxTcK
1332
1332
  simba/third_party_label_appenders/third_party_appender.py,sha256=_jvK38h-qpVyNU6GKJlj0-uCBGyu9gwhkowtiWArbUg,21580
1333
1333
  simba/third_party_label_appenders/tools.py,sha256=-DzeTk7ULQML6r0zHPMjBw_x5oJD0WeN_4UpK6_dSYk,21212
1334
1334
  simba/third_party_label_appenders/transform/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1335
- simba/third_party_label_appenders/transform/coco_keypoints_to_yolo.py,sha256=CmnMfwga6h2EEvvXCyM8W5GDVT57Y3DmBO7p2lmh3Tg,15616
1336
- simba/third_party_label_appenders/transform/coco_keypoints_to_yolo_bbox.py,sha256=hWz2iZKCDYYL6B51hcyAqfNryxqIXdWuxK_zo9QI0Kk,15593
1335
+ simba/third_party_label_appenders/transform/coco_keypoints_to_yolo.py,sha256=9e8co8P-YbmpmNNQ0BOupB5MFTiX25LQpk_QdZMHdFI,15616
1336
+ simba/third_party_label_appenders/transform/coco_keypoints_to_yolo_bbox.py,sha256=dP3cIM4uDPLrpADa_SJf8wvFOr8PqhQTVZ88gTEuvyA,15601
1337
1337
  simba/third_party_label_appenders/transform/coco_keypoints_to_yolo_seg.py,sha256=ko160LwH0px8iXhf_GG_nUi2bq4m9Ys0q5XyzFd2T5o,9536
1338
1338
  simba/third_party_label_appenders/transform/dlc_ma_h5_to_yolo.py,sha256=SkMPLpCoJRtFcuguoJd8RcdHj3-3gViqQkHisffkWFM,11151
1339
1339
  simba/third_party_label_appenders/transform/dlc_multi_to_yolo.py,sha256=HrLg8E1biSSMJQTKn16tmB_NoubMjSROk9l6GeBVo7E,9267
@@ -1384,7 +1384,7 @@ simba/ui/pop_ups/clf_annotation_counts_pop_up.py,sha256=8HeTc4XJt_yHwm7UqoKAQmXS
1384
1384
  simba/ui/pop_ups/clf_by_roi_pop_up.py,sha256=95oTHZXchehmuOrP9cxJkBzyLqDcN8ZJLqUSZ0Yh98k,8709
1385
1385
  simba/ui/pop_ups/clf_by_timebins_pop_up.py,sha256=1MHhaQWEytt0EEioa40nDiGfooUGo89GSO4DTNJ1rJc,7791
1386
1386
  simba/ui/pop_ups/clf_descriptive_statistics_pop_up.py,sha256=A6zr1h__mnpPreufvKIJebHyhvWwdvxXLzBfRKxV8B4,10641
1387
- simba/ui/pop_ups/clf_plot_pop_up.py,sha256=DQxWxN0uhfeYkfrkMCPdIzaJE062sLVWh_0OSKRSGv0,16851
1387
+ simba/ui/pop_ups/clf_plot_pop_up.py,sha256=zxhrrEz239aTpuUwnI4V5oLWKEZZuzt6uCPIozc170c,16911
1388
1388
  simba/ui/pop_ups/clf_probability_plot_pop_up.py,sha256=5wlVxKlkEa0ldR2hlZohkmcYKYgC78KEq_BKqj-YjLU,11278
1389
1389
  simba/ui/pop_ups/clf_validation_plot_pop_up.py,sha256=Fvc3d8jbaE3anfogMHojI6CcDzUpa6OJosFs6VlZshk,6826
1390
1390
  simba/ui/pop_ups/coco_keypoints_to_yolo_popup.py,sha256=TftQitbTxn1TA0Wm3TZGY9lVCqiOEb4E49rmcJeWZ8Y,3834
@@ -1409,7 +1409,7 @@ simba/ui/pop_ups/duplicate_rois_by_source_target_popup.py,sha256=VRJ29FxkYQOCQ8G
1409
1409
  simba/ui/pop_ups/egocentric_alignment_pop_up.py,sha256=BJEQXOxo0yuyj4nEiH0YeYuSsq5-3KfaE_DXUEcmU-Y,7085
1410
1410
  simba/ui/pop_ups/extract_annotation_frames_pop_up.py,sha256=IxSed3wZoDftHs7YfykJzHgg8_SiCqU1t_1Us9XGgWg,5975
1411
1411
  simba/ui/pop_ups/fsttc_pop_up.py,sha256=0wckzGasbU1ef2bFJK5AlKQkIgMOV0iotBwC9vI5yfw,3700
1412
- simba/ui/pop_ups/gantt_pop_up.py,sha256=gkqg74sxjHsaB-FHLIXW-275wuZMwjC7cPKfrn0jVOA,9234
1412
+ simba/ui/pop_ups/gantt_pop_up.py,sha256=pJNB2qTg5VcpE5jqi5WsH3SjMvK5rQGePpj3BRDfhZg,10969
1413
1413
  simba/ui/pop_ups/heatmap_clf_pop_up.py,sha256=uyYQI-R3jswkB2LI3UYRiPySNDcmv_Cn_sSjJQK3uSA,8519
1414
1414
  simba/ui/pop_ups/heatmap_location_pop_up.py,sha256=LeQPzcjLSCCn8my-dvIIQ9DDTNtblxPSmCp7x4Ob7YY,8645
1415
1415
  simba/ui/pop_ups/helpers.py,sha256=wjxintf8wqKfm8SqfDDLVqDGlwKkWbXVtF-e5HwauVs,656
@@ -1461,7 +1461,7 @@ simba/ui/pop_ups/subset_feature_extractor_pop_up.py,sha256=M24iJSqh-DpYdpw1pSaIm
1461
1461
  simba/ui/pop_ups/targeted_annotation_clips_pop_up.py,sha256=PFh5ua2f_OMQ1Pth9Ha8Fo5lTPZNQV3bMnRGEoAPhTQ,6997
1462
1462
  simba/ui/pop_ups/third_party_annotator_appender_pop_up.py,sha256=Xnha2UwM-08djObCkL_EXK2L4pernyipzbyNKQvX5aQ,7694
1463
1463
  simba/ui/pop_ups/validation_plot_pop_up.py,sha256=yIo_el2dR_84ZAh_-2fYFg-BJDG0Eip_P_o9vzTQRkk,12174
1464
- simba/ui/pop_ups/video_processing_pop_up.py,sha256=KEvZ8HuquNFg0fNx3Apgp2GD7Y9GAeFxQ0IVwj8RDLE,237373
1464
+ simba/ui/pop_ups/video_processing_pop_up.py,sha256=1cbEVafa164vfkES1tOEDJhtsa83ZxGxqbiwCb6XHVo,237404
1465
1465
  simba/ui/pop_ups/visualize_pose_in_dir_pop_up.py,sha256=PpFs0zaqF4dnHJ_yH-PqYgsjAyxYPVP427Soj-kYtM0,8838
1466
1466
  simba/ui/pop_ups/yolo_inference_popup.py,sha256=Ymi3QZVkVwUc6gNtG8kZwETpiMjT_tY3HE4Y3293Z6k,14676
1467
1467
  simba/ui/pop_ups/yolo_plot_results.py,sha256=yi9D3WquDu4L8PWJLZsODulojgakfy7Dzh_CpYK6Vgk,10096
@@ -1504,15 +1504,15 @@ simba/utils/.DS_Store,sha256=dv7VXL3RuC-Ia6BytEmj0Ef07zH6aMabiQLXkJVn2N4,6148
1504
1504
  simba/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1505
1505
  simba/utils/checks.py,sha256=e_rcZymSqzhw6kiBjeMVH3zKAV2jUaCrbrwglYho3YY,117243
1506
1506
  simba/utils/config_creator.py,sha256=KxBdMOTf85bnAf9KprfIebzBbr5JlZl2EH0c-UMW45Y,14894
1507
- simba/utils/custom_feature_extractor.py,sha256=Zj5pNDAISuPEtzQtIvnkynHfYh3nzdQtSSzN3_vJeEk,11871
1508
- simba/utils/data.py,sha256=8Mkh79lY5qFWffSar-02gctTxvEV35_YQIPAR48AhtM,100777
1507
+ simba/utils/custom_feature_extractor.py,sha256=lFOxtHQyKAB8PysXOzPXkUydmHUkkz0Tix-8KRI5-QE,11870
1508
+ simba/utils/data.py,sha256=IGYfzWKrlhwZL1LcDpQg84i-8A4RRLEU1lD8tqXUyQA,100777
1509
1509
  simba/utils/enums.py,sha256=ZR2175N06ZHZNiHk8n757T-WGyt1-55LLpcg3Sbb91k,38668
1510
1510
  simba/utils/errors.py,sha256=aC-1qiGlh1vvHxUaPxBMQ9-LW-KKWXCGlH9acCPH0Cc,18788
1511
1511
  simba/utils/lookups.py,sha256=ZQwY7z74RpDrRJNyYiM-122prRw9qwmijpEe5Ut0lSA,47715
1512
1512
  simba/utils/printing.py,sha256=2s-uESy1knuPiniqQ-q277uQ2teYM4OHo9Y4L20JQWM,5353
1513
- simba/utils/read_write.py,sha256=2KnRWtWucbWLsg__-MQDjAv0RGfsfU-6apxQWI1s9KI,188412
1513
+ simba/utils/read_write.py,sha256=RadhCPmtgidCr866vxMB6tflQRu3hxc6siPf2eksZ6A,188719
1514
1514
  simba/utils/warnings.py,sha256=K7w1RiDL4Un7rGaabOVCGc9fHcaKxk66iZyNLS_AtOE,8121
1515
- simba/utils/yolo.py,sha256=4RTC1JYnZ7WgaWmf70cZATbUtjRQfJ1HyhJhglpAEcs,18482
1515
+ simba/utils/yolo.py,sha256=UZzpnDqZj81SOMnwsWPQIhFAsHHSSaDawi1UUh0-uAA,19264
1516
1516
  simba/utils/cli/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1517
1517
  simba/utils/cli/cli_tools.py,sha256=vDPGuwqWTnHQ35pchC0uN3P8U_3GVnHalL3SFgGFc0g,11957
1518
1518
  simba/video_processors/.DS_Store,sha256=6gsgZL1uIfKqBNSk6EAKBP9lJ1qMrQy6XrEvluyc2GE,6148
@@ -1520,22 +1520,22 @@ simba/video_processors/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3
1520
1520
  simba/video_processors/async_frame_reader.py,sha256=_17735pfAKUDHE18snAbWIbxUhIFkx3m-HipWqoE6r8,8059
1521
1521
  simba/video_processors/batch_process_create_ffmpeg_commands.py,sha256=LQmZXxxgBCFkeYUZiV4R2cB1syehPLbM0RnmpMMAZzQ,14233
1522
1522
  simba/video_processors/batch_process_menus.py,sha256=cLgJCx90wvgzZJX2ygoPIQc1f4cWPaC6O02XH7Ta458,37627
1523
- simba/video_processors/blob_tracking_executor.py,sha256=W24Men4nzN4nkKaOsq-ERuSavkVRR-BeFzW-0LVNEY4,18395
1523
+ simba/video_processors/blob_tracking_executor.py,sha256=hyB-FYwbCmk44ytOmYQsiWHh7ecE0h5A0-ySjpYWyvY,18395
1524
1524
  simba/video_processors/brightness_contrast_ui.py,sha256=nWmzho1WeJuIp3CuDjJmqMIzge2sTZn6_H0lWyZYaz0,5202
1525
1525
  simba/video_processors/calculate_px_dist.py,sha256=se9M1Kv6VxjVTZqSBmdmx29fg10s-1tL1UqJ6353Iqc,10029
1526
- simba/video_processors/clahe_ui.py,sha256=2I6Z0bGapU1Fo6iO-mKLbQiUnE3G6qNu-Of8Z8VvC6s,7150
1527
- simba/video_processors/egocentric_video_rotator.py,sha256=20mBA8crTqFScnIrJMCNDU_ZjEgr_VHEoEn8VD67DjM,12344
1526
+ simba/video_processors/clahe_ui.py,sha256=ovHwB97ySOaoKh5cYYwHH9miIU1-BOt3HH-zp4GGTm4,7150
1527
+ simba/video_processors/egocentric_video_rotator.py,sha256=mOo8hE1_C1sedYZGN9elJ7YlW-HANwepsCvzD2iZ5ss,12344
1528
1528
  simba/video_processors/extract_frames.py,sha256=7FgZBg3YfUgDr13xSDFh-XcSjSqbDc3I_Af2zUgcDIQ,3088
1529
1529
  simba/video_processors/extract_seqframes.py,sha256=Yz_Head-9IVB4sJQfh1Oe1EStC0G-Y8Q9a5DDeCbigo,4926
1530
- simba/video_processors/multi_cropper.py,sha256=n_DSGv9abhSgAsDpb-VULmNVFRPADZRpVyBnARvm5No,8697
1530
+ simba/video_processors/multi_cropper.py,sha256=1BI0Ami4kB9rdMUHR0EistmIKqc-E5FK5e4gXmgFUjA,8697
1531
1531
  simba/video_processors/roi_selector.py,sha256=5N3s0Bi1Ub6c9gjE_-mV7AWr8Fqg7HQKdBKBF6whurg,8522
1532
1532
  simba/video_processors/roi_selector_circle.py,sha256=SD_lv6V3MGiIQd0VtUFSKe83ySW_qvE1t8xsgAlr2hI,6436
1533
1533
  simba/video_processors/roi_selector_polygon.py,sha256=DMtilt__gGwNu6VV73CWbnPqrPBXkan1_akUqGEzfGw,6742
1534
- simba/video_processors/video_processing.py,sha256=jvrR3xqJJyle2snP8Tey54bgB0-hpuzMrzSiWhFK53k,317843
1535
- simba/video_processors/videos_to_frames.py,sha256=FDZ8WVGVvcH8bF4Kiu-FEPyVeDsjis7OgJOFpNa49Y0,7818
1536
- simba_uw_tf_dev-4.6.6.dist-info/LICENSE,sha256=Sjn362upcvYFypam-b-ziOXU1Wl5GGuTt5ICrGimzyA,1720
1537
- simba_uw_tf_dev-4.6.6.dist-info/METADATA,sha256=ASJGWQiiTkJXyvs1q2Dhv1-wthrllCogYq9bTITgH8k,11375
1538
- simba_uw_tf_dev-4.6.6.dist-info/WHEEL,sha256=G16H4A3IeoQmnOrYV4ueZGKSjhipXx8zc8nu9FGlvMA,92
1539
- simba_uw_tf_dev-4.6.6.dist-info/entry_points.txt,sha256=Nfh_EbfDGdKftLjCnGWtQrBHENiDYMdgupwLyLpU5dc,44
1540
- simba_uw_tf_dev-4.6.6.dist-info/top_level.txt,sha256=ogtimvlqDxDTOBAPfT2WaQ2pGAAbKRXG8z8eUTzf6TU,14
1541
- simba_uw_tf_dev-4.6.6.dist-info/RECORD,,
1534
+ simba/video_processors/video_processing.py,sha256=bwAeWmG7IypMnJWhuT2G2RQ_y9QXE0mmns3A-v4q4Xs,319245
1535
+ simba/video_processors/videos_to_frames.py,sha256=8hltNZpwUfb3GFi-63D0PsySmD5l59pbzQGJx8SscgU,7818
1536
+ simba_uw_tf_dev-4.6.8.dist-info/LICENSE,sha256=Sjn362upcvYFypam-b-ziOXU1Wl5GGuTt5ICrGimzyA,1720
1537
+ simba_uw_tf_dev-4.6.8.dist-info/METADATA,sha256=1MfaqKqQiMgR-mhKHsYCi6g6PJnx5nxbiG8K2Nv3y4g,11432
1538
+ simba_uw_tf_dev-4.6.8.dist-info/WHEEL,sha256=G16H4A3IeoQmnOrYV4ueZGKSjhipXx8zc8nu9FGlvMA,92
1539
+ simba_uw_tf_dev-4.6.8.dist-info/entry_points.txt,sha256=Nfh_EbfDGdKftLjCnGWtQrBHENiDYMdgupwLyLpU5dc,44
1540
+ simba_uw_tf_dev-4.6.8.dist-info/top_level.txt,sha256=ogtimvlqDxDTOBAPfT2WaQ2pGAAbKRXG8z8eUTzf6TU,14
1541
+ simba_uw_tf_dev-4.6.8.dist-info/RECORD,,