simba-uw-tf-dev 4.6.4__py3-none-any.whl → 4.6.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (53) hide show
  1. simba/data_processors/blob_location_computer.py +1 -1
  2. simba/data_processors/cuda/geometry.py +45 -27
  3. simba/data_processors/cuda/image.py +1624 -1600
  4. simba/data_processors/cuda/statistics.py +72 -25
  5. simba/data_processors/cuda/timeseries.py +1 -1
  6. simba/data_processors/egocentric_aligner.py +25 -7
  7. simba/data_processors/kleinberg_calculator.py +6 -2
  8. simba/feature_extractors/feature_subsets.py +14 -7
  9. simba/feature_extractors/straub_tail_analyzer.py +4 -6
  10. simba/labelling/standard_labeller.py +1 -1
  11. simba/mixins/geometry_mixin.py +8 -8
  12. simba/mixins/image_mixin.py +14 -14
  13. simba/mixins/statistics_mixin.py +48 -11
  14. simba/mixins/timeseries_features_mixin.py +1 -1
  15. simba/mixins/train_model_mixin.py +65 -27
  16. simba/model/inference_batch.py +1 -1
  17. simba/model/yolo_seg_inference.py +3 -3
  18. simba/plotting/heat_mapper_clf_mp.py +2 -2
  19. simba/pose_importers/simba_blob_importer.py +3 -3
  20. simba/roi_tools/roi_aggregate_stats_mp.py +1 -1
  21. simba/roi_tools/roi_clf_calculator_mp.py +1 -1
  22. simba/sandbox/analyze_runtimes.py +30 -0
  23. simba/sandbox/cuda/egocentric_rotator.py +374 -374
  24. simba/sandbox/proboscis_to_tip.py +28 -0
  25. simba/sandbox/test_directionality.py +47 -0
  26. simba/sandbox/test_nonstatic_directionality.py +27 -0
  27. simba/sandbox/test_pycharm_cuda.py +51 -0
  28. simba/sandbox/test_simba_install.py +41 -0
  29. simba/sandbox/test_static_directionality.py +26 -0
  30. simba/sandbox/test_static_directionality_2d.py +26 -0
  31. simba/sandbox/verify_env.py +42 -0
  32. simba/third_party_label_appenders/transform/coco_keypoints_to_yolo.py +3 -3
  33. simba/third_party_label_appenders/transform/coco_keypoints_to_yolo_bbox.py +2 -2
  34. simba/ui/pop_ups/fsttc_pop_up.py +27 -25
  35. simba/ui/pop_ups/kleinberg_pop_up.py +3 -2
  36. simba/utils/custom_feature_extractor.py +1 -1
  37. simba/utils/data.py +2 -3
  38. simba/utils/errors.py +441 -440
  39. simba/utils/lookups.py +1203 -1203
  40. simba/utils/read_write.py +70 -31
  41. simba/utils/yolo.py +10 -1
  42. simba/video_processors/blob_tracking_executor.py +2 -2
  43. simba/video_processors/clahe_ui.py +1 -1
  44. simba/video_processors/egocentric_video_rotator.py +44 -39
  45. simba/video_processors/multi_cropper.py +1 -1
  46. simba/video_processors/video_processing.py +5264 -5233
  47. simba/video_processors/videos_to_frames.py +43 -33
  48. {simba_uw_tf_dev-4.6.4.dist-info → simba_uw_tf_dev-4.6.7.dist-info}/METADATA +4 -3
  49. {simba_uw_tf_dev-4.6.4.dist-info → simba_uw_tf_dev-4.6.7.dist-info}/RECORD +53 -44
  50. {simba_uw_tf_dev-4.6.4.dist-info → simba_uw_tf_dev-4.6.7.dist-info}/LICENSE +0 -0
  51. {simba_uw_tf_dev-4.6.4.dist-info → simba_uw_tf_dev-4.6.7.dist-info}/WHEEL +0 -0
  52. {simba_uw_tf_dev-4.6.4.dist-info → simba_uw_tf_dev-4.6.7.dist-info}/entry_points.txt +0 -0
  53. {simba_uw_tf_dev-4.6.4.dist-info → simba_uw_tf_dev-4.6.7.dist-info}/top_level.txt +0 -0
simba/utils/read_write.py CHANGED
@@ -97,13 +97,20 @@ def read_df(file_path: Union[str, os.PathLike],
97
97
  .. note::
98
98
  For improved runtime, defaults to :external:py:meth:`pyarrow.csv.write_cs` if file type is ``csv``.
99
99
 
100
- :parameter str file_path: Path to data file
101
- :parameter str file_type: Type of data. OPTIONS: 'parquet', 'csv', 'pickle'.
102
- :parameter Optional[bool]: If the input file has an initial index column. Default: True.
103
- :parameter Optional[List[str]] remove_columns: If not None, then remove columns in lits.
104
- :parameter Optional[List[str]] usecols: If not None, then keep columns in list.
105
- :parameter bool check_multiindex: check file is multi-index headers. Default: False.
106
- :parameter int multi_index_headers_to_keep: If reading multi-index file, and we want to keep one of the dropped multi-index levels as the header in the output file, specify the index of the multiindex hader as int.
100
+ .. csv-table::
101
+ :header: EXPECTED RUNTIMES
102
+ :file: ../../docs/tables/read_df.csv
103
+ :widths: 10, 45, 45
104
+ :align: center
105
+ :header-rows: 1
106
+
107
+ :param str file_path: Path to data file
108
+ :param str file_type: Type of data. OPTIONS: 'parquet', 'csv', 'pickle'.
109
+ :param Optional[bool]: If the input file has an initial index column. Default: True.
110
+ :param Optional[List[str]] remove_columns: If not None, then remove columns in lits.
111
+ :param Optional[List[str]] usecols: If not None, then keep columns in list.
112
+ :param bool check_multiindex: check file is multi-index headers. Default: False.
113
+ :param int multi_index_headers_to_keep: If reading multi-index file, and we want to keep one of the dropped multi-index levels as the header in the output file, specify the index of the multiindex hader as int.
107
114
  :return: Table data in pd.DataFrame format.
108
115
  :rtype: pd.DataFrame
109
116
 
@@ -207,11 +214,18 @@ def write_df(df: pd.DataFrame,
207
214
  .. note::
208
215
  For improved runtime, defaults to ``pyarrow.csv`` if file_type == ``csv``.
209
216
 
210
- :parameter pd.DataFrame df: Pandas dataframe to save to disk.
211
- :parameter str file_type: Type of data. OPTIONS: ``parquet``, ``csv``, ``pickle``.
212
- :parameter str save_path: Location where to store the data.
213
- :parameter bool check_multiindex: check if input file is multi-index headers. Default: False.
214
- :parameter bool verbose: Prints message on completion. Default: False.
217
+ .. csv-table::
218
+ :header: EXPECTED RUNTIMES
219
+ :file: ../../docs/tables/write_df.csv
220
+ :widths: 10, 45, 45
221
+ :align: center
222
+ :header-rows: 1
223
+
224
+ :param pd.DataFrame df: Pandas dataframe to save to disk.
225
+ :param str file_type: Type of data. OPTIONS: ``parquet``, ``csv``, ``pickle``.
226
+ :param str save_path: Location where to store the data.
227
+ :param bool check_multiindex: check if input file is multi-index headers. Default: False.
228
+ :param bool verbose: Prints message on completion. Default: False.
215
229
 
216
230
  :example:
217
231
  >>> write_df(df=df, file_type='csv', save_path='project_folder/csv/input_csv/Video_1.csv')
@@ -1130,8 +1144,8 @@ def get_file_name_info_in_directory(directory: Union[str, os.PathLike], file_typ
1130
1144
  :return dict: All found files as values and file base names as keys.
1131
1145
 
1132
1146
  :example:
1133
- >>> get_file_name_info_in_directory(directory='C:\project_folder\csv\machine_results', file_type='csv')
1134
- >>> {'Video_1': 'C:\project_folder\csv\machine_results\Video_1'}
1147
+ >>> get_file_name_info_in_directory(directory='C:/project_folder/csv/machine_results', file_type='csv')
1148
+ >>> {'Video_1': 'C:/project_folder/csv/machine_results/Video_1'}
1135
1149
  """
1136
1150
 
1137
1151
  results = {}
@@ -2460,6 +2474,13 @@ def read_img_batch_from_video_gpu(video_path: Union[str, os.PathLike],
2460
2474
  """
2461
2475
  Reads a batch of frames from a video file using GPU acceleration.
2462
2476
 
2477
+ .. csv-table::
2478
+ :header: EXPECTED RUNTIMES
2479
+ :file: ../../docs/tables/read_img_batch_from_video_gpu.csv
2480
+ :widths: 10, 45, 45
2481
+ :align: center
2482
+ :header-rows: 1
2483
+
2463
2484
  This function uses FFmpeg with CUDA acceleration to read frames from a specified range in a video file. It supports both RGB and greyscale video formats. Frames are returned as a dictionary where the keys are
2464
2485
  frame indices and the values are NumPy arrays representing the image data.
2465
2486
 
@@ -2468,7 +2489,7 @@ def read_img_batch_from_video_gpu(video_path: Union[str, os.PathLike],
2468
2489
  If you expect that the video you are reading in is black and white, set ``black_and_white`` to True to round any of these wonly value sto 0 and 255.
2469
2490
 
2470
2491
  .. seealso::
2471
- For CPU multicore acceleration, see :func:`simba.mixins.image_mixin.ImageMixin.read_img_batch_from_video`
2492
+ For CPU multicore acceleration, see :func:`simba.mixins.image_mixin.ImageMixin.read_img_batch_from_video` or :func:`simba.utils.read_write.read_img_batch_from_video`.
2472
2493
 
2473
2494
  :param video_path: Path to the video file. Can be a string or an os.PathLike object.
2474
2495
  :param start_frm: The starting frame index to read. If None, starts from the beginning of the video.
@@ -2479,6 +2500,7 @@ def read_img_batch_from_video_gpu(video_path: Union[str, os.PathLike],
2479
2500
  :return: A dictionary where keys are frame indices (integers) and values are NumPy arrays containing the image data of each frame.
2480
2501
  """
2481
2502
 
2503
+ timer = SimbaTimer(start=True)
2482
2504
  check_file_exist_and_readable(file_path=video_path)
2483
2505
  video_meta_data = get_video_meta_data(video_path=video_path, fps_as_int=False)
2484
2506
  if start_frm is not None:
@@ -2551,6 +2573,10 @@ def read_img_batch_from_video_gpu(video_path: Union[str, os.PathLike],
2551
2573
  binary_frms[frm_id] = np.where(frames[frm_id] > 127, 255, 0).astype(np.uint8)
2552
2574
  frames = binary_frms
2553
2575
 
2576
+ timer.stop_timer()
2577
+ if verbose:
2578
+ print(f'[{get_current_time()}] Read frames {start_frm}-{end_frm} (video: {video_name}, elapsed time: {timer.elapsed_time_str}s)')
2579
+
2554
2580
  return frames
2555
2581
 
2556
2582
 
@@ -2618,7 +2644,7 @@ def bento_file_reader(file_path: Union[str, os.PathLike],
2618
2644
  :rtype: Dict[str, pd.DataFrame]
2619
2645
 
2620
2646
  :example:
2621
- >>> bento_file_reader(file_path=r"C:\troubleshooting\bento_test\bento_files\20240812_crumpling3.annot")
2647
+ >>> bento_file_reader(file_path=r"C:/troubleshooting/bento_test/bento_files/20240812_crumpling3.annot")
2622
2648
  """
2623
2649
 
2624
2650
  def _orient_columns_melt(df: pd.DataFrame) -> pd.DataFrame:
@@ -2941,7 +2967,7 @@ def labelme_to_dlc(labelme_dir: Union[str, os.PathLike],
2941
2967
  :return: None
2942
2968
 
2943
2969
  :example:
2944
- >>> labelme_dir = r'D:\ts_annotations'
2970
+ >>> labelme_dir = r'D:/ts_annotations'
2945
2971
  >>> labelme_to_dlc(labelme_dir=labelme_dir)
2946
2972
  """
2947
2973
 
@@ -3156,7 +3182,7 @@ def _read_img_batch_from_video_helper(frm_idx: np.ndarray, video_path: Union[str
3156
3182
  cap.set(1, current_frm)
3157
3183
  while current_frm < end_frm:
3158
3184
  if verbose:
3159
- print(f'Reading frame {current_frm}/{video_meta_data["frame_count"]} ({video_meta_data["video_name"]})...')
3185
+ print(f'[{get_current_time()}] Reading frame {current_frm} ({video_meta_data["video_name"]})...')
3160
3186
  img = cap.read()[1]
3161
3187
  if img is not None:
3162
3188
  if greyscale or black_and_white or clahe:
@@ -3188,6 +3214,14 @@ def read_img_batch_from_video(video_path: Union[str, os.PathLike],
3188
3214
  """
3189
3215
  Read a batch of frames from a video file. This method reads frames from a specified range of frames within a video file using multiprocessing.
3190
3216
 
3217
+ .. csv-table::
3218
+ :header: EXPECTED RUNTIMES
3219
+ :file: ../../docs/tables/read_img_batch_from_video.csv
3220
+ :widths: 10, 45, 45
3221
+ :align: center
3222
+ :header-rows: 1
3223
+
3224
+
3191
3225
  .. seealso::
3192
3226
  For GPU acceleration, see :func:`simba.utils.read_write.read_img_batch_from_video_gpu`
3193
3227
 
@@ -3209,6 +3243,8 @@ def read_img_batch_from_video(video_path: Union[str, os.PathLike],
3209
3243
  >>> read_img_batch_from_video(video_path='/Users/simon/Desktop/envs/troubleshooting/two_black_animals_14bp/videos/Together_1.avi', start_frm=0, end_frm=50)
3210
3244
  """
3211
3245
 
3246
+
3247
+ timer = SimbaTimer(start=True)
3212
3248
  if platform.system() == "Darwin":
3213
3249
  if not multiprocessing.get_start_method(allow_none=True):
3214
3250
  multiprocessing.set_start_method("fork", force=True)
@@ -3230,19 +3266,22 @@ def read_img_batch_from_video(video_path: Union[str, os.PathLike],
3230
3266
  if end_frm <= start_frm:
3231
3267
  FrameRangeError(msg=f"Start frame ({start_frm}) has to be before end frame ({end_frm})", source=read_img_batch_from_video.__name__)
3232
3268
  frm_lst = np.array_split(np.arange(start_frm, end_frm + 1), core_cnt)
3269
+ pool = multiprocessing.Pool(core_cnt, maxtasksperchild=Defaults.LARGE_MAX_TASK_PER_CHILD.value)
3233
3270
  results = {}
3234
- with multiprocessing.Pool(core_cnt, maxtasksperchild=Defaults.LARGE_MAX_TASK_PER_CHILD.value) as pool:
3235
- constants = functools.partial(_read_img_batch_from_video_helper,
3236
- video_path=video_path,
3237
- greyscale=greyscale,
3238
- black_and_white=black_and_white,
3239
- clahe=clahe,
3240
- verbose=verbose)
3241
- for cnt, result in enumerate(pool.imap(constants, frm_lst, chunksize=1)):
3242
- results.update(result)
3243
- pool.join()
3271
+ constants = functools.partial(_read_img_batch_from_video_helper,
3272
+ video_path=video_path,
3273
+ greyscale=greyscale,
3274
+ black_and_white=black_and_white,
3275
+ clahe=clahe,
3276
+ verbose=verbose)
3277
+ for cnt, result in enumerate(pool.imap(constants, frm_lst, chunksize=1)):
3278
+ results.update(result)
3244
3279
  pool.close()
3245
- #terminate_cpu_pool(pool=pool, force=False)
3280
+ pool.join()
3281
+ pool.terminate()
3282
+ timer.stop_timer()
3283
+ if verbose:
3284
+ print(f'[{get_current_time()}] Read frames {start_frm}-{end_frm} (video: {video_meta_data["video_name"]}, elapsed time: {timer.elapsed_time_str}s)')
3246
3285
  return results
3247
3286
 
3248
3287
  def read_yolo_bp_names_file(file_path: Union[str, os.PathLike]) -> Tuple[str]:
@@ -3572,8 +3611,8 @@ def osf_download(project_id: str, save_dir: Union[str, os.PathLike], storage: st
3572
3611
  :param bool overwrite: If True, overwrite existing files. If False, skip existing files (default: False).
3573
3612
 
3574
3613
  :example:
3575
- >>> osf_download(project_id="7fgwn", save_dir=r'E:\rgb_white_vs_black_imgs')
3576
- >>> osf_download(project_id="kym42", save_dir=r'E:\crim13_imgs', overwrite=True)
3614
+ >>> osf_download(project_id="7fgwn", save_dir=r'E:/rgb_white_vs_black_imgs')
3615
+ >>> osf_download(project_id="kym42", save_dir=r'E:/crim13_imgs', overwrite=True)
3577
3616
  """
3578
3617
 
3579
3618
  _ = get_pkg_version(pkg='osfclient', raise_error=True)
simba/utils/yolo.py CHANGED
@@ -47,6 +47,9 @@ def fit_yolo(weights_path: Union[str, os.PathLike],
47
47
  `Download initial weights <https://huggingface.co/Ultralytics>`__.
48
48
  `Example model_yaml <https://github.com/sgoldenlab/simba/blob/master/misc/ex_yolo_model.yaml>`__.
49
49
 
50
+ .. seealso::
51
+ For the recommended wrapper class with parameter validation, see :class:`simba.model.yolo_fit.FitYolo`.
52
+
50
53
  :param initial_weights: Path to the pre-trained YOLO model weights (usually a `.pt` file). Example weights can be found [here](https://huggingface.co/Ultralytics).
51
54
  :param model_yaml: YAML file containing paths to the training, validation, and testing datasets and the object class mappings. Example YAML file can be found [here](https://github.com/sgoldenlab/simba/blob/master/misc/ex_yolo_model.yaml).
52
55
  :param save_path: Directory path where the trained model, logs, and results will be saved.
@@ -55,7 +58,7 @@ def fit_yolo(weights_path: Union[str, os.PathLike],
55
58
  :return: None. The trained model and associated training logs are saved in the specified `project_path`.
56
59
 
57
60
  :example:
58
- >>> fit_yolo(initial_weights=r"C:\troubleshooting\coco_data\weights\yolov8n-obb.pt", data=r"C:\troubleshooting\coco_data\model.yaml", save_path=r"C:\troubleshooting\coco_data\mdl", batch=16)
61
+ >>> fit_yolo(initial_weights=r"C:/troubleshooting/coco_data/weights/yolov8n-obb.pt", data=r"C:/troubleshooting/coco_data/model.yaml", save_path=r"C:/troubleshooting/coco_data/mdl", batch=16)
59
62
  """
60
63
 
61
64
  if not _is_cuda_available()[0]:
@@ -83,6 +86,9 @@ def load_yolo_model(weights_path: Union[str, os.PathLike],
83
86
  """
84
87
  Load a YOLO model.
85
88
 
89
+ .. seealso::
90
+ For recommended wrapper classes that use this function, see :class:`simba.model.yolo_fit.FitYolo`, :class:`simba.model.yolo_inference.YoloInference`, :class:`simba.model.yolo_pose_inference.YOLOPoseInference`, :class:`simba.model.yolo_seg_inference.YOLOSegmentationInference`, and :class:`simba.model.yolo_pose_track_inference.YOLOPoseTrackInference`.
91
+
86
92
  :param Union[str, os.PathLike] weights_path: Path to model weights (.pt, .engine, etc).
87
93
  :param bool verbose: Whether to print loading info.
88
94
  :param Optional[str] format: Export format, one of VALID_FORMATS or None to skip export.
@@ -169,6 +175,9 @@ def yolo_predict(model: YOLO,
169
175
  """
170
176
  Produce YOLO predictions.
171
177
 
178
+ .. seealso::
179
+ For recommended wrapper classes that use this function, see :class:`simba.model.yolo_inference.YoloInference`, :class:`simba.model.yolo_pose_inference.YOLOPoseInference`, and :class:`simba.model.yolo_seg_inference.YOLOSegmentationInference`.
180
+
172
181
  :param Union[str, os.PathLike] model: Loaded ultralytics.YOLO model. Returned by :func:`~simba.bounding_box_tools.yolo.model.load_yolo_model`.
173
182
  :param Union[str, os.PathLike, np.ndarray] source: Path to video, video stream, directory, image, or image as loaded array.
174
183
  :param bool half: Whether to use half precision (FP16) for inference to speed up processing.
@@ -87,9 +87,9 @@ class BlobTrackingExecutor():
87
87
  :param bool center: If True, compute center coordinates. Default: True.
88
88
 
89
89
  :example:
90
- >>> tracker = BlobTrackingExecutor(data=r"C:\troubleshooting\mitra\test\.temp\blob_definitions.pickle")
90
+ >>> tracker = BlobTrackingExecutor(data=r"C:/troubleshooting/mitra/test/.temp/blob_definitions.pickle")
91
91
  >>> tracker.run()
92
- >>> tracker = BlobTrackingExecutor(data=r"C:\troubleshooting\mitra\test\.temp\blob_definitions.pickle", batch_size=5000)
92
+ >>> tracker = BlobTrackingExecutor(data=r"C:/troubleshooting/mitra/test/.temp/blob_definitions.pickle", batch_size=5000)
93
93
  >>> tracker.run()
94
94
  """
95
95
 
@@ -29,7 +29,7 @@ def interactive_clahe_ui(data: Union[str, os.PathLike]) -> Tuple[float, int]:
29
29
  :return Tuple[float, int]: Tuple containing the chosen clip limit and tile size.
30
30
 
31
31
  :example:
32
- >>> video = cv2.imread(r"D:\EPM\sample_2\video_1.mp4")
32
+ >>> video = cv2.imread(r"D:/EPM/sample_2/video_1.mp4")
33
33
  >>> interactive_clahe_ui(data=video)
34
34
  """
35
35
  global original_img, font_size, x_spacer, y_spacer, txt
@@ -9,10 +9,12 @@ import numpy as np
9
9
  from simba.utils.checks import (check_file_exist_and_readable,
10
10
  check_if_dir_exists, check_if_valid_rgb_tuple,
11
11
  check_int, check_valid_array,
12
- check_valid_boolean, check_valid_tuple)
12
+ check_valid_boolean, check_valid_cpu_pool,
13
+ check_valid_tuple)
13
14
  from simba.utils.data import (align_target_warpaffine_vectors,
14
15
  center_rotation_warpaffine_vectors,
15
- egocentrically_align_pose, terminate_cpu_pool)
16
+ egocentrically_align_pose, get_cpu_pool,
17
+ terminate_cpu_pool)
16
18
  from simba.utils.enums import Defaults, Formats
17
19
  from simba.utils.printing import SimbaTimer, stdout_success
18
20
  from simba.utils.read_write import (concatenate_videos_in_folder,
@@ -92,9 +94,9 @@ class EgocentricVideoRotator():
92
94
  :param Optional[Union[str, os.PathLike]] save_path: The location where to store the rotated video. If None, saves the video as the same dir as the input video with the `_rotated` suffix.
93
95
 
94
96
  :example:
95
- >>> DATA_PATH = "C:\501_MA142_Gi_Saline_0513.csv"
96
- >>> VIDEO_PATH = "C:\501_MA142_Gi_Saline_0513.mp4"
97
- >>> SAVE_PATH = "C:\501_MA142_Gi_Saline_0513_rotated.mp4"
97
+ >>> DATA_PATH = "C:/501_MA142_Gi_Saline_0513.csv"
98
+ >>> VIDEO_PATH = "C:/501_MA142_Gi_Saline_0513.mp4"
99
+ >>> SAVE_PATH = "C:/501_MA142_Gi_Saline_0513_rotated.mp4"
98
100
  >>> ANCHOR_LOC = np.array([250, 250])
99
101
 
100
102
  >>> df = read_df(file_path=DATA_PATH, file_type='csv')
@@ -114,7 +116,8 @@ class EgocentricVideoRotator():
114
116
  fill_clr: Tuple[int, int, int] = (0, 0, 0),
115
117
  core_cnt: int = -1,
116
118
  save_path: Optional[Union[str, os.PathLike]] = None,
117
- gpu: Optional[bool] = True):
119
+ gpu: Optional[bool] = True,
120
+ pool: bool = None):
118
121
 
119
122
  check_file_exist_and_readable(file_path=video_path)
120
123
  self.video_meta_data = get_video_meta_data(video_path=video_path)
@@ -125,10 +128,14 @@ class EgocentricVideoRotator():
125
128
  check_valid_boolean(value=[verbose], source=f'{self.__class__.__name__} verbose')
126
129
  check_if_valid_rgb_tuple(data=fill_clr)
127
130
  check_int(name=f'{self.__class__.__name__} core_cnt', value=core_cnt, min_value=-1, unaccepted_vals=[0])
128
- if core_cnt > find_core_cnt()[0] or core_cnt == -1:
129
- self.core_cnt = find_core_cnt()[0]
131
+ if core_cnt > find_core_cnt()[0] or core_cnt == -1: self.core_cnt = find_core_cnt()[0]
132
+ else: self.core_cnt = core_cnt
133
+ if pool is not None:
134
+ check_valid_cpu_pool(value=pool, source=self.__class__.__name__, max_cores=find_core_cnt()[0], min_cores=2, raise_error=True)
135
+ self.pool_termination_flag = True
130
136
  else:
131
- self.core_cnt = core_cnt
137
+ self.pool_termination_flag = False
138
+ self.pool = get_cpu_pool(core_cnt=self.core_cnt, source=self.__class__.__name__) if pool is None else pool
132
139
  video_dir, self.video_name, _ = get_fn_ext(filepath=video_path)
133
140
  if save_path is not None:
134
141
  self.save_dir = os.path.dirname(save_path)
@@ -151,37 +158,35 @@ class EgocentricVideoRotator():
151
158
  frm_list = np.arange(0, self.video_meta_data['frame_count'])
152
159
  frm_list = np.array_split(frm_list, self.core_cnt)
153
160
  frm_list = [(cnt, x) for cnt, x in enumerate(frm_list)]
154
- if self.verbose:
155
- print(f"Creating rotated video {self.video_name}, multiprocessing (chunksize: {1}, cores: {self.core_cnt})...")
156
- with multiprocessing.Pool(self.core_cnt, maxtasksperchild=Defaults.LARGE_MAX_TASK_PER_CHILD.value) as pool:
157
- constants = functools.partial(egocentric_video_aligner,
158
- temp_dir=temp_dir,
159
- video_name=self.video_name,
160
- video_path=self.video_path,
161
- centers=self.centers,
162
- rotation_vectors=self.rotation_vectors,
163
- target=self.anchor_loc,
164
- verbose=self.verbose,
165
- fill_clr=self.fill_clr,
166
- gpu=self.gpu)
167
- for cnt, result in enumerate(pool.imap(constants, frm_list, chunksize=1)):
168
- if self.verbose:
169
- print(f"Rotate batch {result}/{self.core_cnt} complete...")
170
- terminate_cpu_pool(pool=pool, force=False)
161
+ if self.verbose: print(f"Creating rotated video {self.video_name}, multiprocessing (chunksize: {1}, cores: {self.core_cnt})...")
162
+
163
+ constants = functools.partial(egocentric_video_aligner,
164
+ temp_dir=temp_dir,
165
+ video_name=self.video_name,
166
+ video_path=self.video_path,
167
+ centers=self.centers,
168
+ rotation_vectors=self.rotation_vectors,
169
+ target=self.anchor_loc,
170
+ verbose=self.verbose,
171
+ fill_clr=self.fill_clr,
172
+ gpu=self.gpu)
173
+ for cnt, result in enumerate(self.pool.imap(constants, frm_list, chunksize=1)):
174
+ if self.verbose: print(f"Rotate batch {result}/{self.core_cnt} complete...")
175
+ if self.pool_termination_flag: terminate_cpu_pool(pool=self.pool, force=False)
171
176
  concatenate_videos_in_folder(in_folder=temp_dir, save_path=self.save_path, remove_splits=True, gpu=self.gpu, verbose=self.verbose)
172
177
  video_timer.stop_timer()
173
178
  stdout_success(msg=f"Egocentric rotation video {self.save_path} complete", elapsed_time=video_timer.elapsed_time_str, source=self.__class__.__name__)
174
179
 
175
- if __name__ == "__main__":
176
- DATA_PATH = r"C:\Users\sroni\OneDrive\Desktop\desktop\rotate_ex\data\501_MA142_Gi_Saline_0513.csv"
177
- VIDEO_PATH = r"C:\Users\sroni\OneDrive\Desktop\desktop\rotate_ex\videos\501_MA142_Gi_Saline_0513.mp4"
178
- SAVE_PATH = r"C:\Users\sroni\OneDrive\Desktop\desktop\rotate_ex\videos\501_MA142_Gi_Saline_0513_rotated.mp4"
179
- ANCHOR_LOC = np.array([250, 250])
180
-
181
- df = read_df(file_path=DATA_PATH, file_type='csv')
182
- bp_cols = [x for x in df.columns if not x.endswith('_p')]
183
- data = df[bp_cols].values.reshape(len(df), int(len(bp_cols)/2), 2).astype(np.int32)
184
-
185
- _, centers, rotation_vectors = egocentrically_align_pose(data=data, anchor_1_idx=5, anchor_2_idx=2, anchor_location=ANCHOR_LOC, direction=0)
186
- rotater = EgocentricVideoRotator(video_path=VIDEO_PATH, centers=centers, rotation_vectors=rotation_vectors, anchor_location=(400, 100), save_path=SAVE_PATH, verbose=True, core_cnt=16)
187
- rotater.run()
180
+ # if __name__ == "__main__":
181
+ # DATA_PATH = r"C:\Users\sroni\OneDrive\Desktop\desktop\rotate_ex\data\501_MA142_Gi_Saline_0513.csv"
182
+ # VIDEO_PATH = r"C:\Users\sroni\OneDrive\Desktop\desktop\rotate_ex\videos\501_MA142_Gi_Saline_0513.mp4"
183
+ # SAVE_PATH = r"C:\Users\sroni\OneDrive\Desktop\desktop\rotate_ex\videos\501_MA142_Gi_Saline_0513_rotated.mp4"
184
+ # ANCHOR_LOC = np.array([250, 250])
185
+ #
186
+ # df = read_df(file_path=DATA_PATH, file_type='csv')
187
+ # bp_cols = [x for x in df.columns if not x.endswith('_p')]
188
+ # data = df[bp_cols].values.reshape(len(df), int(len(bp_cols)/2), 2).astype(np.int32)
189
+ #
190
+ # _, centers, rotation_vectors = egocentrically_align_pose(data=data, anchor_1_idx=5, anchor_2_idx=2, anchor_location=ANCHOR_LOC, direction=0)
191
+ # rotater = EgocentricVideoRotator(video_path=VIDEO_PATH, centers=centers, rotation_vectors=rotation_vectors, anchor_location=(400, 100), save_path=SAVE_PATH, verbose=True, core_cnt=16)
192
+ # rotater.run()
@@ -49,7 +49,7 @@ class MultiCropper(object):
49
49
 
50
50
 
51
51
  :example:
52
- >>> cropper = MultiCropper(file_type='mp4', input_folder=r'C:\troubleshooting\mitra\test', output_folder=r'C:\troubleshooting\mitra\test\cropped', crop_cnt=2, gpu=True)
52
+ >>> cropper = MultiCropper(file_type='mp4', input_folder=r'C:/troubleshooting/mitra/test', output_folder=r'C:/troubleshooting/mitra/test/cropped', crop_cnt=2, gpu=True)
53
53
  >>> cropper.run()
54
54
  """
55
55