simba-uw-tf-dev 4.6.4__py3-none-any.whl → 4.6.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- simba/data_processors/cuda/geometry.py +45 -27
- simba/data_processors/cuda/image.py +1620 -1600
- simba/data_processors/cuda/statistics.py +17 -9
- simba/data_processors/egocentric_aligner.py +24 -6
- simba/data_processors/kleinberg_calculator.py +6 -2
- simba/feature_extractors/feature_subsets.py +12 -5
- simba/feature_extractors/straub_tail_analyzer.py +0 -2
- simba/mixins/statistics_mixin.py +9 -2
- simba/sandbox/analyze_runtimes.py +30 -0
- simba/sandbox/cuda/egocentric_rotator.py +374 -374
- simba/sandbox/proboscis_to_tip.py +28 -0
- simba/sandbox/test_directionality.py +47 -0
- simba/sandbox/test_nonstatic_directionality.py +27 -0
- simba/sandbox/test_pycharm_cuda.py +51 -0
- simba/sandbox/test_simba_install.py +41 -0
- simba/sandbox/test_static_directionality.py +26 -0
- simba/sandbox/test_static_directionality_2d.py +26 -0
- simba/sandbox/verify_env.py +42 -0
- simba/ui/pop_ups/fsttc_pop_up.py +27 -25
- simba/ui/pop_ups/kleinberg_pop_up.py +3 -2
- simba/utils/data.py +0 -1
- simba/utils/errors.py +441 -440
- simba/utils/lookups.py +1203 -1203
- simba/utils/read_write.py +38 -13
- simba/video_processors/egocentric_video_rotator.py +41 -36
- simba/video_processors/video_processing.py +5247 -5233
- simba/video_processors/videos_to_frames.py +41 -31
- {simba_uw_tf_dev-4.6.4.dist-info → simba_uw_tf_dev-4.6.6.dist-info}/METADATA +2 -2
- {simba_uw_tf_dev-4.6.4.dist-info → simba_uw_tf_dev-4.6.6.dist-info}/RECORD +33 -24
- {simba_uw_tf_dev-4.6.4.dist-info → simba_uw_tf_dev-4.6.6.dist-info}/LICENSE +0 -0
- {simba_uw_tf_dev-4.6.4.dist-info → simba_uw_tf_dev-4.6.6.dist-info}/WHEEL +0 -0
- {simba_uw_tf_dev-4.6.4.dist-info → simba_uw_tf_dev-4.6.6.dist-info}/entry_points.txt +0 -0
- {simba_uw_tf_dev-4.6.4.dist-info → simba_uw_tf_dev-4.6.6.dist-info}/top_level.txt +0 -0
simba/utils/read_write.py
CHANGED
|
@@ -2460,6 +2460,13 @@ def read_img_batch_from_video_gpu(video_path: Union[str, os.PathLike],
|
|
|
2460
2460
|
"""
|
|
2461
2461
|
Reads a batch of frames from a video file using GPU acceleration.
|
|
2462
2462
|
|
|
2463
|
+
.. csv-table::
|
|
2464
|
+
:header: EXPECTED RUNTIMES
|
|
2465
|
+
:file: ../../docs/tables/read_img_batch_from_video_gpu.csv
|
|
2466
|
+
:widths: 10, 45, 45
|
|
2467
|
+
:align: center
|
|
2468
|
+
:header-rows: 1
|
|
2469
|
+
|
|
2463
2470
|
This function uses FFmpeg with CUDA acceleration to read frames from a specified range in a video file. It supports both RGB and greyscale video formats. Frames are returned as a dictionary where the keys are
|
|
2464
2471
|
frame indices and the values are NumPy arrays representing the image data.
|
|
2465
2472
|
|
|
@@ -2468,7 +2475,7 @@ def read_img_batch_from_video_gpu(video_path: Union[str, os.PathLike],
|
|
|
2468
2475
|
If you expect that the video you are reading in is black and white, set ``black_and_white`` to True to round any of these wonly value sto 0 and 255.
|
|
2469
2476
|
|
|
2470
2477
|
.. seealso::
|
|
2471
|
-
For CPU multicore acceleration, see :func:`simba.mixins.image_mixin.ImageMixin.read_img_batch_from_video`
|
|
2478
|
+
For CPU multicore acceleration, see :func:`simba.mixins.image_mixin.ImageMixin.read_img_batch_from_video` or :func:`simba.utils.read_write.read_img_batch_from_video`.
|
|
2472
2479
|
|
|
2473
2480
|
:param video_path: Path to the video file. Can be a string or an os.PathLike object.
|
|
2474
2481
|
:param start_frm: The starting frame index to read. If None, starts from the beginning of the video.
|
|
@@ -2479,6 +2486,7 @@ def read_img_batch_from_video_gpu(video_path: Union[str, os.PathLike],
|
|
|
2479
2486
|
:return: A dictionary where keys are frame indices (integers) and values are NumPy arrays containing the image data of each frame.
|
|
2480
2487
|
"""
|
|
2481
2488
|
|
|
2489
|
+
timer = SimbaTimer(start=True)
|
|
2482
2490
|
check_file_exist_and_readable(file_path=video_path)
|
|
2483
2491
|
video_meta_data = get_video_meta_data(video_path=video_path, fps_as_int=False)
|
|
2484
2492
|
if start_frm is not None:
|
|
@@ -2551,6 +2559,10 @@ def read_img_batch_from_video_gpu(video_path: Union[str, os.PathLike],
|
|
|
2551
2559
|
binary_frms[frm_id] = np.where(frames[frm_id] > 127, 255, 0).astype(np.uint8)
|
|
2552
2560
|
frames = binary_frms
|
|
2553
2561
|
|
|
2562
|
+
timer.stop_timer()
|
|
2563
|
+
if verbose:
|
|
2564
|
+
print(f'[{get_current_time()}] Read frames {start_frm}-{end_frm} (video: {video_name}, elapsed time: {timer.elapsed_time_str}s)')
|
|
2565
|
+
|
|
2554
2566
|
return frames
|
|
2555
2567
|
|
|
2556
2568
|
|
|
@@ -3156,7 +3168,7 @@ def _read_img_batch_from_video_helper(frm_idx: np.ndarray, video_path: Union[str
|
|
|
3156
3168
|
cap.set(1, current_frm)
|
|
3157
3169
|
while current_frm < end_frm:
|
|
3158
3170
|
if verbose:
|
|
3159
|
-
print(f'Reading frame {current_frm}
|
|
3171
|
+
print(f'[{get_current_time()}] Reading frame {current_frm} ({video_meta_data["video_name"]})...')
|
|
3160
3172
|
img = cap.read()[1]
|
|
3161
3173
|
if img is not None:
|
|
3162
3174
|
if greyscale or black_and_white or clahe:
|
|
@@ -3188,6 +3200,14 @@ def read_img_batch_from_video(video_path: Union[str, os.PathLike],
|
|
|
3188
3200
|
"""
|
|
3189
3201
|
Read a batch of frames from a video file. This method reads frames from a specified range of frames within a video file using multiprocessing.
|
|
3190
3202
|
|
|
3203
|
+
.. csv-table::
|
|
3204
|
+
:header: EXPECTED RUNTIMES
|
|
3205
|
+
:file: ../../docs/tables/read_img_batch_from_video.csv
|
|
3206
|
+
:widths: 10, 45, 45
|
|
3207
|
+
:align: center
|
|
3208
|
+
:header-rows: 1
|
|
3209
|
+
|
|
3210
|
+
|
|
3191
3211
|
.. seealso::
|
|
3192
3212
|
For GPU acceleration, see :func:`simba.utils.read_write.read_img_batch_from_video_gpu`
|
|
3193
3213
|
|
|
@@ -3209,6 +3229,8 @@ def read_img_batch_from_video(video_path: Union[str, os.PathLike],
|
|
|
3209
3229
|
>>> read_img_batch_from_video(video_path='/Users/simon/Desktop/envs/troubleshooting/two_black_animals_14bp/videos/Together_1.avi', start_frm=0, end_frm=50)
|
|
3210
3230
|
"""
|
|
3211
3231
|
|
|
3232
|
+
|
|
3233
|
+
timer = SimbaTimer(start=True)
|
|
3212
3234
|
if platform.system() == "Darwin":
|
|
3213
3235
|
if not multiprocessing.get_start_method(allow_none=True):
|
|
3214
3236
|
multiprocessing.set_start_method("fork", force=True)
|
|
@@ -3230,19 +3252,22 @@ def read_img_batch_from_video(video_path: Union[str, os.PathLike],
|
|
|
3230
3252
|
if end_frm <= start_frm:
|
|
3231
3253
|
FrameRangeError(msg=f"Start frame ({start_frm}) has to be before end frame ({end_frm})", source=read_img_batch_from_video.__name__)
|
|
3232
3254
|
frm_lst = np.array_split(np.arange(start_frm, end_frm + 1), core_cnt)
|
|
3255
|
+
pool = multiprocessing.Pool(core_cnt, maxtasksperchild=Defaults.LARGE_MAX_TASK_PER_CHILD.value)
|
|
3233
3256
|
results = {}
|
|
3234
|
-
|
|
3235
|
-
|
|
3236
|
-
|
|
3237
|
-
|
|
3238
|
-
|
|
3239
|
-
|
|
3240
|
-
|
|
3241
|
-
|
|
3242
|
-
results.update(result)
|
|
3243
|
-
pool.join()
|
|
3257
|
+
constants = functools.partial(_read_img_batch_from_video_helper,
|
|
3258
|
+
video_path=video_path,
|
|
3259
|
+
greyscale=greyscale,
|
|
3260
|
+
black_and_white=black_and_white,
|
|
3261
|
+
clahe=clahe,
|
|
3262
|
+
verbose=verbose)
|
|
3263
|
+
for cnt, result in enumerate(pool.imap(constants, frm_lst, chunksize=1)):
|
|
3264
|
+
results.update(result)
|
|
3244
3265
|
pool.close()
|
|
3245
|
-
|
|
3266
|
+
pool.join()
|
|
3267
|
+
pool.terminate()
|
|
3268
|
+
timer.stop_timer()
|
|
3269
|
+
if verbose:
|
|
3270
|
+
print(f'[{get_current_time()}] Read frames {start_frm}-{end_frm} (video: {video_meta_data["video_name"]}, elapsed time: {timer.elapsed_time_str}s)')
|
|
3246
3271
|
return results
|
|
3247
3272
|
|
|
3248
3273
|
def read_yolo_bp_names_file(file_path: Union[str, os.PathLike]) -> Tuple[str]:
|
|
@@ -9,10 +9,12 @@ import numpy as np
|
|
|
9
9
|
from simba.utils.checks import (check_file_exist_and_readable,
|
|
10
10
|
check_if_dir_exists, check_if_valid_rgb_tuple,
|
|
11
11
|
check_int, check_valid_array,
|
|
12
|
-
check_valid_boolean,
|
|
12
|
+
check_valid_boolean, check_valid_cpu_pool,
|
|
13
|
+
check_valid_tuple)
|
|
13
14
|
from simba.utils.data import (align_target_warpaffine_vectors,
|
|
14
15
|
center_rotation_warpaffine_vectors,
|
|
15
|
-
egocentrically_align_pose,
|
|
16
|
+
egocentrically_align_pose, get_cpu_pool,
|
|
17
|
+
terminate_cpu_pool)
|
|
16
18
|
from simba.utils.enums import Defaults, Formats
|
|
17
19
|
from simba.utils.printing import SimbaTimer, stdout_success
|
|
18
20
|
from simba.utils.read_write import (concatenate_videos_in_folder,
|
|
@@ -114,7 +116,8 @@ class EgocentricVideoRotator():
|
|
|
114
116
|
fill_clr: Tuple[int, int, int] = (0, 0, 0),
|
|
115
117
|
core_cnt: int = -1,
|
|
116
118
|
save_path: Optional[Union[str, os.PathLike]] = None,
|
|
117
|
-
gpu: Optional[bool] = True
|
|
119
|
+
gpu: Optional[bool] = True,
|
|
120
|
+
pool: bool = None):
|
|
118
121
|
|
|
119
122
|
check_file_exist_and_readable(file_path=video_path)
|
|
120
123
|
self.video_meta_data = get_video_meta_data(video_path=video_path)
|
|
@@ -125,10 +128,14 @@ class EgocentricVideoRotator():
|
|
|
125
128
|
check_valid_boolean(value=[verbose], source=f'{self.__class__.__name__} verbose')
|
|
126
129
|
check_if_valid_rgb_tuple(data=fill_clr)
|
|
127
130
|
check_int(name=f'{self.__class__.__name__} core_cnt', value=core_cnt, min_value=-1, unaccepted_vals=[0])
|
|
128
|
-
if core_cnt > find_core_cnt()[0] or core_cnt == -1:
|
|
129
|
-
|
|
131
|
+
if core_cnt > find_core_cnt()[0] or core_cnt == -1: self.core_cnt = find_core_cnt()[0]
|
|
132
|
+
else: self.core_cnt = core_cnt
|
|
133
|
+
if pool is not None:
|
|
134
|
+
check_valid_cpu_pool(value=pool, source=self.__class__.__name__, max_cores=find_core_cnt()[0], min_cores=2, raise_error=True)
|
|
135
|
+
self.pool_termination_flag = True
|
|
130
136
|
else:
|
|
131
|
-
self.
|
|
137
|
+
self.pool_termination_flag = False
|
|
138
|
+
self.pool = get_cpu_pool(core_cnt=self.core_cnt, source=self.__class__.__name__) if pool is None else pool
|
|
132
139
|
video_dir, self.video_name, _ = get_fn_ext(filepath=video_path)
|
|
133
140
|
if save_path is not None:
|
|
134
141
|
self.save_dir = os.path.dirname(save_path)
|
|
@@ -151,37 +158,35 @@ class EgocentricVideoRotator():
|
|
|
151
158
|
frm_list = np.arange(0, self.video_meta_data['frame_count'])
|
|
152
159
|
frm_list = np.array_split(frm_list, self.core_cnt)
|
|
153
160
|
frm_list = [(cnt, x) for cnt, x in enumerate(frm_list)]
|
|
154
|
-
if self.verbose:
|
|
155
|
-
|
|
156
|
-
|
|
157
|
-
|
|
158
|
-
|
|
159
|
-
|
|
160
|
-
|
|
161
|
-
|
|
162
|
-
|
|
163
|
-
|
|
164
|
-
|
|
165
|
-
|
|
166
|
-
|
|
167
|
-
|
|
168
|
-
|
|
169
|
-
print(f"Rotate batch {result}/{self.core_cnt} complete...")
|
|
170
|
-
terminate_cpu_pool(pool=pool, force=False)
|
|
161
|
+
if self.verbose: print(f"Creating rotated video {self.video_name}, multiprocessing (chunksize: {1}, cores: {self.core_cnt})...")
|
|
162
|
+
|
|
163
|
+
constants = functools.partial(egocentric_video_aligner,
|
|
164
|
+
temp_dir=temp_dir,
|
|
165
|
+
video_name=self.video_name,
|
|
166
|
+
video_path=self.video_path,
|
|
167
|
+
centers=self.centers,
|
|
168
|
+
rotation_vectors=self.rotation_vectors,
|
|
169
|
+
target=self.anchor_loc,
|
|
170
|
+
verbose=self.verbose,
|
|
171
|
+
fill_clr=self.fill_clr,
|
|
172
|
+
gpu=self.gpu)
|
|
173
|
+
for cnt, result in enumerate(self.pool.imap(constants, frm_list, chunksize=1)):
|
|
174
|
+
if self.verbose: print(f"Rotate batch {result}/{self.core_cnt} complete...")
|
|
175
|
+
if self.pool_termination_flag: terminate_cpu_pool(pool=self.pool, force=False)
|
|
171
176
|
concatenate_videos_in_folder(in_folder=temp_dir, save_path=self.save_path, remove_splits=True, gpu=self.gpu, verbose=self.verbose)
|
|
172
177
|
video_timer.stop_timer()
|
|
173
178
|
stdout_success(msg=f"Egocentric rotation video {self.save_path} complete", elapsed_time=video_timer.elapsed_time_str, source=self.__class__.__name__)
|
|
174
179
|
|
|
175
|
-
if __name__ == "__main__":
|
|
176
|
-
|
|
177
|
-
|
|
178
|
-
|
|
179
|
-
|
|
180
|
-
|
|
181
|
-
|
|
182
|
-
|
|
183
|
-
|
|
184
|
-
|
|
185
|
-
|
|
186
|
-
|
|
187
|
-
|
|
180
|
+
# if __name__ == "__main__":
|
|
181
|
+
# DATA_PATH = r"C:\Users\sroni\OneDrive\Desktop\desktop\rotate_ex\data\501_MA142_Gi_Saline_0513.csv"
|
|
182
|
+
# VIDEO_PATH = r"C:\Users\sroni\OneDrive\Desktop\desktop\rotate_ex\videos\501_MA142_Gi_Saline_0513.mp4"
|
|
183
|
+
# SAVE_PATH = r"C:\Users\sroni\OneDrive\Desktop\desktop\rotate_ex\videos\501_MA142_Gi_Saline_0513_rotated.mp4"
|
|
184
|
+
# ANCHOR_LOC = np.array([250, 250])
|
|
185
|
+
#
|
|
186
|
+
# df = read_df(file_path=DATA_PATH, file_type='csv')
|
|
187
|
+
# bp_cols = [x for x in df.columns if not x.endswith('_p')]
|
|
188
|
+
# data = df[bp_cols].values.reshape(len(df), int(len(bp_cols)/2), 2).astype(np.int32)
|
|
189
|
+
#
|
|
190
|
+
# _, centers, rotation_vectors = egocentrically_align_pose(data=data, anchor_1_idx=5, anchor_2_idx=2, anchor_location=ANCHOR_LOC, direction=0)
|
|
191
|
+
# rotater = EgocentricVideoRotator(video_path=VIDEO_PATH, centers=centers, rotation_vectors=rotation_vectors, anchor_location=(400, 100), save_path=SAVE_PATH, verbose=True, core_cnt=16)
|
|
192
|
+
# rotater.run()
|