siibra 1.0.1a0__py3-none-any.whl → 1.0.1a1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of siibra might be problematic. Click here for more details.
- siibra/VERSION +1 -1
- siibra/__init__.py +4 -4
- siibra/commons.py +8 -7
- siibra/configuration/__init__.py +1 -1
- siibra/configuration/configuration.py +1 -1
- siibra/configuration/factory.py +1 -1
- siibra/core/__init__.py +1 -1
- siibra/core/assignment.py +1 -1
- siibra/core/atlas.py +1 -1
- siibra/core/concept.py +3 -3
- siibra/core/parcellation.py +6 -6
- siibra/core/region.py +59 -49
- siibra/core/space.py +1 -1
- siibra/core/structure.py +2 -2
- siibra/exceptions.py +6 -2
- siibra/experimental/__init__.py +1 -1
- siibra/experimental/contour.py +2 -2
- siibra/experimental/cortical_profile_sampler.py +1 -1
- siibra/experimental/patch.py +1 -1
- siibra/experimental/plane3d.py +4 -4
- siibra/explorer/__init__.py +1 -1
- siibra/explorer/url.py +2 -2
- siibra/explorer/util.py +1 -1
- siibra/features/__init__.py +1 -1
- siibra/features/anchor.py +2 -2
- siibra/features/connectivity/__init__.py +1 -1
- siibra/features/connectivity/functional_connectivity.py +1 -1
- siibra/features/connectivity/regional_connectivity.py +2 -2
- siibra/features/connectivity/streamline_counts.py +1 -1
- siibra/features/connectivity/streamline_lengths.py +1 -1
- siibra/features/connectivity/tracing_connectivity.py +1 -1
- siibra/features/dataset/__init__.py +1 -1
- siibra/features/dataset/ebrains.py +1 -1
- siibra/features/feature.py +10 -10
- siibra/features/image/__init__.py +1 -1
- siibra/features/image/image.py +2 -2
- siibra/features/image/sections.py +1 -1
- siibra/features/image/volume_of_interest.py +1 -1
- siibra/features/tabular/__init__.py +1 -1
- siibra/features/tabular/bigbrain_intensity_profile.py +1 -1
- siibra/features/tabular/cell_density_profile.py +2 -2
- siibra/features/tabular/cortical_profile.py +3 -3
- siibra/features/tabular/gene_expression.py +1 -1
- siibra/features/tabular/layerwise_bigbrain_intensities.py +1 -1
- siibra/features/tabular/layerwise_cell_density.py +1 -1
- siibra/features/tabular/receptor_density_fingerprint.py +13 -10
- siibra/features/tabular/receptor_density_profile.py +1 -1
- siibra/features/tabular/regional_timeseries_activity.py +2 -2
- siibra/features/tabular/tabular.py +7 -5
- siibra/livequeries/__init__.py +1 -1
- siibra/livequeries/allen.py +3 -3
- siibra/livequeries/bigbrain.py +15 -6
- siibra/livequeries/ebrains.py +1 -1
- siibra/livequeries/query.py +2 -2
- siibra/locations/__init__.py +2 -2
- siibra/locations/boundingbox.py +3 -7
- siibra/locations/location.py +1 -1
- siibra/locations/point.py +3 -3
- siibra/locations/pointcloud.py +9 -14
- siibra/retrieval/__init__.py +1 -1
- siibra/retrieval/cache.py +1 -1
- siibra/retrieval/datasets.py +4 -4
- siibra/retrieval/exceptions/__init__.py +1 -1
- siibra/retrieval/repositories.py +4 -4
- siibra/retrieval/requests.py +6 -6
- siibra/vocabularies/__init__.py +1 -1
- siibra/volumes/__init__.py +1 -1
- siibra/volumes/parcellationmap.py +31 -10
- siibra/volumes/providers/__init__.py +1 -1
- siibra/volumes/providers/freesurfer.py +3 -3
- siibra/volumes/providers/gifti.py +1 -1
- siibra/volumes/providers/neuroglancer.py +6 -6
- siibra/volumes/providers/nifti.py +1 -1
- siibra/volumes/providers/provider.py +1 -1
- siibra/volumes/sparsemap.py +1 -1
- siibra/volumes/volume.py +12 -12
- {siibra-1.0.1a0.dist-info → siibra-1.0.1a1.dist-info}/METADATA +12 -3
- siibra-1.0.1a1.dist-info/RECORD +84 -0
- {siibra-1.0.1a0.dist-info → siibra-1.0.1a1.dist-info}/WHEEL +1 -1
- siibra-1.0.1a0.dist-info/RECORD +0 -84
- {siibra-1.0.1a0.dist-info → siibra-1.0.1a1.dist-info}/LICENSE +0 -0
- {siibra-1.0.1a0.dist-info → siibra-1.0.1a1.dist-info}/top_level.txt +0 -0
siibra/retrieval/requests.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
# Copyright 2018-
|
|
1
|
+
# Copyright 2018-2025
|
|
2
2
|
# Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH
|
|
3
3
|
|
|
4
4
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
@@ -94,8 +94,8 @@ DECODERS = {
|
|
|
94
94
|
def find_suitiable_decoder(url: str) -> Callable:
|
|
95
95
|
"""
|
|
96
96
|
By supplying a url or a filename, obtain a suitable decoder function
|
|
97
|
-
for siibra to digest based on
|
|
98
|
-
gzip
|
|
97
|
+
for siibra to digest based on predefined DECODERS. An extra layer of
|
|
98
|
+
gzip decompressor automatically added for gzipped files.
|
|
99
99
|
|
|
100
100
|
Parameters
|
|
101
101
|
----------
|
|
@@ -193,7 +193,7 @@ class HttpRequest:
|
|
|
193
193
|
"""
|
|
194
194
|
Populates the file cache with the data from http if required.
|
|
195
195
|
noop if 1/ data is already cached and 2/ refresh flag not set
|
|
196
|
-
The caller should load the cachefile after _retrieve
|
|
196
|
+
The caller should load the cachefile after _retrieve successfully executes
|
|
197
197
|
"""
|
|
198
198
|
if self.cached and not self.refresh:
|
|
199
199
|
return
|
|
@@ -457,9 +457,9 @@ class EbrainsRequest(HttpRequest):
|
|
|
457
457
|
|
|
458
458
|
if resp.status_code == 200:
|
|
459
459
|
json_resp = resp.json()
|
|
460
|
-
logger.debug("Device flow
|
|
460
|
+
logger.debug("Device flow successful:", json_resp)
|
|
461
461
|
cls._KG_API_TOKEN = json_resp.get("access_token")
|
|
462
|
-
print("ebrains token
|
|
462
|
+
print("ebrains token successfully set.")
|
|
463
463
|
break
|
|
464
464
|
|
|
465
465
|
if resp.status_code == 400:
|
siibra/vocabularies/__init__.py
CHANGED
siibra/volumes/__init__.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
# Copyright 2018-
|
|
1
|
+
# Copyright 2018-2025
|
|
2
2
|
# Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH
|
|
3
3
|
|
|
4
4
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
@@ -503,7 +503,7 @@ class Map(concept.AtlasConcept, configuration_folder="maps"):
|
|
|
503
503
|
taking the voxelwise maximum across the mapped volumes and fragments,
|
|
504
504
|
and re-labelling regions sequentially.
|
|
505
505
|
|
|
506
|
-
|
|
506
|
+
Parameters
|
|
507
507
|
----------
|
|
508
508
|
**kwargs: Takes the fetch arguments of its space's template.
|
|
509
509
|
|
|
@@ -690,7 +690,7 @@ class Map(concept.AtlasConcept, configuration_folder="maps"):
|
|
|
690
690
|
name=f"Custom colorization of {self}"
|
|
691
691
|
)
|
|
692
692
|
|
|
693
|
-
def get_colormap(self, region_specs: Iterable = None):
|
|
693
|
+
def get_colormap(self, region_specs: Iterable = None, *, allow_random_colors: bool = False):
|
|
694
694
|
"""
|
|
695
695
|
Generate a matplotlib colormap from known rgb values of label indices.
|
|
696
696
|
|
|
@@ -698,13 +698,23 @@ class Map(concept.AtlasConcept, configuration_folder="maps"):
|
|
|
698
698
|
----------
|
|
699
699
|
region_specs: iterable(regions), optional
|
|
700
700
|
Optional parameter to only color the desired regions.
|
|
701
|
+
allow_random_colors: bool , optional
|
|
701
702
|
|
|
702
703
|
Returns
|
|
703
704
|
-------
|
|
704
705
|
ListedColormap
|
|
705
706
|
"""
|
|
706
|
-
|
|
707
|
-
|
|
707
|
+
try:
|
|
708
|
+
from matplotlib.colors import ListedColormap
|
|
709
|
+
except ImportError as e:
|
|
710
|
+
logger.error(
|
|
711
|
+
"matplotlib not available. Please install matplotlib to create a matplotlib colormap."
|
|
712
|
+
)
|
|
713
|
+
raise e
|
|
714
|
+
if allow_random_colors:
|
|
715
|
+
seed = len(self.regions)
|
|
716
|
+
np.random.seed(seed)
|
|
717
|
+
logger.info(f"Random colors are allowed for regions without preconfgirued colors. Random seee: {seed}.")
|
|
708
718
|
|
|
709
719
|
colors = {}
|
|
710
720
|
if region_specs is not None:
|
|
@@ -725,14 +735,25 @@ class Map(concept.AtlasConcept, configuration_folder="maps"):
|
|
|
725
735
|
region = self.get_region(index=index)
|
|
726
736
|
if region.rgb is not None:
|
|
727
737
|
colors[index.label] = region.rgb
|
|
738
|
+
elif allow_random_colors:
|
|
739
|
+
random_clr = [np.random.randint(0, 255) for r in range(3)]
|
|
740
|
+
while random_clr in list(colors.values()):
|
|
741
|
+
random_clr = [np.random.randint(0, 255) for r in range(3)]
|
|
742
|
+
colors[index.label] = random_clr
|
|
743
|
+
|
|
744
|
+
if len(colors) == 0:
|
|
745
|
+
raise exceptions.NoPredifinedColormapException(
|
|
746
|
+
f"There is no predefined/preconfigured colormap for '{self}'."
|
|
747
|
+
"Set `allow_random_colors=True` to a colormap with random values"
|
|
748
|
+
)
|
|
728
749
|
|
|
729
|
-
|
|
750
|
+
palette = np.array(
|
|
730
751
|
[
|
|
731
752
|
list(colors[i]) + [1] if i in colors else [0, 0, 0, 0]
|
|
732
753
|
for i in range(max(colors.keys()) + 1)
|
|
733
754
|
]
|
|
734
755
|
) / [255, 255, 255, 1]
|
|
735
|
-
return ListedColormap(
|
|
756
|
+
return ListedColormap(palette)
|
|
736
757
|
|
|
737
758
|
def sample_locations(self, regionspec, numpoints: int):
|
|
738
759
|
""" Sample 3D locations inside a given region.
|
|
@@ -750,7 +771,7 @@ class Map(concept.AtlasConcept, configuration_folder="maps"):
|
|
|
750
771
|
Returns
|
|
751
772
|
-------
|
|
752
773
|
PointCloud
|
|
753
|
-
Sample points in
|
|
774
|
+
Sample points in physical coordinates corresponding to this
|
|
754
775
|
parcellationmap
|
|
755
776
|
"""
|
|
756
777
|
index = self.get_index(regionspec)
|
|
@@ -923,7 +944,7 @@ class Map(concept.AtlasConcept, configuration_folder="maps"):
|
|
|
923
944
|
if len(assignments) == 0:
|
|
924
945
|
return pd.DataFrame(columns=columns)
|
|
925
946
|
# determine the unique set of observed indices in order to do region lookups
|
|
926
|
-
# only once for each map index
|
|
947
|
+
# only once for each map index occurring in the point list
|
|
927
948
|
labelled = self.is_labelled # avoid calling this in a loop
|
|
928
949
|
observed_indices = { # unique set of observed map indices. NOTE: len(observed_indices) << len(assignments)
|
|
929
950
|
(
|
|
@@ -1032,7 +1053,7 @@ class Map(concept.AtlasConcept, configuration_folder="maps"):
|
|
|
1032
1053
|
assignments.append(
|
|
1033
1054
|
MapAssignment(
|
|
1034
1055
|
input_structure=pointindex,
|
|
1035
|
-
centroid=tuple(
|
|
1056
|
+
centroid=tuple(position),
|
|
1036
1057
|
volume=vol,
|
|
1037
1058
|
fragment=frag,
|
|
1038
1059
|
map_value=value
|
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
# Copyright 2018-
|
|
1
|
+
# Copyright 2018-2025
|
|
2
2
|
# Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH
|
|
3
3
|
|
|
4
4
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
@@ -54,7 +54,7 @@ class FreesurferAnnot(_provider.VolumeProvider, srctype="freesurfer-annot"):
|
|
|
54
54
|
frag_labels[selected_label] = 1
|
|
55
55
|
frag_labels[~selected_label] = 0
|
|
56
56
|
else:
|
|
57
|
-
frag_labels[frag_labels == -1] = 0 # annot files store
|
|
57
|
+
frag_labels[frag_labels == -1] = 0 # annot files store background as -1 while siibra uses 0
|
|
58
58
|
vertex_labels.append(frag_labels)
|
|
59
59
|
|
|
60
60
|
return {"labels": np.hstack(vertex_labels)}
|
|
@@ -98,7 +98,7 @@ class ZippedFreesurferAnnot(_provider.VolumeProvider, srctype="zip/freesurfer-an
|
|
|
98
98
|
frag_labels[selected_label] = 1
|
|
99
99
|
frag_labels[~selected_label] = 0
|
|
100
100
|
else:
|
|
101
|
-
frag_labels[frag_labels == -1] = 0 # annot files store
|
|
101
|
+
frag_labels[frag_labels == -1] = 0 # annot files store background as -1 while siibra uses 0
|
|
102
102
|
vertex_labels.append(frag_labels)
|
|
103
103
|
|
|
104
104
|
return {"labels": np.hstack(vertex_labels)}
|
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
# Copyright 2018-
|
|
1
|
+
# Copyright 2018-2025
|
|
2
2
|
# Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH
|
|
3
3
|
|
|
4
4
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
@@ -52,7 +52,7 @@ def shift_ng_transfrom(
|
|
|
52
52
|
Parameters
|
|
53
53
|
----------
|
|
54
54
|
transform_nm: np.ndarray
|
|
55
|
-
Transform array created for
|
|
55
|
+
Transform array created for displaying an image correctly from
|
|
56
56
|
neuroglancer precomputed format in neuroglancer viewer.
|
|
57
57
|
max_resolution_nm: np.ndarray
|
|
58
58
|
The voxel resolution of the highest level of resolution.
|
|
@@ -174,7 +174,7 @@ class NeuroglancerProvider(_provider.VolumeProvider, srctype="neuroglancer/preco
|
|
|
174
174
|
Parameters
|
|
175
175
|
----------
|
|
176
176
|
fetch_kwargs:
|
|
177
|
-
key word arguments that are used for
|
|
177
|
+
key word arguments that are used for fetching volumes,
|
|
178
178
|
such as voi or resolution_mm.
|
|
179
179
|
"""
|
|
180
180
|
bbox = None
|
|
@@ -422,7 +422,7 @@ class NeuroglancerScale:
|
|
|
422
422
|
return self.res_nm / 1e6
|
|
423
423
|
|
|
424
424
|
def resolves(self, resolution_mm):
|
|
425
|
-
"""Test
|
|
425
|
+
"""Test whether the resolution of this scale is sufficient to provide the given resolution."""
|
|
426
426
|
return all(r / 1e6 <= resolution_mm for r in self.res_nm)
|
|
427
427
|
|
|
428
428
|
def __lt__(self, other):
|
|
@@ -594,7 +594,7 @@ class NeuroglancerMesh(_provider.VolumeProvider, srctype="neuroglancer/precompme
|
|
|
594
594
|
elif isinstance(resource, dict):
|
|
595
595
|
self._meshes = {n: self._fragmentinfo(u) for n, u in resource.items()}
|
|
596
596
|
else:
|
|
597
|
-
raise ValueError(f"Resource
|
|
597
|
+
raise ValueError(f"Resource specification not understood for {self.__class__.__name__}: {resource}")
|
|
598
598
|
|
|
599
599
|
@property
|
|
600
600
|
def _url(self) -> Union[str, Dict[str, str]]:
|
|
@@ -635,7 +635,7 @@ class NeuroglancerMesh(_provider.VolumeProvider, srctype="neuroglancer/precompme
|
|
|
635
635
|
result[name] = (f"{spec['url']}/{mesh_key}/{fragment_names[0]}", transform)
|
|
636
636
|
else:
|
|
637
637
|
# only one mesh was configures, so we might still
|
|
638
|
-
# see
|
|
638
|
+
# see multiple fragments under the mesh url
|
|
639
639
|
for fragment_name in fragment_names:
|
|
640
640
|
result[fragment_name] = (f"{spec['url']}/{mesh_key}/{fragment_name}", transform)
|
|
641
641
|
|
siibra/volumes/sparsemap.py
CHANGED
siibra/volumes/volume.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
# Copyright 2018-
|
|
1
|
+
# Copyright 2018-2025
|
|
2
2
|
# Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH
|
|
3
3
|
|
|
4
4
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
@@ -191,7 +191,7 @@ class Volume(structure.BrainStructure):
|
|
|
191
191
|
----
|
|
192
192
|
To use it, clip must be True.
|
|
193
193
|
fetch_kwargs:
|
|
194
|
-
key word arguments that are used for
|
|
194
|
+
key word arguments that are used for fetching volumes,
|
|
195
195
|
such as voi or resolution_mm. Currently, only possible for
|
|
196
196
|
Neuroglancer volumes except for `format`.
|
|
197
197
|
|
|
@@ -206,7 +206,7 @@ class Volume(structure.BrainStructure):
|
|
|
206
206
|
if not self.provides_image:
|
|
207
207
|
raise NotImplementedError("Bounding box calculation of meshes is not implemented yet.")
|
|
208
208
|
|
|
209
|
-
if clip: #
|
|
209
|
+
if clip: # clipping requires fetching the image
|
|
210
210
|
img = self.fetch(**fetch_kwargs)
|
|
211
211
|
assert isinstance(img, Nifti1Image)
|
|
212
212
|
return boundingbox.from_array(
|
|
@@ -214,7 +214,7 @@ class Volume(structure.BrainStructure):
|
|
|
214
214
|
background=background,
|
|
215
215
|
).transform(img.affine, space=self.space)
|
|
216
216
|
|
|
217
|
-
# if clipping is not required, providers
|
|
217
|
+
# if clipping is not required, providers might have methods of creating
|
|
218
218
|
# bounding boxes without fetching the image
|
|
219
219
|
fmt = fetch_kwargs.get("format")
|
|
220
220
|
if (fmt is not None) and (fmt not in self.formats):
|
|
@@ -365,7 +365,7 @@ class Volume(structure.BrainStructure):
|
|
|
365
365
|
this map.
|
|
366
366
|
|
|
367
367
|
|
|
368
|
-
|
|
368
|
+
Parameters
|
|
369
369
|
----------
|
|
370
370
|
points: PointCloud
|
|
371
371
|
keep_labels: bool
|
|
@@ -407,7 +407,7 @@ class Volume(structure.BrainStructure):
|
|
|
407
407
|
return self.get_boundingbox(clip=True, background=0.0, **fetch_kwargs).intersection(other)
|
|
408
408
|
elif isinstance(other, Volume):
|
|
409
409
|
if self.space != other.space:
|
|
410
|
-
raise NotImplementedError("Cannot intersect volumes from different spaces. Try comparing their
|
|
410
|
+
raise NotImplementedError("Cannot intersect volumes from different spaces. Try comparing their bounding boxes.")
|
|
411
411
|
format = fetch_kwargs.pop('format', 'image')
|
|
412
412
|
v1 = self.fetch(format=format, **fetch_kwargs)
|
|
413
413
|
v2 = other.fetch(format=format, **fetch_kwargs)
|
|
@@ -461,7 +461,7 @@ class Volume(structure.BrainStructure):
|
|
|
461
461
|
format = 'neuroglancer/precomputed'
|
|
462
462
|
|
|
463
463
|
if format is None:
|
|
464
|
-
#
|
|
464
|
+
# preserve fetch order in SUPPORTED_FORMATS
|
|
465
465
|
possible_formats = [f for f in self.SUPPORTED_FORMATS if f in self.formats]
|
|
466
466
|
elif format in self._FORMAT_LOOKUP: # allow use of aliases
|
|
467
467
|
possible_formats = [f for f in self._FORMAT_LOOKUP[format] if f in self.formats]
|
|
@@ -519,7 +519,7 @@ class Volume(structure.BrainStructure):
|
|
|
519
519
|
break
|
|
520
520
|
else:
|
|
521
521
|
break
|
|
522
|
-
#
|
|
522
|
+
# update the cache if fetch is successful
|
|
523
523
|
if result is not None:
|
|
524
524
|
self._FETCH_CACHE[fetch_hash] = result
|
|
525
525
|
while len(self._FETCH_CACHE) >= self._FETCH_CACHE_MAX_ENTRIES:
|
|
@@ -539,7 +539,7 @@ class Volume(structure.BrainStructure):
|
|
|
539
539
|
"""
|
|
540
540
|
img = self.fetch(**fetch_kwargs)
|
|
541
541
|
assert isinstance(img, Nifti1Image), NotImplementedError(
|
|
542
|
-
f"Connected components for type {type(img)} is not yet
|
|
542
|
+
f"Connected components for type {type(img)} is not yet implemented."
|
|
543
543
|
)
|
|
544
544
|
for label, component in connected_components(np.asanyarray(img.dataobj)):
|
|
545
545
|
yield (
|
|
@@ -569,7 +569,7 @@ class Volume(structure.BrainStructure):
|
|
|
569
569
|
def draw_samples(self, N: int, sample_size: int = 100, e: float = 1, sigma_mm=None, invert=False, **kwargs):
|
|
570
570
|
"""
|
|
571
571
|
Draw samples from the volume, by interpreting its values as an
|
|
572
|
-
unnormalized empirical probability
|
|
572
|
+
unnormalized empirical probability distributions.
|
|
573
573
|
Any keyword arguments are passed over to fetch()
|
|
574
574
|
"""
|
|
575
575
|
if not self.provides_image:
|
|
@@ -814,7 +814,7 @@ def from_pointcloud(
|
|
|
814
814
|
sigmas = np.array(points.sigma_mm)[selection]
|
|
815
815
|
bandwidth = np.mean(sigmas)
|
|
816
816
|
if len(np.unique(sigmas)) > 1:
|
|
817
|
-
logger.warning(f"KDE of pointcloud uses average
|
|
817
|
+
logger.warning(f"KDE of pointcloud uses average bandwidth {bandwidth} instead of the points' individual sigmas.")
|
|
818
818
|
|
|
819
819
|
filtered_arr = filters.gaussian(voxelcount_img, bandwidth)
|
|
820
820
|
if normalize:
|
|
@@ -841,7 +841,7 @@ def merge(volumes: List[Volume], labels: List[int] = [], **fetch_kwargs) -> Volu
|
|
|
841
841
|
----------
|
|
842
842
|
volumes : List[Volume]
|
|
843
843
|
labels : List[int], optional
|
|
844
|
-
Supply new labels to replace
|
|
844
|
+
Supply new labels to replace existing values per volume.
|
|
845
845
|
|
|
846
846
|
Returns
|
|
847
847
|
-------
|
|
@@ -1,6 +1,6 @@
|
|
|
1
|
-
Metadata-Version: 2.
|
|
1
|
+
Metadata-Version: 2.2
|
|
2
2
|
Name: siibra
|
|
3
|
-
Version: 1.0.
|
|
3
|
+
Version: 1.0.1a1
|
|
4
4
|
Summary: siibra - Software interfaces for interacting with brain atlases
|
|
5
5
|
Home-page: https://github.com/FZJ-INM1-BDA/siibra-python
|
|
6
6
|
Author: Big Data Analytics Group, Forschungszentrum Juelich, Institute of Neuroscience and Medicine (INM-1)
|
|
@@ -27,6 +27,15 @@ Requires-Dist: nilearn
|
|
|
27
27
|
Requires-Dist: typing-extensions; python_version < "3.8"
|
|
28
28
|
Requires-Dist: filelock
|
|
29
29
|
Requires-Dist: ebrains-drive>=0.6.0
|
|
30
|
+
Dynamic: author
|
|
31
|
+
Dynamic: author-email
|
|
32
|
+
Dynamic: classifier
|
|
33
|
+
Dynamic: description
|
|
34
|
+
Dynamic: description-content-type
|
|
35
|
+
Dynamic: home-page
|
|
36
|
+
Dynamic: requires-dist
|
|
37
|
+
Dynamic: requires-python
|
|
38
|
+
Dynamic: summary
|
|
30
39
|
|
|
31
40
|
|License| |PyPI version| |doi| |Python versions| |Documentation Status|
|
|
32
41
|
|
|
@@ -34,7 +43,7 @@ Requires-Dist: ebrains-drive>=0.6.0
|
|
|
34
43
|
siibra - Software interface for interacting with brain atlases
|
|
35
44
|
==============================================================
|
|
36
45
|
|
|
37
|
-
Copyright
|
|
46
|
+
Copyright 2018-2024, Forschungszentrum Jülich GmbH
|
|
38
47
|
|
|
39
48
|
*Authors: Big Data Analytics Group, Institute of Neuroscience and
|
|
40
49
|
Medicine (INM-1), Forschungszentrum Jülich GmbH*
|
|
@@ -0,0 +1,84 @@
|
|
|
1
|
+
siibra/VERSION,sha256=9ScdUIV7rZMdtIHh1xiZnvlgNqft2-RuTXdHqzbCywk,14
|
|
2
|
+
siibra/__init__.py,sha256=I5Sc9l00TyrHE9M3zqYa-vuTTku8XrT1txyfdwmoJdo,4716
|
|
3
|
+
siibra/commons.py,sha256=oZNGMp1O25S71Bn82jPZbI_a90HYJZqyv9Ad2kkq86g,27644
|
|
4
|
+
siibra/exceptions.py,sha256=6MlXOadwXcCsceOE4lmy4fLJyAaBCCVvJF6BZlMYjU8,1371
|
|
5
|
+
siibra/configuration/__init__.py,sha256=ArqQ_B8C_O61KA4Fk3ho8ksckbjLu-COOlPGiXyf8LE,752
|
|
6
|
+
siibra/configuration/configuration.py,sha256=3ZI8ZksdpzGqGqYZq2Dj5y_jwpVaiXoWeDl4P2MGIl8,7263
|
|
7
|
+
siibra/configuration/factory.py,sha256=l94pNXJGxLBJvrwGjLi09XZ8A9GEU4ipRaH0igUv7Zg,22627
|
|
8
|
+
siibra/core/__init__.py,sha256=GFTX-RbJoM_EUSXsBcxl4meHoMMFBQUtqsn-Q_2HPMI,735
|
|
9
|
+
siibra/core/assignment.py,sha256=WfpVaKXK58H4LXxMN1Wm2886h0h_8AeDRQ2wNIi2L70,3819
|
|
10
|
+
siibra/core/atlas.py,sha256=lVQJSmIbwPvrQoXSj9OGz6Nub3FFUCU9PpCEdeFPc0w,8549
|
|
11
|
+
siibra/core/concept.py,sha256=4vDpyYzcqffK2xB4zvELHOd_F6LaenI0sKo52PPGNW0,10889
|
|
12
|
+
siibra/core/parcellation.py,sha256=RV6KVHojom0uXGIgISkVMw5hwKwaqKk5xr6-HnptgRQ,14480
|
|
13
|
+
siibra/core/region.py,sha256=67Obqi4PT68CZzvK6GAtzShxXguhpWRXfjSHfBF13v8,44013
|
|
14
|
+
siibra/core/space.py,sha256=ydOw0LIkX17Q1vjLbTRO_KkAoEqogwR_GadxI6oAqs0,4586
|
|
15
|
+
siibra/core/structure.py,sha256=TC7nKU5phDt0I7uUlXS87Ihy98W0FiEfD3eiIPnrLVg,4498
|
|
16
|
+
siibra/experimental/__init__.py,sha256=6yRLup4NclsScLviwlvNp4Uu4qWQ1ky2H7KS1qd06Q8,791
|
|
17
|
+
siibra/experimental/contour.py,sha256=SoFwpUOZbnW8oVEJgEz5OoHIY-y6Bvga_NZI5IhmXpo,2453
|
|
18
|
+
siibra/experimental/cortical_profile_sampler.py,sha256=JPj40JtWBQMNwJS9KcR_q9Uo98aTH58vgME3bAoHueI,2086
|
|
19
|
+
siibra/experimental/patch.py,sha256=-CJIjvZYoaZUlwjVGxWjrAAVodeJeYklBA010D-iWJs,3809
|
|
20
|
+
siibra/experimental/plane3d.py,sha256=v0KQnXlAAt_D8mSRcsW-oWQwq21Qz3FfRoVZoDfYqMA,10856
|
|
21
|
+
siibra/explorer/__init__.py,sha256=XBAeYm4W3HlbWsKtt8gOwqE_FinIEY7RdA6Rg4Y275A,781
|
|
22
|
+
siibra/explorer/url.py,sha256=ja5i-VkEMYwqhlQ-K5tEfnlYTcgMpPFYJCK7IV0d3Us,7069
|
|
23
|
+
siibra/explorer/util.py,sha256=ul82TQZAULdupr4tJBACdkjlHm2mt8LJ9UpwNWGHYhE,2083
|
|
24
|
+
siibra/features/__init__.py,sha256=FER6DMnkPhXSV1XMZWibZdyBwVhIgWYSUGYMEYEKb9c,3970
|
|
25
|
+
siibra/features/anchor.py,sha256=sptZnJPTbkLAi5TWeY5Q1paDTa8YXI0Om5qztTjwwmI,9131
|
|
26
|
+
siibra/features/feature.py,sha256=bREzxEKP0_7PJdjPhwHMl2X6wgcIq0CbiaNVvz8tq7A,35194
|
|
27
|
+
siibra/features/connectivity/__init__.py,sha256=FkPf0vyrLo3ERxrDbsRHUd7FUgJyajD87NiiXIiXhmY,1161
|
|
28
|
+
siibra/features/connectivity/functional_connectivity.py,sha256=9lQoOXv8lZUnyMduAbWABwDIkQC0QTI8V23yx0NjOBg,2122
|
|
29
|
+
siibra/features/connectivity/regional_connectivity.py,sha256=RHK14xVF2rn4kJBIRHfJaJ42hjUlqndb4B5PTw6qdIo,18286
|
|
30
|
+
siibra/features/connectivity/streamline_counts.py,sha256=JaAYf6-1S8NYhkE4lhshCSY__EQ5BFcL2i_XXdFfgrM,1064
|
|
31
|
+
siibra/features/connectivity/streamline_lengths.py,sha256=QeuoW_ZDVa9dxCguaemj4Cq9CCPB8ur8_alhATto2-w,1067
|
|
32
|
+
siibra/features/connectivity/tracing_connectivity.py,sha256=rkYgD8mOZzDp0STo5djhDqOaEdz-9j5EuLffXE0F01A,1083
|
|
33
|
+
siibra/features/dataset/__init__.py,sha256=qRV_P0335b4LnSMiONRpSC4elGckp0FXmtJz_QQuVLA,748
|
|
34
|
+
siibra/features/dataset/ebrains.py,sha256=2lyRVc4NleLuD_n2fPkRG8tNl7Ab6ZtCCR7evsk8Zng,2544
|
|
35
|
+
siibra/features/image/__init__.py,sha256=KEwWl2tjyC8D9QinIKtswBVJ1_eGyelTA-iBqfSFLis,1013
|
|
36
|
+
siibra/features/image/image.py,sha256=DQWM8giRaJ_XeOrD9CKUYOdASZ8N9oE-ZjTYxlj3We8,3585
|
|
37
|
+
siibra/features/image/sections.py,sha256=XxZ5THbKIuRvCwA8f3COk2AgeWwXaR-Y9h14nNa3M-s,961
|
|
38
|
+
siibra/features/image/volume_of_interest.py,sha256=Nfwagn_eqtc1TVD7VDEcItCR4n6qM5m_AbS2BF77ZIY,2654
|
|
39
|
+
siibra/features/tabular/__init__.py,sha256=HA0LcTLvJG2tnYolu48Rn7vxhVHl1X98Pn-27s1XR7s,1176
|
|
40
|
+
siibra/features/tabular/bigbrain_intensity_profile.py,sha256=aUuLpqVgHwzHG6ZCNUS9G4YbrxnWywaUynatFTXdao4,2708
|
|
41
|
+
siibra/features/tabular/cell_density_profile.py,sha256=8dI7MZaAFwaLRR-xPstDAVi3X6z2E7D-ATNmJ2JyEkw,10819
|
|
42
|
+
siibra/features/tabular/cortical_profile.py,sha256=Sod25RABEUlcC8Ct_r2Ujd6FjGbqhJHp0yOIBRAbYho,12542
|
|
43
|
+
siibra/features/tabular/gene_expression.py,sha256=Gg6dkm8YX2TiR-zxDK8qhfwrvYRHh0Bef5b9sry5jsw,9827
|
|
44
|
+
siibra/features/tabular/layerwise_bigbrain_intensities.py,sha256=8Doy4Mnitm-ODBepS2Nep3D1BeXx3lmmjHb-tJWyjVY,2117
|
|
45
|
+
siibra/features/tabular/layerwise_cell_density.py,sha256=v2TDCCinOc_sOeTZP43zSVx_y8uJ_fbFVQ-XHtEx_ww,3783
|
|
46
|
+
siibra/features/tabular/receptor_density_fingerprint.py,sha256=7Uc9j2QUijy-KeqzL8Tf3nfWz2eAv23Qk-Br_iA7_Mk,7354
|
|
47
|
+
siibra/features/tabular/receptor_density_profile.py,sha256=zKHzHpavxo6ZWpGXiiW99XrP6yrdrhVKJmAKeXYFvIg,3725
|
|
48
|
+
siibra/features/tabular/regional_timeseries_activity.py,sha256=J4sXJHrkLrLm3WaMcaWy3QgkA6-bGN_Jj1HmydjDejo,10027
|
|
49
|
+
siibra/features/tabular/tabular.py,sha256=9qI9UicIRX-9FbA31S-KHuLDm-mPFkAeEfxmAfGTldw,5393
|
|
50
|
+
siibra/livequeries/__init__.py,sha256=hToUNmyFq1UW5CxScHyBB-mSZ7kUK_w1Cvrk1OkZQf0,875
|
|
51
|
+
siibra/livequeries/allen.py,sha256=wOmdS2PaRvK7FbBRNz2AxFAwyS86uw_qAVfwlW80JAo,14811
|
|
52
|
+
siibra/livequeries/bigbrain.py,sha256=-eqNFAe43Lo-Yt_hOIDokU07G7fpwaqUiOrFrR1jpFc,8929
|
|
53
|
+
siibra/livequeries/ebrains.py,sha256=KDLu9SPM35Qo46mOiSgxGUEsP2XzZbcYOAl9P_FwybU,5820
|
|
54
|
+
siibra/livequeries/query.py,sha256=on7f-HSm8aqe8YbQucsvjBCvCo3kDv8I3I8TpDoWK2s,1849
|
|
55
|
+
siibra/locations/__init__.py,sha256=mBwPNip68fu8J9M-1ZOMkQs75HmOad2wjXkJhGgiK-U,3343
|
|
56
|
+
siibra/locations/boundingbox.py,sha256=wlVXVL6CAs7K6rhoe9QuV9zDjtLc146iMd2W6t2StRU,16370
|
|
57
|
+
siibra/locations/location.py,sha256=CVawSj0QuKBHLogPtPGCWxeFSjfFGbGqe6RZf12m3iA,4361
|
|
58
|
+
siibra/locations/point.py,sha256=hutOgQ4QiRrGd-utlZ75ynnzpRFBJcp47UU1rBXcVsg,12863
|
|
59
|
+
siibra/locations/pointcloud.py,sha256=h91luJwN974qakhZyaz7bNNj4POjdX3uDyWOcYxdmqs,12361
|
|
60
|
+
siibra/retrieval/__init__.py,sha256=E-UA8rDQZFGkHmAcmit6siONo7G2mH_Y0xgLlR1RfvY,1062
|
|
61
|
+
siibra/retrieval/cache.py,sha256=rqXjWnMBI5RuxUEtC9QW7scZTArwdOQcM4EZveSX3D0,7832
|
|
62
|
+
siibra/retrieval/datasets.py,sha256=kb9D0QNP3R9emc-ss2jwaVLyrWOt-kSjujf-UNZUhRQ,11031
|
|
63
|
+
siibra/retrieval/repositories.py,sha256=7bfHXjbtnpE8oBj24-fxvQDZddGaH7O3g7CrtmN6_jI,29938
|
|
64
|
+
siibra/retrieval/requests.py,sha256=mSXBPZaUSLuLpvN6WSTZF4ccdlmXFUfHbq7ijmSdxS4,23072
|
|
65
|
+
siibra/retrieval/exceptions/__init__.py,sha256=sOuzPHh2xq1p55T0zAcrSW2B1wfwwYEXBOWIuCjGePE,875
|
|
66
|
+
siibra/vocabularies/__init__.py,sha256=oxI4K9tBuFLo4WgRYmzog5IxOBi5Hyf9iBbkhZPhhoc,1288
|
|
67
|
+
siibra/vocabularies/gene_names.json,sha256=i-gnh753GyZtQfX_dWibNYr_d5ccDPHooOwsdeKUYqE,1647972
|
|
68
|
+
siibra/vocabularies/receptor_symbols.json,sha256=F6DZIArPCBmJV_lWGV-zDpBBH_GOJOZm67LBE4qzMa4,5722
|
|
69
|
+
siibra/vocabularies/region_aliases.json,sha256=T2w1wRlxPNTsPppXn0bzC70tNsb8mOjLsoHuxDSYm2w,8563
|
|
70
|
+
siibra/volumes/__init__.py,sha256=mZ7xrI-MsAXMctff2eFiM3-Dx_vX1PNdfYjgP0mZuN4,935
|
|
71
|
+
siibra/volumes/parcellationmap.py,sha256=opdC2TphSVXWuzFpQMBOtLAYmxlNkQRoELe4KE-oTi4,50847
|
|
72
|
+
siibra/volumes/sparsemap.py,sha256=LjTgqOua2NDgsFSNrC7NC2FwDp2FwPUfJPe_lwsBGUQ,17437
|
|
73
|
+
siibra/volumes/volume.py,sha256=EAAaA2yu8Qu_-YGTy4LKp6Pw1qg6FdWSJc0hiujcr9M,32621
|
|
74
|
+
siibra/volumes/providers/__init__.py,sha256=AHZCjutCqO4mnHxyykVjqxlz85jDqFWcSjsa4ciwc1A,934
|
|
75
|
+
siibra/volumes/providers/freesurfer.py,sha256=zvBExeq34d8JwVqj2_HQ04865XwBqRAz5O4yNbNMsms,4893
|
|
76
|
+
siibra/volumes/providers/gifti.py,sha256=vCuUCO5QzVBGVO-SmRNDYVoT70CXu_s7_p9F-TlEIro,6231
|
|
77
|
+
siibra/volumes/providers/neuroglancer.py,sha256=9uMWCNYvqJxuQd0NVPWmc6aG3sZ3cxnpGra7j9sc7xQ,28716
|
|
78
|
+
siibra/volumes/providers/nifti.py,sha256=jTNrq__phdd-nhQoKFhQU5s6je4p2UuUTMQvAunnPHE,10135
|
|
79
|
+
siibra/volumes/providers/provider.py,sha256=9IkEJCYwUwr-rBpQuW1bGOUOEnlzQLXuA9e6WHKTOyM,3695
|
|
80
|
+
siibra-1.0.1a1.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
|
81
|
+
siibra-1.0.1a1.dist-info/METADATA,sha256=8krNAo5-9sNMyKfhzjseNoUtsF6UhqCsjbFa5FWXpiQ,9081
|
|
82
|
+
siibra-1.0.1a1.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
|
83
|
+
siibra-1.0.1a1.dist-info/top_level.txt,sha256=NF0OSGLL0li2qyC7MaU0iBB5Y9S09_euPpvisD0-8Hg,7
|
|
84
|
+
siibra-1.0.1a1.dist-info/RECORD,,
|
siibra-1.0.1a0.dist-info/RECORD
DELETED
|
@@ -1,84 +0,0 @@
|
|
|
1
|
-
siibra/VERSION,sha256=obkBMWS4uPgy0Q8o6UWN0GqfjWFwM9_DzViNq5cAX98,14
|
|
2
|
-
siibra/__init__.py,sha256=odym0KtWXn55LqBXZDRgXCzSd5daKXrC0D6lSeYi3po,4715
|
|
3
|
-
siibra/commons.py,sha256=L0tEiZycG0GyDo-KxTeEs8abfTZC98VR_xsDRDdWWNQ,27561
|
|
4
|
-
siibra/exceptions.py,sha256=ruU9IGFBqD52mXUryBF41uE6mDV3kabfSAzUunhCWR8,1319
|
|
5
|
-
siibra/configuration/__init__.py,sha256=Kp00hs44rVSU5OPuZ26KFJpd6HXtMocEiLiZihdvav4,752
|
|
6
|
-
siibra/configuration/configuration.py,sha256=um31WGN0Ozl-3v5bUYECkJEJ5GMrEnrJO3_syUXgzFc,7263
|
|
7
|
-
siibra/configuration/factory.py,sha256=8PoPydqc_4csKF8f-E7Un1QnQ0yKDRgYyO1jbVhKeQU,22627
|
|
8
|
-
siibra/core/__init__.py,sha256=907tEZ3HxZSZqqhv0md3Sk8t9iy0-aWtbuo1G1oxN_w,735
|
|
9
|
-
siibra/core/assignment.py,sha256=9g2lLOj_ftuS623ZlVauTTLtJGAvDfE10wknJXJA7m4,3819
|
|
10
|
-
siibra/core/atlas.py,sha256=BNp96YZ3s6f5MrnuEWL8OktFtM528Dj9Zv6e9FbOAyg,8549
|
|
11
|
-
siibra/core/concept.py,sha256=cmWR2PFdWR3pdVa0NSOiPC-EWl0i_WBjyF3JjKt74gc,10889
|
|
12
|
-
siibra/core/parcellation.py,sha256=AF7yODxdhZZymFNzQdaL2qzSDwkgsogPs74e603Zl_Q,14506
|
|
13
|
-
siibra/core/region.py,sha256=6UDx31FmFYtFQJs5Z0fbpQ2yT9MCh4QCCANIa5GxTXQ,43423
|
|
14
|
-
siibra/core/space.py,sha256=0v_7aERZcVNPJmbr_LbeLRkbJj8TGaTrbqnXzr-I5Jg,4586
|
|
15
|
-
siibra/core/structure.py,sha256=eHvCRBZEDjTI8xc2UmSgt26ujgDxHTLai8NoGmeUU64,4497
|
|
16
|
-
siibra/experimental/__init__.py,sha256=s4bEYpMO4Ox-Xlx3FdnRUNKYs0mTHz5Hu4VnfNXpgxU,791
|
|
17
|
-
siibra/experimental/contour.py,sha256=uZOltesITk5t7EbohZtqA8gJRc3UuiqpJdJQhFP1gXo,2454
|
|
18
|
-
siibra/experimental/cortical_profile_sampler.py,sha256=JsX0FCJqvozdhWuayYJ-r3kHNsgSUfA00O9D0X6D7Rg,2086
|
|
19
|
-
siibra/experimental/patch.py,sha256=0VKVU7F7xMBr1hwtL-Z4K-_1XKw88WImPG4fWaiH5bw,3809
|
|
20
|
-
siibra/experimental/plane3d.py,sha256=XgmNemO9peDRDtHE_8joqroGpjCKI5H_vzyIFXDh434,10853
|
|
21
|
-
siibra/explorer/__init__.py,sha256=ZEBJlKs3r5tFWWoKvfrASb1M031FPwSVeysaktUnhbQ,781
|
|
22
|
-
siibra/explorer/url.py,sha256=1UWJyt18gMKTXuixfO8P1Xa5SJDUUagollow67VYT20,7068
|
|
23
|
-
siibra/explorer/util.py,sha256=lAy1pd-ym90H-BZx2X8GMT3qJIsRTgGCz6tW3t1duig,2083
|
|
24
|
-
siibra/features/__init__.py,sha256=NMmDmfrzscV-RHHZMoyjlH_bYfjNhGDX72dQ6-JCYXg,3970
|
|
25
|
-
siibra/features/anchor.py,sha256=FfeMfJxwApFE0iWo2RJj5_XFr0L5gF76V4ZxaPL2VUc,9130
|
|
26
|
-
siibra/features/feature.py,sha256=ls1E7BjRdPOkbtwzU-d01lwTRA_33IlzB44-tL0tg2g,35194
|
|
27
|
-
siibra/features/connectivity/__init__.py,sha256=A7fcXqlAtfFmuymfyOl7A7ecaP8nqIBPFaM76qwh4HA,1161
|
|
28
|
-
siibra/features/connectivity/functional_connectivity.py,sha256=3UiPpHfbYAOBwMn7TI79wy1fR9lWwI3ePMSRVziJONw,2122
|
|
29
|
-
siibra/features/connectivity/regional_connectivity.py,sha256=13uZ-TJBv_J3J-6KuJcKmJMKf7yWy21pzdsyvcWkWXg,18287
|
|
30
|
-
siibra/features/connectivity/streamline_counts.py,sha256=OBOQblhsqnfsvf2kdySRAoWxGsFi4Ulr2PNT9wOu1Ls,1064
|
|
31
|
-
siibra/features/connectivity/streamline_lengths.py,sha256=B9D6Y7szMRCuHRwisAorgTJfkq-1aTNB08H_HVZHpJs,1067
|
|
32
|
-
siibra/features/connectivity/tracing_connectivity.py,sha256=JehDrEEeYl_i-T81AE_AnamlKfzHkZ3nbheRAybFn24,1083
|
|
33
|
-
siibra/features/dataset/__init__.py,sha256=KlHddELER_5IQ-xQ1xx5ExcEtqXWI8gpNvzGlC2on-Y,748
|
|
34
|
-
siibra/features/dataset/ebrains.py,sha256=G3-jWGBMLyJm3X8g8vTVtXN2Kws3JZ7zIEDkO9jwWxc,2544
|
|
35
|
-
siibra/features/image/__init__.py,sha256=HZ5LdR6DzkkkgsftTu314-DAMMLdf6Sfg6ceYVzYjas,1013
|
|
36
|
-
siibra/features/image/image.py,sha256=QtFtXBt4rRkFq6AHeUOaQSCOjgBygIJ7lhz1gjsQ4c4,3585
|
|
37
|
-
siibra/features/image/sections.py,sha256=oQparLp7Nj5dLBvUAs09rgnSgAxH86wN1SMmwkit0S0,961
|
|
38
|
-
siibra/features/image/volume_of_interest.py,sha256=FuYxt-r6YOWN4tLaaZPL3_GAvX_WcZz3jRHxEnWySnQ,2654
|
|
39
|
-
siibra/features/tabular/__init__.py,sha256=sldsgKiwpGOk5PvntIO16lJlWiTy68qVI_pLhepqbdI,1176
|
|
40
|
-
siibra/features/tabular/bigbrain_intensity_profile.py,sha256=noXtsmQjW75epnpfHex0VAbvz7QLwvlkTn_PLSwASIQ,2708
|
|
41
|
-
siibra/features/tabular/cell_density_profile.py,sha256=W1GtrOCacankczxpkz2V3n9zJyf2WCW3W_BpYrEc6yk,10820
|
|
42
|
-
siibra/features/tabular/cortical_profile.py,sha256=I3MFsytAjvi6A2GaMhgXnF9-94LnAScIo_GR-HMEAv0,12540
|
|
43
|
-
siibra/features/tabular/gene_expression.py,sha256=GbXmsdHCz8eFErTLUd6DXhQaeObftrwl9aIEgzlEdXA,9827
|
|
44
|
-
siibra/features/tabular/layerwise_bigbrain_intensities.py,sha256=GIYjX7_Bfs7ywhJBkXd878BZGSiaKUV0BhILr-6D4zc,2117
|
|
45
|
-
siibra/features/tabular/layerwise_cell_density.py,sha256=V8c16KdBACUYFxMYh1T9tdlXs_V67iFAZqlYx7y_4RY,3783
|
|
46
|
-
siibra/features/tabular/receptor_density_fingerprint.py,sha256=GudVpZ2wWF1yGsDFKz4AEU761qA45rItLOwHYpY4Zcs,7299
|
|
47
|
-
siibra/features/tabular/receptor_density_profile.py,sha256=ZYgL-3WxevVFtmEQSbR8Ot24VCMg5xzfXYEPBH1oM6k,3725
|
|
48
|
-
siibra/features/tabular/regional_timeseries_activity.py,sha256=vfoEIu92l3wVdUbdnNqZ5nr9oBuahOrIGS5xhA8cW7s,10026
|
|
49
|
-
siibra/features/tabular/tabular.py,sha256=NoNexdPJ3nhSsztWdWnnIHcX6PakcjEAOV-f9azqa-s,5323
|
|
50
|
-
siibra/livequeries/__init__.py,sha256=yZ2bFYizwF_Z3F9VLNI95IrHcmSO5lqfFML_juifVHs,875
|
|
51
|
-
siibra/livequeries/allen.py,sha256=2jj1gMr9mZFaOfRSf9lPzrcRLAoAMuWjvT_N3_KUkHI,14809
|
|
52
|
-
siibra/livequeries/bigbrain.py,sha256=V7yRQIx6VLIkA9fwW6PfEw7kSkrwp3oE_-WYXe3bjMk,8365
|
|
53
|
-
siibra/livequeries/ebrains.py,sha256=nAIhyPlVeRPNmmMKkGATUSDRoGK7aAg8zOGEKuS-z_w,5820
|
|
54
|
-
siibra/livequeries/query.py,sha256=Yh24vRdcSYBTNx61sMoRCyXyNZ7TX1iqoiJ8fxOJ3V8,1849
|
|
55
|
-
siibra/locations/__init__.py,sha256=q97HYl9mdBWNuQKvgh1Wi0eAz1TlG_dLSIxpyJuHCZo,3342
|
|
56
|
-
siibra/locations/boundingbox.py,sha256=pdLZNyxUD-WvGHNYOvuqZtputCd5tPOxLYTvH6oBBNg,16492
|
|
57
|
-
siibra/locations/location.py,sha256=Taw7oUIFBdXTE8C3b2vbGicPusJlad_KI1wW6iLL324,4361
|
|
58
|
-
siibra/locations/point.py,sha256=wmtH0Isx1-bsk3TfNxXHFcYUmbsQXBt34l8LpFWxhHU,12863
|
|
59
|
-
siibra/locations/pointcloud.py,sha256=61sUvXw5dtKouNKinQNwgGOFd7iwgJLf4D4zYNWo7Js,12474
|
|
60
|
-
siibra/retrieval/__init__.py,sha256=bgoasCN6LFDlKVFCJC0q4kfGMZCsxt_NVCcJ5qy0sIo,1062
|
|
61
|
-
siibra/retrieval/cache.py,sha256=kVB-hYtvQIQmlCozKlYJPaQxgtCKWOS3jB2qqefCVNc,7832
|
|
62
|
-
siibra/retrieval/datasets.py,sha256=Hjai2cSFK1WoMgXp4uMJWBUqlO_APLQ_iDQ__8EpKEI,11031
|
|
63
|
-
siibra/retrieval/repositories.py,sha256=L-JrEuKF6Xq7sEIdJ3iPFQPWaf5CiHMt96X1zi-gOVM,29936
|
|
64
|
-
siibra/retrieval/requests.py,sha256=oup12LGw-MnSc7c3IwlX9Z5TrVXzCCRfGZFLLLR4jAs,23069
|
|
65
|
-
siibra/retrieval/exceptions/__init__.py,sha256=CEY_n-Eh0_EBXYHDPxmIXzO6C_Km0WQFvENAMvRXmYg,875
|
|
66
|
-
siibra/vocabularies/__init__.py,sha256=Qn_xBKrFhla7d_PjDgN6gX4gxroeSRP3ntBZ6gNnvtE,1288
|
|
67
|
-
siibra/vocabularies/gene_names.json,sha256=i-gnh753GyZtQfX_dWibNYr_d5ccDPHooOwsdeKUYqE,1647972
|
|
68
|
-
siibra/vocabularies/receptor_symbols.json,sha256=F6DZIArPCBmJV_lWGV-zDpBBH_GOJOZm67LBE4qzMa4,5722
|
|
69
|
-
siibra/vocabularies/region_aliases.json,sha256=T2w1wRlxPNTsPppXn0bzC70tNsb8mOjLsoHuxDSYm2w,8563
|
|
70
|
-
siibra/volumes/__init__.py,sha256=j7h6WNQk2juIyxs2OlruWj5VcKxsy1g-wD2Q05rM-wM,935
|
|
71
|
-
siibra/volumes/parcellationmap.py,sha256=lgqVjwHdmjmKj_2PguAH4jda3dc-L0p0QzfQ9emPJRg,49774
|
|
72
|
-
siibra/volumes/sparsemap.py,sha256=ZHkHh7NNEPZzRE2-XGWWPRaVVL2V4voYYzYdZ7RCxRg,17437
|
|
73
|
-
siibra/volumes/volume.py,sha256=-ULibtP5MCy0a3tHqbeFweIUP7sLZGuhj6eW558BRlM,32619
|
|
74
|
-
siibra/volumes/providers/__init__.py,sha256=0uDbnsjlAHnxoSdFghzYfhtjVki9721hi7Sp1P6GjNY,934
|
|
75
|
-
siibra/volumes/providers/freesurfer.py,sha256=LxPHbfVJLXkP4WVXCYhsildRUZUvzgv6jJOWeNLavw8,4893
|
|
76
|
-
siibra/volumes/providers/gifti.py,sha256=mPVFkBFnwbCbMks_ysuNbhe0Pj5ndxONPmq-Xr-ir3w,6231
|
|
77
|
-
siibra/volumes/providers/neuroglancer.py,sha256=JH8z6jb7u6nkqtNR3ZFYPrtwexAS6z68pesrLA2lYrk,28712
|
|
78
|
-
siibra/volumes/providers/nifti.py,sha256=AXhWvbt78uEvIT6Z8ABWZ6k0zYUEWZKniSxfLAqDE3k,10135
|
|
79
|
-
siibra/volumes/providers/provider.py,sha256=jxhOGHrSEeBgN0tAi7p8ju3twtUkhkjrk-e-3-chtxI,3695
|
|
80
|
-
siibra-1.0.1a0.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
|
81
|
-
siibra-1.0.1a0.dist-info/METADATA,sha256=jY1qR1aP2er68Kb1URFJ-bE4i8ZXYj8wlLviXdlkxlI,8884
|
|
82
|
-
siibra-1.0.1a0.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
|
|
83
|
-
siibra-1.0.1a0.dist-info/top_level.txt,sha256=NF0OSGLL0li2qyC7MaU0iBB5Y9S09_euPpvisD0-8Hg,7
|
|
84
|
-
siibra-1.0.1a0.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|