siibra 1.0.1a0__py3-none-any.whl → 1.0.1a1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of siibra might be problematic. Click here for more details.

Files changed (82) hide show
  1. siibra/VERSION +1 -1
  2. siibra/__init__.py +4 -4
  3. siibra/commons.py +8 -7
  4. siibra/configuration/__init__.py +1 -1
  5. siibra/configuration/configuration.py +1 -1
  6. siibra/configuration/factory.py +1 -1
  7. siibra/core/__init__.py +1 -1
  8. siibra/core/assignment.py +1 -1
  9. siibra/core/atlas.py +1 -1
  10. siibra/core/concept.py +3 -3
  11. siibra/core/parcellation.py +6 -6
  12. siibra/core/region.py +59 -49
  13. siibra/core/space.py +1 -1
  14. siibra/core/structure.py +2 -2
  15. siibra/exceptions.py +6 -2
  16. siibra/experimental/__init__.py +1 -1
  17. siibra/experimental/contour.py +2 -2
  18. siibra/experimental/cortical_profile_sampler.py +1 -1
  19. siibra/experimental/patch.py +1 -1
  20. siibra/experimental/plane3d.py +4 -4
  21. siibra/explorer/__init__.py +1 -1
  22. siibra/explorer/url.py +2 -2
  23. siibra/explorer/util.py +1 -1
  24. siibra/features/__init__.py +1 -1
  25. siibra/features/anchor.py +2 -2
  26. siibra/features/connectivity/__init__.py +1 -1
  27. siibra/features/connectivity/functional_connectivity.py +1 -1
  28. siibra/features/connectivity/regional_connectivity.py +2 -2
  29. siibra/features/connectivity/streamline_counts.py +1 -1
  30. siibra/features/connectivity/streamline_lengths.py +1 -1
  31. siibra/features/connectivity/tracing_connectivity.py +1 -1
  32. siibra/features/dataset/__init__.py +1 -1
  33. siibra/features/dataset/ebrains.py +1 -1
  34. siibra/features/feature.py +10 -10
  35. siibra/features/image/__init__.py +1 -1
  36. siibra/features/image/image.py +2 -2
  37. siibra/features/image/sections.py +1 -1
  38. siibra/features/image/volume_of_interest.py +1 -1
  39. siibra/features/tabular/__init__.py +1 -1
  40. siibra/features/tabular/bigbrain_intensity_profile.py +1 -1
  41. siibra/features/tabular/cell_density_profile.py +2 -2
  42. siibra/features/tabular/cortical_profile.py +3 -3
  43. siibra/features/tabular/gene_expression.py +1 -1
  44. siibra/features/tabular/layerwise_bigbrain_intensities.py +1 -1
  45. siibra/features/tabular/layerwise_cell_density.py +1 -1
  46. siibra/features/tabular/receptor_density_fingerprint.py +13 -10
  47. siibra/features/tabular/receptor_density_profile.py +1 -1
  48. siibra/features/tabular/regional_timeseries_activity.py +2 -2
  49. siibra/features/tabular/tabular.py +7 -5
  50. siibra/livequeries/__init__.py +1 -1
  51. siibra/livequeries/allen.py +3 -3
  52. siibra/livequeries/bigbrain.py +15 -6
  53. siibra/livequeries/ebrains.py +1 -1
  54. siibra/livequeries/query.py +2 -2
  55. siibra/locations/__init__.py +2 -2
  56. siibra/locations/boundingbox.py +3 -7
  57. siibra/locations/location.py +1 -1
  58. siibra/locations/point.py +3 -3
  59. siibra/locations/pointcloud.py +9 -14
  60. siibra/retrieval/__init__.py +1 -1
  61. siibra/retrieval/cache.py +1 -1
  62. siibra/retrieval/datasets.py +4 -4
  63. siibra/retrieval/exceptions/__init__.py +1 -1
  64. siibra/retrieval/repositories.py +4 -4
  65. siibra/retrieval/requests.py +6 -6
  66. siibra/vocabularies/__init__.py +1 -1
  67. siibra/volumes/__init__.py +1 -1
  68. siibra/volumes/parcellationmap.py +31 -10
  69. siibra/volumes/providers/__init__.py +1 -1
  70. siibra/volumes/providers/freesurfer.py +3 -3
  71. siibra/volumes/providers/gifti.py +1 -1
  72. siibra/volumes/providers/neuroglancer.py +6 -6
  73. siibra/volumes/providers/nifti.py +1 -1
  74. siibra/volumes/providers/provider.py +1 -1
  75. siibra/volumes/sparsemap.py +1 -1
  76. siibra/volumes/volume.py +12 -12
  77. {siibra-1.0.1a0.dist-info → siibra-1.0.1a1.dist-info}/METADATA +12 -3
  78. siibra-1.0.1a1.dist-info/RECORD +84 -0
  79. {siibra-1.0.1a0.dist-info → siibra-1.0.1a1.dist-info}/WHEEL +1 -1
  80. siibra-1.0.1a0.dist-info/RECORD +0 -84
  81. {siibra-1.0.1a0.dist-info → siibra-1.0.1a1.dist-info}/LICENSE +0 -0
  82. {siibra-1.0.1a0.dist-info → siibra-1.0.1a1.dist-info}/top_level.txt +0 -0
@@ -1,4 +1,4 @@
1
- # Copyright 2018-2024
1
+ # Copyright 2018-2025
2
2
  # Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH
3
3
 
4
4
  # Licensed under the Apache License, Version 2.0 (the "License");
@@ -94,8 +94,8 @@ DECODERS = {
94
94
  def find_suitiable_decoder(url: str) -> Callable:
95
95
  """
96
96
  By supplying a url or a filename, obtain a suitable decoder function
97
- for siibra to digest based on predifined DECODERS. An extra layer of
98
- gzip decompresser automatically added for gzipped files.
97
+ for siibra to digest based on predefined DECODERS. An extra layer of
98
+ gzip decompressor automatically added for gzipped files.
99
99
 
100
100
  Parameters
101
101
  ----------
@@ -193,7 +193,7 @@ class HttpRequest:
193
193
  """
194
194
  Populates the file cache with the data from http if required.
195
195
  noop if 1/ data is already cached and 2/ refresh flag not set
196
- The caller should load the cachefile after _retrieve successfuly executes
196
+ The caller should load the cachefile after _retrieve successfully executes
197
197
  """
198
198
  if self.cached and not self.refresh:
199
199
  return
@@ -457,9 +457,9 @@ class EbrainsRequest(HttpRequest):
457
457
 
458
458
  if resp.status_code == 200:
459
459
  json_resp = resp.json()
460
- logger.debug("Device flow sucessful:", json_resp)
460
+ logger.debug("Device flow successful:", json_resp)
461
461
  cls._KG_API_TOKEN = json_resp.get("access_token")
462
- print("ebrains token successfuly set.")
462
+ print("ebrains token successfully set.")
463
463
  break
464
464
 
465
465
  if resp.status_code == 400:
@@ -1,4 +1,4 @@
1
- # Copyright 2018-2024
1
+ # Copyright 2018-2025
2
2
  # Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH
3
3
 
4
4
  # Licensed under the Apache License, Version 2.0 (the "License");
@@ -1,4 +1,4 @@
1
- # Copyright 2018-2024
1
+ # Copyright 2018-2025
2
2
  # Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH
3
3
 
4
4
  # Licensed under the Apache License, Version 2.0 (the "License");
@@ -1,4 +1,4 @@
1
- # Copyright 2018-2024
1
+ # Copyright 2018-2025
2
2
  # Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH
3
3
 
4
4
  # Licensed under the Apache License, Version 2.0 (the "License");
@@ -503,7 +503,7 @@ class Map(concept.AtlasConcept, configuration_folder="maps"):
503
503
  taking the voxelwise maximum across the mapped volumes and fragments,
504
504
  and re-labelling regions sequentially.
505
505
 
506
- Paramaters
506
+ Parameters
507
507
  ----------
508
508
  **kwargs: Takes the fetch arguments of its space's template.
509
509
 
@@ -690,7 +690,7 @@ class Map(concept.AtlasConcept, configuration_folder="maps"):
690
690
  name=f"Custom colorization of {self}"
691
691
  )
692
692
 
693
- def get_colormap(self, region_specs: Iterable = None):
693
+ def get_colormap(self, region_specs: Iterable = None, *, allow_random_colors: bool = False):
694
694
  """
695
695
  Generate a matplotlib colormap from known rgb values of label indices.
696
696
 
@@ -698,13 +698,23 @@ class Map(concept.AtlasConcept, configuration_folder="maps"):
698
698
  ----------
699
699
  region_specs: iterable(regions), optional
700
700
  Optional parameter to only color the desired regions.
701
+ allow_random_colors: bool , optional
701
702
 
702
703
  Returns
703
704
  -------
704
705
  ListedColormap
705
706
  """
706
- from matplotlib.colors import ListedColormap
707
- import numpy as np
707
+ try:
708
+ from matplotlib.colors import ListedColormap
709
+ except ImportError as e:
710
+ logger.error(
711
+ "matplotlib not available. Please install matplotlib to create a matplotlib colormap."
712
+ )
713
+ raise e
714
+ if allow_random_colors:
715
+ seed = len(self.regions)
716
+ np.random.seed(seed)
717
+ logger.info(f"Random colors are allowed for regions without preconfgirued colors. Random seee: {seed}.")
708
718
 
709
719
  colors = {}
710
720
  if region_specs is not None:
@@ -725,14 +735,25 @@ class Map(concept.AtlasConcept, configuration_folder="maps"):
725
735
  region = self.get_region(index=index)
726
736
  if region.rgb is not None:
727
737
  colors[index.label] = region.rgb
738
+ elif allow_random_colors:
739
+ random_clr = [np.random.randint(0, 255) for r in range(3)]
740
+ while random_clr in list(colors.values()):
741
+ random_clr = [np.random.randint(0, 255) for r in range(3)]
742
+ colors[index.label] = random_clr
743
+
744
+ if len(colors) == 0:
745
+ raise exceptions.NoPredifinedColormapException(
746
+ f"There is no predefined/preconfigured colormap for '{self}'."
747
+ "Set `allow_random_colors=True` to a colormap with random values"
748
+ )
728
749
 
729
- pallette = np.array(
750
+ palette = np.array(
730
751
  [
731
752
  list(colors[i]) + [1] if i in colors else [0, 0, 0, 0]
732
753
  for i in range(max(colors.keys()) + 1)
733
754
  ]
734
755
  ) / [255, 255, 255, 1]
735
- return ListedColormap(pallette)
756
+ return ListedColormap(palette)
736
757
 
737
758
  def sample_locations(self, regionspec, numpoints: int):
738
759
  """ Sample 3D locations inside a given region.
@@ -750,7 +771,7 @@ class Map(concept.AtlasConcept, configuration_folder="maps"):
750
771
  Returns
751
772
  -------
752
773
  PointCloud
753
- Sample points in physcial coordinates corresponding to this
774
+ Sample points in physical coordinates corresponding to this
754
775
  parcellationmap
755
776
  """
756
777
  index = self.get_index(regionspec)
@@ -923,7 +944,7 @@ class Map(concept.AtlasConcept, configuration_folder="maps"):
923
944
  if len(assignments) == 0:
924
945
  return pd.DataFrame(columns=columns)
925
946
  # determine the unique set of observed indices in order to do region lookups
926
- # only once for each map index occuring in the point list
947
+ # only once for each map index occurring in the point list
927
948
  labelled = self.is_labelled # avoid calling this in a loop
928
949
  observed_indices = { # unique set of observed map indices. NOTE: len(observed_indices) << len(assignments)
929
950
  (
@@ -1032,7 +1053,7 @@ class Map(concept.AtlasConcept, configuration_folder="maps"):
1032
1053
  assignments.append(
1033
1054
  MapAssignment(
1034
1055
  input_structure=pointindex,
1035
- centroid=tuple(np.array(position).round(2)),
1056
+ centroid=tuple(position),
1036
1057
  volume=vol,
1037
1058
  fragment=frag,
1038
1059
  map_value=value
@@ -1,4 +1,4 @@
1
- # Copyright 2018-2024
1
+ # Copyright 2018-2025
2
2
  # Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH
3
3
 
4
4
  # Licensed under the Apache License, Version 2.0 (the "License");
@@ -1,4 +1,4 @@
1
- # Copyright 2018-2024
1
+ # Copyright 2018-2025
2
2
  # Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH
3
3
 
4
4
  # Licensed under the Apache License, Version 2.0 (the "License");
@@ -54,7 +54,7 @@ class FreesurferAnnot(_provider.VolumeProvider, srctype="freesurfer-annot"):
54
54
  frag_labels[selected_label] = 1
55
55
  frag_labels[~selected_label] = 0
56
56
  else:
57
- frag_labels[frag_labels == -1] = 0 # annot files store backgorund as -1 while siibra uses 0
57
+ frag_labels[frag_labels == -1] = 0 # annot files store background as -1 while siibra uses 0
58
58
  vertex_labels.append(frag_labels)
59
59
 
60
60
  return {"labels": np.hstack(vertex_labels)}
@@ -98,7 +98,7 @@ class ZippedFreesurferAnnot(_provider.VolumeProvider, srctype="zip/freesurfer-an
98
98
  frag_labels[selected_label] = 1
99
99
  frag_labels[~selected_label] = 0
100
100
  else:
101
- frag_labels[frag_labels == -1] = 0 # annot files store backgorund as -1 while siibra uses 0
101
+ frag_labels[frag_labels == -1] = 0 # annot files store background as -1 while siibra uses 0
102
102
  vertex_labels.append(frag_labels)
103
103
 
104
104
  return {"labels": np.hstack(vertex_labels)}
@@ -1,4 +1,4 @@
1
- # Copyright 2018-2024
1
+ # Copyright 2018-2025
2
2
  # Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH
3
3
 
4
4
  # Licensed under the Apache License, Version 2.0 (the "License");
@@ -1,4 +1,4 @@
1
- # Copyright 2018-2024
1
+ # Copyright 2018-2025
2
2
  # Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH
3
3
 
4
4
  # Licensed under the Apache License, Version 2.0 (the "License");
@@ -52,7 +52,7 @@ def shift_ng_transfrom(
52
52
  Parameters
53
53
  ----------
54
54
  transform_nm: np.ndarray
55
- Transform array created for dispalying an image correctly from
55
+ Transform array created for displaying an image correctly from
56
56
  neuroglancer precomputed format in neuroglancer viewer.
57
57
  max_resolution_nm: np.ndarray
58
58
  The voxel resolution of the highest level of resolution.
@@ -174,7 +174,7 @@ class NeuroglancerProvider(_provider.VolumeProvider, srctype="neuroglancer/preco
174
174
  Parameters
175
175
  ----------
176
176
  fetch_kwargs:
177
- key word arguments that are used for fetchin volumes,
177
+ key word arguments that are used for fetching volumes,
178
178
  such as voi or resolution_mm.
179
179
  """
180
180
  bbox = None
@@ -422,7 +422,7 @@ class NeuroglancerScale:
422
422
  return self.res_nm / 1e6
423
423
 
424
424
  def resolves(self, resolution_mm):
425
- """Test wether the resolution of this scale is sufficient to provide the given resolution."""
425
+ """Test whether the resolution of this scale is sufficient to provide the given resolution."""
426
426
  return all(r / 1e6 <= resolution_mm for r in self.res_nm)
427
427
 
428
428
  def __lt__(self, other):
@@ -594,7 +594,7 @@ class NeuroglancerMesh(_provider.VolumeProvider, srctype="neuroglancer/precompme
594
594
  elif isinstance(resource, dict):
595
595
  self._meshes = {n: self._fragmentinfo(u) for n, u in resource.items()}
596
596
  else:
597
- raise ValueError(f"Resource specificaton not understood for {self.__class__.__name__}: {resource}")
597
+ raise ValueError(f"Resource specification not understood for {self.__class__.__name__}: {resource}")
598
598
 
599
599
  @property
600
600
  def _url(self) -> Union[str, Dict[str, str]]:
@@ -635,7 +635,7 @@ class NeuroglancerMesh(_provider.VolumeProvider, srctype="neuroglancer/precompme
635
635
  result[name] = (f"{spec['url']}/{mesh_key}/{fragment_names[0]}", transform)
636
636
  else:
637
637
  # only one mesh was configures, so we might still
638
- # see muliple fragments under the mesh url
638
+ # see multiple fragments under the mesh url
639
639
  for fragment_name in fragment_names:
640
640
  result[fragment_name] = (f"{spec['url']}/{mesh_key}/{fragment_name}", transform)
641
641
 
@@ -1,4 +1,4 @@
1
- # Copyright 2018-2024
1
+ # Copyright 2018-2025
2
2
  # Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH
3
3
 
4
4
  # Licensed under the Apache License, Version 2.0 (the "License");
@@ -1,4 +1,4 @@
1
- # Copyright 2018-2024
1
+ # Copyright 2018-2025
2
2
  # Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH
3
3
 
4
4
  # Licensed under the Apache License, Version 2.0 (the "License");
@@ -1,4 +1,4 @@
1
- # Copyright 2018-2024
1
+ # Copyright 2018-2025
2
2
  # Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH
3
3
 
4
4
  # Licensed under the Apache License, Version 2.0 (the "License");
siibra/volumes/volume.py CHANGED
@@ -1,4 +1,4 @@
1
- # Copyright 2018-2024
1
+ # Copyright 2018-2025
2
2
  # Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH
3
3
 
4
4
  # Licensed under the Apache License, Version 2.0 (the "License");
@@ -191,7 +191,7 @@ class Volume(structure.BrainStructure):
191
191
  ----
192
192
  To use it, clip must be True.
193
193
  fetch_kwargs:
194
- key word arguments that are used for fetchin volumes,
194
+ key word arguments that are used for fetching volumes,
195
195
  such as voi or resolution_mm. Currently, only possible for
196
196
  Neuroglancer volumes except for `format`.
197
197
 
@@ -206,7 +206,7 @@ class Volume(structure.BrainStructure):
206
206
  if not self.provides_image:
207
207
  raise NotImplementedError("Bounding box calculation of meshes is not implemented yet.")
208
208
 
209
- if clip: # clippin requires fetching the image
209
+ if clip: # clipping requires fetching the image
210
210
  img = self.fetch(**fetch_kwargs)
211
211
  assert isinstance(img, Nifti1Image)
212
212
  return boundingbox.from_array(
@@ -214,7 +214,7 @@ class Volume(structure.BrainStructure):
214
214
  background=background,
215
215
  ).transform(img.affine, space=self.space)
216
216
 
217
- # if clipping is not required, providers migth have methods of creating
217
+ # if clipping is not required, providers might have methods of creating
218
218
  # bounding boxes without fetching the image
219
219
  fmt = fetch_kwargs.get("format")
220
220
  if (fmt is not None) and (fmt not in self.formats):
@@ -365,7 +365,7 @@ class Volume(structure.BrainStructure):
365
365
  this map.
366
366
 
367
367
 
368
- Paramaters
368
+ Parameters
369
369
  ----------
370
370
  points: PointCloud
371
371
  keep_labels: bool
@@ -407,7 +407,7 @@ class Volume(structure.BrainStructure):
407
407
  return self.get_boundingbox(clip=True, background=0.0, **fetch_kwargs).intersection(other)
408
408
  elif isinstance(other, Volume):
409
409
  if self.space != other.space:
410
- raise NotImplementedError("Cannot intersect volumes from different spaces. Try comparing their boudning boxes.")
410
+ raise NotImplementedError("Cannot intersect volumes from different spaces. Try comparing their bounding boxes.")
411
411
  format = fetch_kwargs.pop('format', 'image')
412
412
  v1 = self.fetch(format=format, **fetch_kwargs)
413
413
  v2 = other.fetch(format=format, **fetch_kwargs)
@@ -461,7 +461,7 @@ class Volume(structure.BrainStructure):
461
461
  format = 'neuroglancer/precomputed'
462
462
 
463
463
  if format is None:
464
- # preseve fetch order in SUPPORTED_FORMATS
464
+ # preserve fetch order in SUPPORTED_FORMATS
465
465
  possible_formats = [f for f in self.SUPPORTED_FORMATS if f in self.formats]
466
466
  elif format in self._FORMAT_LOOKUP: # allow use of aliases
467
467
  possible_formats = [f for f in self._FORMAT_LOOKUP[format] if f in self.formats]
@@ -519,7 +519,7 @@ class Volume(structure.BrainStructure):
519
519
  break
520
520
  else:
521
521
  break
522
- # udpate the cache if fetch is successful
522
+ # update the cache if fetch is successful
523
523
  if result is not None:
524
524
  self._FETCH_CACHE[fetch_hash] = result
525
525
  while len(self._FETCH_CACHE) >= self._FETCH_CACHE_MAX_ENTRIES:
@@ -539,7 +539,7 @@ class Volume(structure.BrainStructure):
539
539
  """
540
540
  img = self.fetch(**fetch_kwargs)
541
541
  assert isinstance(img, Nifti1Image), NotImplementedError(
542
- f"Connected components for type {type(img)} is not yet implemeneted."
542
+ f"Connected components for type {type(img)} is not yet implemented."
543
543
  )
544
544
  for label, component in connected_components(np.asanyarray(img.dataobj)):
545
545
  yield (
@@ -569,7 +569,7 @@ class Volume(structure.BrainStructure):
569
569
  def draw_samples(self, N: int, sample_size: int = 100, e: float = 1, sigma_mm=None, invert=False, **kwargs):
570
570
  """
571
571
  Draw samples from the volume, by interpreting its values as an
572
- unnormalized empirical probability distribtution.
572
+ unnormalized empirical probability distributions.
573
573
  Any keyword arguments are passed over to fetch()
574
574
  """
575
575
  if not self.provides_image:
@@ -814,7 +814,7 @@ def from_pointcloud(
814
814
  sigmas = np.array(points.sigma_mm)[selection]
815
815
  bandwidth = np.mean(sigmas)
816
816
  if len(np.unique(sigmas)) > 1:
817
- logger.warning(f"KDE of pointcloud uses average bandwith {bandwidth} instead of the points' individual sigmas.")
817
+ logger.warning(f"KDE of pointcloud uses average bandwidth {bandwidth} instead of the points' individual sigmas.")
818
818
 
819
819
  filtered_arr = filters.gaussian(voxelcount_img, bandwidth)
820
820
  if normalize:
@@ -841,7 +841,7 @@ def merge(volumes: List[Volume], labels: List[int] = [], **fetch_kwargs) -> Volu
841
841
  ----------
842
842
  volumes : List[Volume]
843
843
  labels : List[int], optional
844
- Supply new labels to replace exisiting values per volume.
844
+ Supply new labels to replace existing values per volume.
845
845
 
846
846
  Returns
847
847
  -------
@@ -1,6 +1,6 @@
1
- Metadata-Version: 2.1
1
+ Metadata-Version: 2.2
2
2
  Name: siibra
3
- Version: 1.0.1a0
3
+ Version: 1.0.1a1
4
4
  Summary: siibra - Software interfaces for interacting with brain atlases
5
5
  Home-page: https://github.com/FZJ-INM1-BDA/siibra-python
6
6
  Author: Big Data Analytics Group, Forschungszentrum Juelich, Institute of Neuroscience and Medicine (INM-1)
@@ -27,6 +27,15 @@ Requires-Dist: nilearn
27
27
  Requires-Dist: typing-extensions; python_version < "3.8"
28
28
  Requires-Dist: filelock
29
29
  Requires-Dist: ebrains-drive>=0.6.0
30
+ Dynamic: author
31
+ Dynamic: author-email
32
+ Dynamic: classifier
33
+ Dynamic: description
34
+ Dynamic: description-content-type
35
+ Dynamic: home-page
36
+ Dynamic: requires-dist
37
+ Dynamic: requires-python
38
+ Dynamic: summary
30
39
 
31
40
  |License| |PyPI version| |doi| |Python versions| |Documentation Status|
32
41
 
@@ -34,7 +43,7 @@ Requires-Dist: ebrains-drive>=0.6.0
34
43
  siibra - Software interface for interacting with brain atlases
35
44
  ==============================================================
36
45
 
37
- Copyright 2020-2024, Forschungszentrum Jülich GmbH
46
+ Copyright 2018-2024, Forschungszentrum Jülich GmbH
38
47
 
39
48
  *Authors: Big Data Analytics Group, Institute of Neuroscience and
40
49
  Medicine (INM-1), Forschungszentrum Jülich GmbH*
@@ -0,0 +1,84 @@
1
+ siibra/VERSION,sha256=9ScdUIV7rZMdtIHh1xiZnvlgNqft2-RuTXdHqzbCywk,14
2
+ siibra/__init__.py,sha256=I5Sc9l00TyrHE9M3zqYa-vuTTku8XrT1txyfdwmoJdo,4716
3
+ siibra/commons.py,sha256=oZNGMp1O25S71Bn82jPZbI_a90HYJZqyv9Ad2kkq86g,27644
4
+ siibra/exceptions.py,sha256=6MlXOadwXcCsceOE4lmy4fLJyAaBCCVvJF6BZlMYjU8,1371
5
+ siibra/configuration/__init__.py,sha256=ArqQ_B8C_O61KA4Fk3ho8ksckbjLu-COOlPGiXyf8LE,752
6
+ siibra/configuration/configuration.py,sha256=3ZI8ZksdpzGqGqYZq2Dj5y_jwpVaiXoWeDl4P2MGIl8,7263
7
+ siibra/configuration/factory.py,sha256=l94pNXJGxLBJvrwGjLi09XZ8A9GEU4ipRaH0igUv7Zg,22627
8
+ siibra/core/__init__.py,sha256=GFTX-RbJoM_EUSXsBcxl4meHoMMFBQUtqsn-Q_2HPMI,735
9
+ siibra/core/assignment.py,sha256=WfpVaKXK58H4LXxMN1Wm2886h0h_8AeDRQ2wNIi2L70,3819
10
+ siibra/core/atlas.py,sha256=lVQJSmIbwPvrQoXSj9OGz6Nub3FFUCU9PpCEdeFPc0w,8549
11
+ siibra/core/concept.py,sha256=4vDpyYzcqffK2xB4zvELHOd_F6LaenI0sKo52PPGNW0,10889
12
+ siibra/core/parcellation.py,sha256=RV6KVHojom0uXGIgISkVMw5hwKwaqKk5xr6-HnptgRQ,14480
13
+ siibra/core/region.py,sha256=67Obqi4PT68CZzvK6GAtzShxXguhpWRXfjSHfBF13v8,44013
14
+ siibra/core/space.py,sha256=ydOw0LIkX17Q1vjLbTRO_KkAoEqogwR_GadxI6oAqs0,4586
15
+ siibra/core/structure.py,sha256=TC7nKU5phDt0I7uUlXS87Ihy98W0FiEfD3eiIPnrLVg,4498
16
+ siibra/experimental/__init__.py,sha256=6yRLup4NclsScLviwlvNp4Uu4qWQ1ky2H7KS1qd06Q8,791
17
+ siibra/experimental/contour.py,sha256=SoFwpUOZbnW8oVEJgEz5OoHIY-y6Bvga_NZI5IhmXpo,2453
18
+ siibra/experimental/cortical_profile_sampler.py,sha256=JPj40JtWBQMNwJS9KcR_q9Uo98aTH58vgME3bAoHueI,2086
19
+ siibra/experimental/patch.py,sha256=-CJIjvZYoaZUlwjVGxWjrAAVodeJeYklBA010D-iWJs,3809
20
+ siibra/experimental/plane3d.py,sha256=v0KQnXlAAt_D8mSRcsW-oWQwq21Qz3FfRoVZoDfYqMA,10856
21
+ siibra/explorer/__init__.py,sha256=XBAeYm4W3HlbWsKtt8gOwqE_FinIEY7RdA6Rg4Y275A,781
22
+ siibra/explorer/url.py,sha256=ja5i-VkEMYwqhlQ-K5tEfnlYTcgMpPFYJCK7IV0d3Us,7069
23
+ siibra/explorer/util.py,sha256=ul82TQZAULdupr4tJBACdkjlHm2mt8LJ9UpwNWGHYhE,2083
24
+ siibra/features/__init__.py,sha256=FER6DMnkPhXSV1XMZWibZdyBwVhIgWYSUGYMEYEKb9c,3970
25
+ siibra/features/anchor.py,sha256=sptZnJPTbkLAi5TWeY5Q1paDTa8YXI0Om5qztTjwwmI,9131
26
+ siibra/features/feature.py,sha256=bREzxEKP0_7PJdjPhwHMl2X6wgcIq0CbiaNVvz8tq7A,35194
27
+ siibra/features/connectivity/__init__.py,sha256=FkPf0vyrLo3ERxrDbsRHUd7FUgJyajD87NiiXIiXhmY,1161
28
+ siibra/features/connectivity/functional_connectivity.py,sha256=9lQoOXv8lZUnyMduAbWABwDIkQC0QTI8V23yx0NjOBg,2122
29
+ siibra/features/connectivity/regional_connectivity.py,sha256=RHK14xVF2rn4kJBIRHfJaJ42hjUlqndb4B5PTw6qdIo,18286
30
+ siibra/features/connectivity/streamline_counts.py,sha256=JaAYf6-1S8NYhkE4lhshCSY__EQ5BFcL2i_XXdFfgrM,1064
31
+ siibra/features/connectivity/streamline_lengths.py,sha256=QeuoW_ZDVa9dxCguaemj4Cq9CCPB8ur8_alhATto2-w,1067
32
+ siibra/features/connectivity/tracing_connectivity.py,sha256=rkYgD8mOZzDp0STo5djhDqOaEdz-9j5EuLffXE0F01A,1083
33
+ siibra/features/dataset/__init__.py,sha256=qRV_P0335b4LnSMiONRpSC4elGckp0FXmtJz_QQuVLA,748
34
+ siibra/features/dataset/ebrains.py,sha256=2lyRVc4NleLuD_n2fPkRG8tNl7Ab6ZtCCR7evsk8Zng,2544
35
+ siibra/features/image/__init__.py,sha256=KEwWl2tjyC8D9QinIKtswBVJ1_eGyelTA-iBqfSFLis,1013
36
+ siibra/features/image/image.py,sha256=DQWM8giRaJ_XeOrD9CKUYOdASZ8N9oE-ZjTYxlj3We8,3585
37
+ siibra/features/image/sections.py,sha256=XxZ5THbKIuRvCwA8f3COk2AgeWwXaR-Y9h14nNa3M-s,961
38
+ siibra/features/image/volume_of_interest.py,sha256=Nfwagn_eqtc1TVD7VDEcItCR4n6qM5m_AbS2BF77ZIY,2654
39
+ siibra/features/tabular/__init__.py,sha256=HA0LcTLvJG2tnYolu48Rn7vxhVHl1X98Pn-27s1XR7s,1176
40
+ siibra/features/tabular/bigbrain_intensity_profile.py,sha256=aUuLpqVgHwzHG6ZCNUS9G4YbrxnWywaUynatFTXdao4,2708
41
+ siibra/features/tabular/cell_density_profile.py,sha256=8dI7MZaAFwaLRR-xPstDAVi3X6z2E7D-ATNmJ2JyEkw,10819
42
+ siibra/features/tabular/cortical_profile.py,sha256=Sod25RABEUlcC8Ct_r2Ujd6FjGbqhJHp0yOIBRAbYho,12542
43
+ siibra/features/tabular/gene_expression.py,sha256=Gg6dkm8YX2TiR-zxDK8qhfwrvYRHh0Bef5b9sry5jsw,9827
44
+ siibra/features/tabular/layerwise_bigbrain_intensities.py,sha256=8Doy4Mnitm-ODBepS2Nep3D1BeXx3lmmjHb-tJWyjVY,2117
45
+ siibra/features/tabular/layerwise_cell_density.py,sha256=v2TDCCinOc_sOeTZP43zSVx_y8uJ_fbFVQ-XHtEx_ww,3783
46
+ siibra/features/tabular/receptor_density_fingerprint.py,sha256=7Uc9j2QUijy-KeqzL8Tf3nfWz2eAv23Qk-Br_iA7_Mk,7354
47
+ siibra/features/tabular/receptor_density_profile.py,sha256=zKHzHpavxo6ZWpGXiiW99XrP6yrdrhVKJmAKeXYFvIg,3725
48
+ siibra/features/tabular/regional_timeseries_activity.py,sha256=J4sXJHrkLrLm3WaMcaWy3QgkA6-bGN_Jj1HmydjDejo,10027
49
+ siibra/features/tabular/tabular.py,sha256=9qI9UicIRX-9FbA31S-KHuLDm-mPFkAeEfxmAfGTldw,5393
50
+ siibra/livequeries/__init__.py,sha256=hToUNmyFq1UW5CxScHyBB-mSZ7kUK_w1Cvrk1OkZQf0,875
51
+ siibra/livequeries/allen.py,sha256=wOmdS2PaRvK7FbBRNz2AxFAwyS86uw_qAVfwlW80JAo,14811
52
+ siibra/livequeries/bigbrain.py,sha256=-eqNFAe43Lo-Yt_hOIDokU07G7fpwaqUiOrFrR1jpFc,8929
53
+ siibra/livequeries/ebrains.py,sha256=KDLu9SPM35Qo46mOiSgxGUEsP2XzZbcYOAl9P_FwybU,5820
54
+ siibra/livequeries/query.py,sha256=on7f-HSm8aqe8YbQucsvjBCvCo3kDv8I3I8TpDoWK2s,1849
55
+ siibra/locations/__init__.py,sha256=mBwPNip68fu8J9M-1ZOMkQs75HmOad2wjXkJhGgiK-U,3343
56
+ siibra/locations/boundingbox.py,sha256=wlVXVL6CAs7K6rhoe9QuV9zDjtLc146iMd2W6t2StRU,16370
57
+ siibra/locations/location.py,sha256=CVawSj0QuKBHLogPtPGCWxeFSjfFGbGqe6RZf12m3iA,4361
58
+ siibra/locations/point.py,sha256=hutOgQ4QiRrGd-utlZ75ynnzpRFBJcp47UU1rBXcVsg,12863
59
+ siibra/locations/pointcloud.py,sha256=h91luJwN974qakhZyaz7bNNj4POjdX3uDyWOcYxdmqs,12361
60
+ siibra/retrieval/__init__.py,sha256=E-UA8rDQZFGkHmAcmit6siONo7G2mH_Y0xgLlR1RfvY,1062
61
+ siibra/retrieval/cache.py,sha256=rqXjWnMBI5RuxUEtC9QW7scZTArwdOQcM4EZveSX3D0,7832
62
+ siibra/retrieval/datasets.py,sha256=kb9D0QNP3R9emc-ss2jwaVLyrWOt-kSjujf-UNZUhRQ,11031
63
+ siibra/retrieval/repositories.py,sha256=7bfHXjbtnpE8oBj24-fxvQDZddGaH7O3g7CrtmN6_jI,29938
64
+ siibra/retrieval/requests.py,sha256=mSXBPZaUSLuLpvN6WSTZF4ccdlmXFUfHbq7ijmSdxS4,23072
65
+ siibra/retrieval/exceptions/__init__.py,sha256=sOuzPHh2xq1p55T0zAcrSW2B1wfwwYEXBOWIuCjGePE,875
66
+ siibra/vocabularies/__init__.py,sha256=oxI4K9tBuFLo4WgRYmzog5IxOBi5Hyf9iBbkhZPhhoc,1288
67
+ siibra/vocabularies/gene_names.json,sha256=i-gnh753GyZtQfX_dWibNYr_d5ccDPHooOwsdeKUYqE,1647972
68
+ siibra/vocabularies/receptor_symbols.json,sha256=F6DZIArPCBmJV_lWGV-zDpBBH_GOJOZm67LBE4qzMa4,5722
69
+ siibra/vocabularies/region_aliases.json,sha256=T2w1wRlxPNTsPppXn0bzC70tNsb8mOjLsoHuxDSYm2w,8563
70
+ siibra/volumes/__init__.py,sha256=mZ7xrI-MsAXMctff2eFiM3-Dx_vX1PNdfYjgP0mZuN4,935
71
+ siibra/volumes/parcellationmap.py,sha256=opdC2TphSVXWuzFpQMBOtLAYmxlNkQRoELe4KE-oTi4,50847
72
+ siibra/volumes/sparsemap.py,sha256=LjTgqOua2NDgsFSNrC7NC2FwDp2FwPUfJPe_lwsBGUQ,17437
73
+ siibra/volumes/volume.py,sha256=EAAaA2yu8Qu_-YGTy4LKp6Pw1qg6FdWSJc0hiujcr9M,32621
74
+ siibra/volumes/providers/__init__.py,sha256=AHZCjutCqO4mnHxyykVjqxlz85jDqFWcSjsa4ciwc1A,934
75
+ siibra/volumes/providers/freesurfer.py,sha256=zvBExeq34d8JwVqj2_HQ04865XwBqRAz5O4yNbNMsms,4893
76
+ siibra/volumes/providers/gifti.py,sha256=vCuUCO5QzVBGVO-SmRNDYVoT70CXu_s7_p9F-TlEIro,6231
77
+ siibra/volumes/providers/neuroglancer.py,sha256=9uMWCNYvqJxuQd0NVPWmc6aG3sZ3cxnpGra7j9sc7xQ,28716
78
+ siibra/volumes/providers/nifti.py,sha256=jTNrq__phdd-nhQoKFhQU5s6je4p2UuUTMQvAunnPHE,10135
79
+ siibra/volumes/providers/provider.py,sha256=9IkEJCYwUwr-rBpQuW1bGOUOEnlzQLXuA9e6WHKTOyM,3695
80
+ siibra-1.0.1a1.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
81
+ siibra-1.0.1a1.dist-info/METADATA,sha256=8krNAo5-9sNMyKfhzjseNoUtsF6UhqCsjbFa5FWXpiQ,9081
82
+ siibra-1.0.1a1.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
83
+ siibra-1.0.1a1.dist-info/top_level.txt,sha256=NF0OSGLL0li2qyC7MaU0iBB5Y9S09_euPpvisD0-8Hg,7
84
+ siibra-1.0.1a1.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (75.6.0)
2
+ Generator: setuptools (75.8.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -1,84 +0,0 @@
1
- siibra/VERSION,sha256=obkBMWS4uPgy0Q8o6UWN0GqfjWFwM9_DzViNq5cAX98,14
2
- siibra/__init__.py,sha256=odym0KtWXn55LqBXZDRgXCzSd5daKXrC0D6lSeYi3po,4715
3
- siibra/commons.py,sha256=L0tEiZycG0GyDo-KxTeEs8abfTZC98VR_xsDRDdWWNQ,27561
4
- siibra/exceptions.py,sha256=ruU9IGFBqD52mXUryBF41uE6mDV3kabfSAzUunhCWR8,1319
5
- siibra/configuration/__init__.py,sha256=Kp00hs44rVSU5OPuZ26KFJpd6HXtMocEiLiZihdvav4,752
6
- siibra/configuration/configuration.py,sha256=um31WGN0Ozl-3v5bUYECkJEJ5GMrEnrJO3_syUXgzFc,7263
7
- siibra/configuration/factory.py,sha256=8PoPydqc_4csKF8f-E7Un1QnQ0yKDRgYyO1jbVhKeQU,22627
8
- siibra/core/__init__.py,sha256=907tEZ3HxZSZqqhv0md3Sk8t9iy0-aWtbuo1G1oxN_w,735
9
- siibra/core/assignment.py,sha256=9g2lLOj_ftuS623ZlVauTTLtJGAvDfE10wknJXJA7m4,3819
10
- siibra/core/atlas.py,sha256=BNp96YZ3s6f5MrnuEWL8OktFtM528Dj9Zv6e9FbOAyg,8549
11
- siibra/core/concept.py,sha256=cmWR2PFdWR3pdVa0NSOiPC-EWl0i_WBjyF3JjKt74gc,10889
12
- siibra/core/parcellation.py,sha256=AF7yODxdhZZymFNzQdaL2qzSDwkgsogPs74e603Zl_Q,14506
13
- siibra/core/region.py,sha256=6UDx31FmFYtFQJs5Z0fbpQ2yT9MCh4QCCANIa5GxTXQ,43423
14
- siibra/core/space.py,sha256=0v_7aERZcVNPJmbr_LbeLRkbJj8TGaTrbqnXzr-I5Jg,4586
15
- siibra/core/structure.py,sha256=eHvCRBZEDjTI8xc2UmSgt26ujgDxHTLai8NoGmeUU64,4497
16
- siibra/experimental/__init__.py,sha256=s4bEYpMO4Ox-Xlx3FdnRUNKYs0mTHz5Hu4VnfNXpgxU,791
17
- siibra/experimental/contour.py,sha256=uZOltesITk5t7EbohZtqA8gJRc3UuiqpJdJQhFP1gXo,2454
18
- siibra/experimental/cortical_profile_sampler.py,sha256=JsX0FCJqvozdhWuayYJ-r3kHNsgSUfA00O9D0X6D7Rg,2086
19
- siibra/experimental/patch.py,sha256=0VKVU7F7xMBr1hwtL-Z4K-_1XKw88WImPG4fWaiH5bw,3809
20
- siibra/experimental/plane3d.py,sha256=XgmNemO9peDRDtHE_8joqroGpjCKI5H_vzyIFXDh434,10853
21
- siibra/explorer/__init__.py,sha256=ZEBJlKs3r5tFWWoKvfrASb1M031FPwSVeysaktUnhbQ,781
22
- siibra/explorer/url.py,sha256=1UWJyt18gMKTXuixfO8P1Xa5SJDUUagollow67VYT20,7068
23
- siibra/explorer/util.py,sha256=lAy1pd-ym90H-BZx2X8GMT3qJIsRTgGCz6tW3t1duig,2083
24
- siibra/features/__init__.py,sha256=NMmDmfrzscV-RHHZMoyjlH_bYfjNhGDX72dQ6-JCYXg,3970
25
- siibra/features/anchor.py,sha256=FfeMfJxwApFE0iWo2RJj5_XFr0L5gF76V4ZxaPL2VUc,9130
26
- siibra/features/feature.py,sha256=ls1E7BjRdPOkbtwzU-d01lwTRA_33IlzB44-tL0tg2g,35194
27
- siibra/features/connectivity/__init__.py,sha256=A7fcXqlAtfFmuymfyOl7A7ecaP8nqIBPFaM76qwh4HA,1161
28
- siibra/features/connectivity/functional_connectivity.py,sha256=3UiPpHfbYAOBwMn7TI79wy1fR9lWwI3ePMSRVziJONw,2122
29
- siibra/features/connectivity/regional_connectivity.py,sha256=13uZ-TJBv_J3J-6KuJcKmJMKf7yWy21pzdsyvcWkWXg,18287
30
- siibra/features/connectivity/streamline_counts.py,sha256=OBOQblhsqnfsvf2kdySRAoWxGsFi4Ulr2PNT9wOu1Ls,1064
31
- siibra/features/connectivity/streamline_lengths.py,sha256=B9D6Y7szMRCuHRwisAorgTJfkq-1aTNB08H_HVZHpJs,1067
32
- siibra/features/connectivity/tracing_connectivity.py,sha256=JehDrEEeYl_i-T81AE_AnamlKfzHkZ3nbheRAybFn24,1083
33
- siibra/features/dataset/__init__.py,sha256=KlHddELER_5IQ-xQ1xx5ExcEtqXWI8gpNvzGlC2on-Y,748
34
- siibra/features/dataset/ebrains.py,sha256=G3-jWGBMLyJm3X8g8vTVtXN2Kws3JZ7zIEDkO9jwWxc,2544
35
- siibra/features/image/__init__.py,sha256=HZ5LdR6DzkkkgsftTu314-DAMMLdf6Sfg6ceYVzYjas,1013
36
- siibra/features/image/image.py,sha256=QtFtXBt4rRkFq6AHeUOaQSCOjgBygIJ7lhz1gjsQ4c4,3585
37
- siibra/features/image/sections.py,sha256=oQparLp7Nj5dLBvUAs09rgnSgAxH86wN1SMmwkit0S0,961
38
- siibra/features/image/volume_of_interest.py,sha256=FuYxt-r6YOWN4tLaaZPL3_GAvX_WcZz3jRHxEnWySnQ,2654
39
- siibra/features/tabular/__init__.py,sha256=sldsgKiwpGOk5PvntIO16lJlWiTy68qVI_pLhepqbdI,1176
40
- siibra/features/tabular/bigbrain_intensity_profile.py,sha256=noXtsmQjW75epnpfHex0VAbvz7QLwvlkTn_PLSwASIQ,2708
41
- siibra/features/tabular/cell_density_profile.py,sha256=W1GtrOCacankczxpkz2V3n9zJyf2WCW3W_BpYrEc6yk,10820
42
- siibra/features/tabular/cortical_profile.py,sha256=I3MFsytAjvi6A2GaMhgXnF9-94LnAScIo_GR-HMEAv0,12540
43
- siibra/features/tabular/gene_expression.py,sha256=GbXmsdHCz8eFErTLUd6DXhQaeObftrwl9aIEgzlEdXA,9827
44
- siibra/features/tabular/layerwise_bigbrain_intensities.py,sha256=GIYjX7_Bfs7ywhJBkXd878BZGSiaKUV0BhILr-6D4zc,2117
45
- siibra/features/tabular/layerwise_cell_density.py,sha256=V8c16KdBACUYFxMYh1T9tdlXs_V67iFAZqlYx7y_4RY,3783
46
- siibra/features/tabular/receptor_density_fingerprint.py,sha256=GudVpZ2wWF1yGsDFKz4AEU761qA45rItLOwHYpY4Zcs,7299
47
- siibra/features/tabular/receptor_density_profile.py,sha256=ZYgL-3WxevVFtmEQSbR8Ot24VCMg5xzfXYEPBH1oM6k,3725
48
- siibra/features/tabular/regional_timeseries_activity.py,sha256=vfoEIu92l3wVdUbdnNqZ5nr9oBuahOrIGS5xhA8cW7s,10026
49
- siibra/features/tabular/tabular.py,sha256=NoNexdPJ3nhSsztWdWnnIHcX6PakcjEAOV-f9azqa-s,5323
50
- siibra/livequeries/__init__.py,sha256=yZ2bFYizwF_Z3F9VLNI95IrHcmSO5lqfFML_juifVHs,875
51
- siibra/livequeries/allen.py,sha256=2jj1gMr9mZFaOfRSf9lPzrcRLAoAMuWjvT_N3_KUkHI,14809
52
- siibra/livequeries/bigbrain.py,sha256=V7yRQIx6VLIkA9fwW6PfEw7kSkrwp3oE_-WYXe3bjMk,8365
53
- siibra/livequeries/ebrains.py,sha256=nAIhyPlVeRPNmmMKkGATUSDRoGK7aAg8zOGEKuS-z_w,5820
54
- siibra/livequeries/query.py,sha256=Yh24vRdcSYBTNx61sMoRCyXyNZ7TX1iqoiJ8fxOJ3V8,1849
55
- siibra/locations/__init__.py,sha256=q97HYl9mdBWNuQKvgh1Wi0eAz1TlG_dLSIxpyJuHCZo,3342
56
- siibra/locations/boundingbox.py,sha256=pdLZNyxUD-WvGHNYOvuqZtputCd5tPOxLYTvH6oBBNg,16492
57
- siibra/locations/location.py,sha256=Taw7oUIFBdXTE8C3b2vbGicPusJlad_KI1wW6iLL324,4361
58
- siibra/locations/point.py,sha256=wmtH0Isx1-bsk3TfNxXHFcYUmbsQXBt34l8LpFWxhHU,12863
59
- siibra/locations/pointcloud.py,sha256=61sUvXw5dtKouNKinQNwgGOFd7iwgJLf4D4zYNWo7Js,12474
60
- siibra/retrieval/__init__.py,sha256=bgoasCN6LFDlKVFCJC0q4kfGMZCsxt_NVCcJ5qy0sIo,1062
61
- siibra/retrieval/cache.py,sha256=kVB-hYtvQIQmlCozKlYJPaQxgtCKWOS3jB2qqefCVNc,7832
62
- siibra/retrieval/datasets.py,sha256=Hjai2cSFK1WoMgXp4uMJWBUqlO_APLQ_iDQ__8EpKEI,11031
63
- siibra/retrieval/repositories.py,sha256=L-JrEuKF6Xq7sEIdJ3iPFQPWaf5CiHMt96X1zi-gOVM,29936
64
- siibra/retrieval/requests.py,sha256=oup12LGw-MnSc7c3IwlX9Z5TrVXzCCRfGZFLLLR4jAs,23069
65
- siibra/retrieval/exceptions/__init__.py,sha256=CEY_n-Eh0_EBXYHDPxmIXzO6C_Km0WQFvENAMvRXmYg,875
66
- siibra/vocabularies/__init__.py,sha256=Qn_xBKrFhla7d_PjDgN6gX4gxroeSRP3ntBZ6gNnvtE,1288
67
- siibra/vocabularies/gene_names.json,sha256=i-gnh753GyZtQfX_dWibNYr_d5ccDPHooOwsdeKUYqE,1647972
68
- siibra/vocabularies/receptor_symbols.json,sha256=F6DZIArPCBmJV_lWGV-zDpBBH_GOJOZm67LBE4qzMa4,5722
69
- siibra/vocabularies/region_aliases.json,sha256=T2w1wRlxPNTsPppXn0bzC70tNsb8mOjLsoHuxDSYm2w,8563
70
- siibra/volumes/__init__.py,sha256=j7h6WNQk2juIyxs2OlruWj5VcKxsy1g-wD2Q05rM-wM,935
71
- siibra/volumes/parcellationmap.py,sha256=lgqVjwHdmjmKj_2PguAH4jda3dc-L0p0QzfQ9emPJRg,49774
72
- siibra/volumes/sparsemap.py,sha256=ZHkHh7NNEPZzRE2-XGWWPRaVVL2V4voYYzYdZ7RCxRg,17437
73
- siibra/volumes/volume.py,sha256=-ULibtP5MCy0a3tHqbeFweIUP7sLZGuhj6eW558BRlM,32619
74
- siibra/volumes/providers/__init__.py,sha256=0uDbnsjlAHnxoSdFghzYfhtjVki9721hi7Sp1P6GjNY,934
75
- siibra/volumes/providers/freesurfer.py,sha256=LxPHbfVJLXkP4WVXCYhsildRUZUvzgv6jJOWeNLavw8,4893
76
- siibra/volumes/providers/gifti.py,sha256=mPVFkBFnwbCbMks_ysuNbhe0Pj5ndxONPmq-Xr-ir3w,6231
77
- siibra/volumes/providers/neuroglancer.py,sha256=JH8z6jb7u6nkqtNR3ZFYPrtwexAS6z68pesrLA2lYrk,28712
78
- siibra/volumes/providers/nifti.py,sha256=AXhWvbt78uEvIT6Z8ABWZ6k0zYUEWZKniSxfLAqDE3k,10135
79
- siibra/volumes/providers/provider.py,sha256=jxhOGHrSEeBgN0tAi7p8ju3twtUkhkjrk-e-3-chtxI,3695
80
- siibra-1.0.1a0.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
81
- siibra-1.0.1a0.dist-info/METADATA,sha256=jY1qR1aP2er68Kb1URFJ-bE4i8ZXYj8wlLviXdlkxlI,8884
82
- siibra-1.0.1a0.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
83
- siibra-1.0.1a0.dist-info/top_level.txt,sha256=NF0OSGLL0li2qyC7MaU0iBB5Y9S09_euPpvisD0-8Hg,7
84
- siibra-1.0.1a0.dist-info/RECORD,,