siibra 0.4a81__py3-none-any.whl → 0.4a83__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of siibra might be problematic. Click here for more details.

siibra/VERSION CHANGED
@@ -1 +1 @@
1
- 0.4a81
1
+ 0.4a83
@@ -357,6 +357,7 @@ class Factory:
357
357
  anchor=cls.extract_anchor(spec),
358
358
  datasets=cls.extract_datasets(spec),
359
359
  prerelease=spec.get("prerelease", False),
360
+ id=spec.get("@id", None),
360
361
  )
361
362
 
362
363
  @classmethod
@@ -368,6 +369,7 @@ class Factory:
368
369
  anchor=cls.extract_anchor(spec),
369
370
  datasets=cls.extract_datasets(spec),
370
371
  prerelease=spec.get("prerelease", False),
372
+ id=spec.get("@id", None),
371
373
  )
372
374
 
373
375
  @classmethod
@@ -379,6 +381,7 @@ class Factory:
379
381
  anchor=cls.extract_anchor(spec),
380
382
  datasets=cls.extract_datasets(spec),
381
383
  prerelease=spec.get("prerelease", False),
384
+ id=spec.get("@id", None),
382
385
  )
383
386
 
384
387
  @classmethod
@@ -391,6 +394,7 @@ class Factory:
391
394
  anchor=cls.extract_anchor(spec),
392
395
  datasets=cls.extract_datasets(spec),
393
396
  prerelease=spec.get("prerelease", False),
397
+ id=spec.get("@id", None),
394
398
  )
395
399
 
396
400
  @classmethod
@@ -404,6 +408,7 @@ class Factory:
404
408
  "providers": vol._providers.values(),
405
409
  "datasets": cls.extract_datasets(spec),
406
410
  "prerelease": spec.get("prerelease", False),
411
+ "id": spec.get("@id", None),
407
412
  }
408
413
  modality = spec.get('modality', "")
409
414
  if modality == "cell body staining":
@@ -422,6 +427,7 @@ class Factory:
422
427
  "providers": vol._providers.values(),
423
428
  "datasets": cls.extract_datasets(spec),
424
429
  "prerelease": spec.get("prerelease", False),
430
+ "id": spec.get("@id", None),
425
431
  }
426
432
  modality = spec.get('modality', "")
427
433
  if modality == "cell body staining":
@@ -472,6 +478,7 @@ class Factory:
472
478
  "description": spec.get("description", ""),
473
479
  "datasets": cls.extract_datasets(spec),
474
480
  "prerelease": spec.get("prerelease", False),
481
+ "id": spec.get("@id", None),
475
482
  }
476
483
  if modality == "StreamlineCounts":
477
484
  return connectivity.StreamlineCounts(**kwargs)
@@ -504,6 +511,7 @@ class Factory:
504
511
  "datasets": cls.extract_datasets(spec),
505
512
  "timestep": spec.get("timestep", ("1 no_unit")),
506
513
  "prerelease": spec.get("prerelease", False),
514
+ "id": spec.get("@id", None),
507
515
  }
508
516
  if modality == "Regional BOLD signal":
509
517
  kwargs["paradigm"] = spec.get("paradigm", "")
siibra/core/concept.py CHANGED
@@ -101,7 +101,15 @@ class AtlasConcept:
101
101
 
102
102
  @property
103
103
  def LICENSE(self) -> str:
104
- return '\n'.join([ds.LICENSE for ds in self.datasets])
104
+ licenses = []
105
+ for ds in self.datasets:
106
+ if ds.LICENSE is None or ds.LICENSE == "No license information is found.":
107
+ continue
108
+ if isinstance(ds.LICENSE, str):
109
+ licenses.append(ds.LICENSE)
110
+ if isinstance(ds.LICENSE, list):
111
+ licenses.extend(ds.LICENSE)
112
+ return '\n'.join(licenses)
105
113
 
106
114
  @property
107
115
  def doi_or_url(self) -> str:
@@ -52,6 +52,7 @@ class RegionalConnectivity(Feature):
52
52
  description: str = "",
53
53
  datasets: list = [],
54
54
  prerelease: bool = False,
55
+ id: str = None,
55
56
  ):
56
57
  """
57
58
  Construct a parcellation-averaged connectivity matrix.
@@ -86,6 +87,7 @@ class RegionalConnectivity(Feature):
86
87
  anchor=anchor,
87
88
  datasets=datasets,
88
89
  prerelease=prerelease,
90
+ id=id,
89
91
  )
90
92
  self.cohort = cohort.upper()
91
93
  self._connector = connector
@@ -94,6 +94,8 @@ class Feature:
94
94
  anchor: _anchor.AnatomicalAnchor,
95
95
  datasets: List['TypeDataset'] = [],
96
96
  prerelease: bool = False,
97
+ id: str = None,
98
+
97
99
  ):
98
100
  """
99
101
  Parameters
@@ -111,6 +113,7 @@ class Feature:
111
113
  self._anchor_cached = anchor
112
114
  self.datasets = datasets
113
115
  self._prerelease = prerelease
116
+ self._id = id
114
117
 
115
118
  @property
116
119
  def modality(self):
@@ -164,7 +167,15 @@ class Feature:
164
167
 
165
168
  @property
166
169
  def LICENSE(self) -> str:
167
- return '\n'.join([ds.LICENSE for ds in self.datasets])
170
+ licenses = []
171
+ for ds in self.datasets:
172
+ if ds.LICENSE is None or ds.LICENSE == "No license information is found.":
173
+ continue
174
+ if isinstance(ds.LICENSE, str):
175
+ licenses.append(ds.LICENSE)
176
+ if isinstance(ds.LICENSE, list):
177
+ licenses.extend(ds.LICENSE)
178
+ return '\n'.join(licenses)
168
179
 
169
180
  @property
170
181
  def doi_or_url(self) -> str:
@@ -247,12 +258,16 @@ class Feature:
247
258
 
248
259
  @property
249
260
  def id(self):
261
+ if self._id:
262
+ return self._id
263
+
250
264
  prefix = ''
251
265
  for ds in self.datasets:
252
266
  if hasattr(ds, "id"):
253
267
  prefix = ds.id + '--'
254
268
  break
255
- return prefix + md5(self.name.encode("utf-8")).hexdigest()
269
+ name_ = self.name.lstrip("[PRERELEASE] ")
270
+ return prefix + md5(name_.encode("utf-8")).hexdigest()
256
271
 
257
272
  def _export(self, fh: ZipFile):
258
273
  """
@@ -63,6 +63,7 @@ class Image(feature.Feature, _volume.Volume):
63
63
  region: str = None,
64
64
  datasets: List = [],
65
65
  prerelease: bool = False,
66
+ id: str = None,
66
67
  ):
67
68
  feature.Feature.__init__(
68
69
  self,
@@ -71,6 +72,7 @@ class Image(feature.Feature, _volume.Volume):
71
72
  anchor=None, # lazy implementation below!
72
73
  datasets=datasets,
73
74
  prerelease=prerelease,
75
+ id=id,
74
76
  )
75
77
 
76
78
  _volume.Volume.__init__(
@@ -69,6 +69,7 @@ class CellDensityProfile(
69
69
  anchor: _anchor.AnatomicalAnchor,
70
70
  datasets: list = [],
71
71
  prerelease: bool = False,
72
+ id: str = None,
72
73
  ):
73
74
  """
74
75
  Generate a cell density profile from a URL to a cloud folder
@@ -82,6 +83,7 @@ class CellDensityProfile(
82
83
  anchor=anchor,
83
84
  datasets=datasets,
84
85
  prerelease=prerelease,
86
+ id=id,
85
87
  )
86
88
  self._step = 0.01
87
89
  self._url = url
@@ -54,6 +54,7 @@ class CorticalProfile(tabular.Tabular):
54
54
  boundary_positions: Dict[Tuple[int, int], float] = None,
55
55
  datasets: list = [],
56
56
  prerelease: bool = False,
57
+ id: str = None,
57
58
  ):
58
59
  """Initialize profile.
59
60
 
@@ -95,6 +96,7 @@ class CorticalProfile(tabular.Tabular):
95
96
  data=None, # lazy loader below
96
97
  datasets=datasets,
97
98
  prerelease=prerelease,
99
+ id=id,
98
100
  )
99
101
 
100
102
  def _check_sanity(self):
@@ -57,6 +57,7 @@ class LayerwiseCellDensity(
57
57
  anchor: _anchor.AnatomicalAnchor,
58
58
  datasets: list = [],
59
59
  prerelease: bool = False,
60
+ id: str = None,
60
61
  ):
61
62
  tabular.Tabular.__init__(
62
63
  self,
@@ -66,6 +67,7 @@ class LayerwiseCellDensity(
66
67
  datasets=datasets,
67
68
  data=None, # lazy loading below
68
69
  prerelease=prerelease,
70
+ id=id,
69
71
  )
70
72
  self.unit = "# detected cells/0.1mm3"
71
73
  self._filepairs = list(zip(segmentfiles, layerfiles))
@@ -44,6 +44,7 @@ class ReceptorDensityFingerprint(
44
44
  anchor: _anchor.AnatomicalAnchor,
45
45
  datasets: list = [],
46
46
  prerelease: bool = False,
47
+ id: str = None,
47
48
  ):
48
49
  """ Generate a receptor fingerprint from a URL to a .tsv file
49
50
  formatted according to the structure used by Palomero-Gallagher et al.
@@ -56,6 +57,7 @@ class ReceptorDensityFingerprint(
56
57
  data=None, # lazy loading below
57
58
  datasets=datasets,
58
59
  prerelease=prerelease,
60
+ id=id,
59
61
  )
60
62
  self._loader = requests.HttpRequest(tsvfile)
61
63
 
@@ -41,6 +41,7 @@ class ReceptorDensityProfile(
41
41
  anchor: _anchor.AnatomicalAnchor,
42
42
  datasets: list = [],
43
43
  prerelease: bool = False,
44
+ id: str = None,
44
45
  ):
45
46
  """Generate a receptor density profile from a URL to a .tsv file
46
47
  formatted according to the structure used by Palomero-Gallagher et al.
@@ -52,6 +53,7 @@ class ReceptorDensityProfile(
52
53
  anchor=anchor,
53
54
  datasets=datasets,
54
55
  prerelease=prerelease,
56
+ id=id
55
57
  )
56
58
  self.type = receptor
57
59
  self._data_cached = None
@@ -49,6 +49,7 @@ class RegionalTimeseriesActivity(tabular.Tabular):
49
49
  datasets: list = [],
50
50
  paradigm: str = "",
51
51
  prerelease: bool = False,
52
+ id: str = None,
52
53
  ):
53
54
  """
54
55
  """
@@ -59,7 +60,8 @@ class RegionalTimeseriesActivity(tabular.Tabular):
59
60
  anchor=anchor,
60
61
  datasets=datasets,
61
62
  data=None, # lazy loading below
62
- prerelease=prerelease
63
+ prerelease=prerelease,
64
+ id=id,
63
65
  )
64
66
  self.cohort = cohort.upper()
65
67
  self._connector = connector
@@ -46,6 +46,7 @@ class Tabular(feature.Feature):
46
46
  data: pd.DataFrame, # sample x feature dimension
47
47
  datasets: list = [],
48
48
  prerelease: bool = False,
49
+ id: str = None,
49
50
  ):
50
51
  feature.Feature.__init__(
51
52
  self,
@@ -54,6 +55,7 @@ class Tabular(feature.Feature):
54
55
  anchor=anchor,
55
56
  datasets=datasets,
56
57
  prerelease=prerelease,
58
+ id=id,
57
59
  )
58
60
  self._data_cached = data
59
61
 
@@ -56,6 +56,10 @@ class EbrainsBaseDataset(ABC):
56
56
  def name(self) -> str:
57
57
  raise NotImplementedError
58
58
 
59
+ @abstractproperty
60
+ def LICENSE(self) -> List[str]:
61
+ raise NotImplementedError
62
+
59
63
  @abstractproperty
60
64
  def urls(self) -> List[EbrainsDatasetUrl]:
61
65
  raise NotImplementedError
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: siibra
3
- Version: 0.4a81
3
+ Version: 0.4a83
4
4
  Summary: siibra - Software interfaces for interacting with brain atlases
5
5
  Home-page: https://github.com/FZJ-INM1-BDA/siibra-python
6
6
  Author: Big Data Analytics Group, Forschungszentrum Juelich, Institute of Neuroscience and Medicine (INM-1)
@@ -1,12 +1,12 @@
1
- siibra/VERSION,sha256=g9_JjItOuWjJl9d8unj9O6xgS_VZXN39CB-ynWiIXYc,7
1
+ siibra/VERSION,sha256=8xHFBd8hW3Lc4HP4uzf7eTsjIPJ4yAQgkM8B6QBMfSU,7
2
2
  siibra/__init__.py,sha256=qBxxMRyl9RojNt0twQr2LDk1Nyk5eNsPHFxxoIwnpx4,4540
3
3
  siibra/commons.py,sha256=PImsqrZBp2Mn_9ZEJOxEOd4i-w_HPMv4sUcHCtN9cPw,25868
4
4
  siibra/configuration/__init__.py,sha256=-_Kuf0TfMEdFXiSCTAdcHUL_krA8-cxhJypSNNay53Q,752
5
5
  siibra/configuration/configuration.py,sha256=x06QsaqGQbce1d9TuFCCYEgMWJBlLbkt8B3zTfYz5RE,6887
6
- siibra/configuration/factory.py,sha256=CxJWspLpXPJWB2zeNqgd-2OcyA_tkwTS9IfRmiM5Gao,20585
6
+ siibra/configuration/factory.py,sha256=fpeyl3BbeDsjBdtqd9gNdQ_gEFuZQ1qUmDXYA5rB8Wg,20901
7
7
  siibra/core/__init__.py,sha256=z22elfoi5_TscUb17-pBoGyfT_q9PQpvgOgSLEJe2WE,916
8
8
  siibra/core/atlas.py,sha256=YwhVWAIT0XGfzKjSuQUNpljdIE4VP4crNQ3VNfTrgKg,7868
9
- siibra/core/concept.py,sha256=qkxWbfbPStUVN6OL88o5LaQyi4m34xHWtaA1FiHUZsY,9279
9
+ siibra/core/concept.py,sha256=rKR7FO1HaFdy076Dy0y9Bjcdu_tcYUHbxLYNZxH7XTY,9595
10
10
  siibra/core/parcellation.py,sha256=f5UEeXWQ3-dsU1YKswXL9nvCPyWSwp0rMqEUlMt8hxw,13951
11
11
  siibra/core/region.py,sha256=jp44pOnuazzgpSlbGMjJ0-7xXOJHUYXg4YakXrbbVoM,32887
12
12
  siibra/core/relation_qualification.py,sha256=EUU9EPkV0mdCjGUU2hki1rQ5R5U4X2YoFmvwOirO2_E,3641
@@ -16,30 +16,30 @@ siibra/explorer/url.py,sha256=mUAFN7OHfLELfdqqJmSdAkmXJjKCv6Qh5RHtyxNQjfo,5868
16
16
  siibra/explorer/util.py,sha256=Z2ruicDL3S_qcxhHHW0GF1q5-r963tJpzgtQmAn8YSM,1424
17
17
  siibra/features/__init__.py,sha256=Y5q2M7HoToTcfAdO50jmnPGZybJOi5GyEcbxQRscJjo,1518
18
18
  siibra/features/anchor.py,sha256=1w9VuSEWC3oapph8GtbsW26kvMcE7_9ik7281oRMjlE,14245
19
- siibra/features/feature.py,sha256=4P9g01TALfZhbl2j9Ze11XrtaMnnYFr7vWa7cFPGp3k,20019
19
+ siibra/features/feature.py,sha256=YdIBmyJYFlJby6oIXxK1zFV6FJVr3_eygDynCLCe7vk,20478
20
20
  siibra/features/connectivity/__init__.py,sha256=ybKN9OfmabSeTx1I6WSrULu5dT6raefty8QB2XaiUrE,1077
21
21
  siibra/features/connectivity/functional_connectivity.py,sha256=AkRYufi4r3CeV50FLaI6kjKraQ4t9G58iPn521HRRGk,1407
22
- siibra/features/connectivity/regional_connectivity.py,sha256=hK372Dhn-Bn8ALj-Gmwm1sv9HjKXfznOsHfRVNmGcO0,15360
22
+ siibra/features/connectivity/regional_connectivity.py,sha256=PlMO13p9uYB1h72qVPRKqDkyHEtkbWLLD3yxYGz4twU,15403
23
23
  siibra/features/connectivity/streamline_counts.py,sha256=ngl7xCiCUOyflyBvjZYa3ShOmtf21E5e0A_BeWfFtSQ,1064
24
24
  siibra/features/connectivity/streamline_lengths.py,sha256=0a09Dag-eRvs1KgHSU47I3xQwbgHICsDozhZyuNzQME,1067
25
25
  siibra/features/connectivity/tracing_connectivity.py,sha256=pyTMTLvkJL3ftk56s0AbT8dHexV4EyuTJ2yX27kLGfc,1083
26
26
  siibra/features/dataset/__init__.py,sha256=5h_wstfa3h35emL1qoKOtcFOiIjKZX9oIy-GwsChEyc,748
27
27
  siibra/features/dataset/ebrains.py,sha256=wdb1-4ovHE1duw2a9NSU0PYgqnlt8-f4pLsGwfTa8xw,2542
28
28
  siibra/features/image/__init__.py,sha256=UIECVLwKYKeuCPNa4WcjcLDuNr_3JxCyiOQSjBRf36U,1013
29
- siibra/features/image/image.py,sha256=rr9sF2PZbmTgeGRASdIB-sl-3dBYYr5SJfrUnj1xygM,3305
29
+ siibra/features/image/image.py,sha256=1K4u6X6q2CV8avguE56LQQSe5ziahnLr8QFIdvMmFKE,3348
30
30
  siibra/features/image/sections.py,sha256=d4TQSs6nIKQ5vgi89htERfWOMgnvOA9k4LhaXBMWNbE,961
31
31
  siibra/features/image/volume_of_interest.py,sha256=DIv9GNOptfungLddA_CfrrCfY8p36rbWCT9xkE6K66w,2654
32
32
  siibra/features/tabular/__init__.py,sha256=3DBwa8JtGd-npeOyyw6kJzcveKXadbqSATyJtTnY3-w,1176
33
33
  siibra/features/tabular/bigbrain_intensity_profile.py,sha256=-dXzznb6r1BhMjE8jOeugbZ3MjXo0AJkTtOw25SehYs,2238
34
- siibra/features/tabular/cell_density_profile.py,sha256=RmeROeC76QOqc0D9z2QsFGWCqF3OtT55NJs65D3ii3k,9166
35
- siibra/features/tabular/cortical_profile.py,sha256=tf5RSILGSvqc4QbWgQPkl9r5bKLGiHvEX0z53_A73D8,9620
34
+ siibra/features/tabular/cell_density_profile.py,sha256=QICybWoFvyzyH0sVA79Q8WUEmXZLyIdge6arfOLkV78,9209
35
+ siibra/features/tabular/cortical_profile.py,sha256=xxJ3vwqBxGg0X2g_Zoslj6v12hNc-iPMlKkGBRjifgs,9663
36
36
  siibra/features/tabular/gene_expression.py,sha256=YqUicjGC0rkPXSWZwJtUjgxCIcfekeGk9nkWT0EZceE,4965
37
37
  siibra/features/tabular/layerwise_bigbrain_intensities.py,sha256=w6AxLPyUxHBOQlkNPgr4O4xARTzmmXenEHA0nbUDgbo,2161
38
- siibra/features/tabular/layerwise_cell_density.py,sha256=x0--ySigfrkCjuyU54bmqzC89Hj2ceXGUd6ij0FXBEE,4237
39
- siibra/features/tabular/receptor_density_fingerprint.py,sha256=yXCtWypgs6M6_ItgK63wRVymstweSRnR_OUU01TMfu0,7234
40
- siibra/features/tabular/receptor_density_profile.py,sha256=XBxNvUf9RyDpDx7fLBN_aOEZOKtT2KX3livrE0C1Nn8,3647
41
- siibra/features/tabular/regional_timeseries_activity.py,sha256=jNqGK6sNM5E5Mp_UeuPA-BZ31yX6Osi7_TQPSyynLGE,9018
42
- siibra/features/tabular/tabular.py,sha256=Yjxg-CRFNdSGUeQ9wzDU0XJL2nXqGUVHZr129c8X4Io,5072
38
+ siibra/features/tabular/layerwise_cell_density.py,sha256=FHIG4YfVkVFq466bZU_6UN-OqSlW1lV97B_hgAqqGwg,4280
39
+ siibra/features/tabular/receptor_density_fingerprint.py,sha256=3aH7hepvx1Qx-qpqA5hV2Qv_e6vF32pfpf-JFpLq1s0,7277
40
+ siibra/features/tabular/receptor_density_profile.py,sha256=yNczKA0OnEro01fIbQMtaKY936YlWbHQTsYtaCKDjJo,3689
41
+ siibra/features/tabular/regional_timeseries_activity.py,sha256=9ZXAewiStc28ef3EN4qUoEX7em77aR9TbBpr7kDeqGg,9062
42
+ siibra/features/tabular/tabular.py,sha256=kqlSWJzK95Ft9UbXaPIBkxJZQwO1ss42gHdOMflbwZY,5115
43
43
  siibra/livequeries/__init__.py,sha256=rpJKroYqtujIkvAUlavOIHUlP4Yg73U27Se44aZms2Q,1013
44
44
  siibra/livequeries/allen.py,sha256=a0-F1Wk8ocJcJBm1pZLv9BvHjdv2iPeM56xmkN-g-r4,12252
45
45
  siibra/livequeries/bigbrain.py,sha256=4HPBWCiciAdDgItaiQDY85ZVFBtcrBzp1oOAYCL3ldg,9935
@@ -52,7 +52,7 @@ siibra/locations/point.py,sha256=ZPfjcGgxBvZrXNJ7HA4qLk9xr-0ZlA2Nj_5z8w4IZzw,126
52
52
  siibra/locations/pointset.py,sha256=Wp-qlU3hdlLlEc3WU-QodpL_70It7GQf9FctnYLXsQI,7159
53
53
  siibra/retrieval/__init__.py,sha256=pAJ2WsNk9tVY1RddmXzya1iFgJXJarO4TVCJTob1Ej0,1062
54
54
  siibra/retrieval/cache.py,sha256=9Wssws2YHiI_OW4EZp72OzYV9nw8h5cAEAakSxtRMts,5143
55
- siibra/retrieval/datasets.py,sha256=hmzTIAJ50fK302crWXlNjA27NrVNBdks8xTx8tb2uvM,11174
55
+ siibra/retrieval/datasets.py,sha256=zDiSgbmL6aqnZpYrJMcfbv2c_Kh-2KMwmHQTJkdF9GM,11267
56
56
  siibra/retrieval/repositories.py,sha256=wYE3oYcIBgD3WOqIerS3darsg_TSrfpdDJ72l2uytak,25961
57
57
  siibra/retrieval/requests.py,sha256=tRmgocvob7619e_4Vw-dVd8R3JJ95UGkVyESXF2EBE0,22013
58
58
  siibra/retrieval/exceptions/__init__.py,sha256=_w996kp5rxuvi-_iLhrByrH2OtApxm_TykthkaQvKpo,874
@@ -67,8 +67,8 @@ siibra/volumes/nifti.py,sha256=nGSCedjpsiy43XIiHQ2SRy9rPRK8Ci9QDq4AHKclCck,9030
67
67
  siibra/volumes/parcellationmap.py,sha256=phoMzNLI3Ig9rWvuD_c1yBm3ejLxAJGXtTHMXqw-ivc,44243
68
68
  siibra/volumes/sparsemap.py,sha256=j41ozLSgKri68-KDsqo46gEs4lT4aYsf2yMF4l-ruCo,21752
69
69
  siibra/volumes/volume.py,sha256=h_KrdDkpeoENnOrE7BlTZNXaZQGTrJXHX0eSyArxF-4,11667
70
- siibra-0.4a81.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
71
- siibra-0.4a81.dist-info/METADATA,sha256=tVcIwpPs7lmGR0VaD7guc8dlw8PQoI1RiMJ7RUpfvG0,8328
72
- siibra-0.4a81.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
73
- siibra-0.4a81.dist-info/top_level.txt,sha256=NF0OSGLL0li2qyC7MaU0iBB5Y9S09_euPpvisD0-8Hg,7
74
- siibra-0.4a81.dist-info/RECORD,,
70
+ siibra-0.4a83.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
71
+ siibra-0.4a83.dist-info/METADATA,sha256=GTH5UFZL3sWOPTnHxwXGpUiNCpd9G6t73mtDiMuIZYE,8328
72
+ siibra-0.4a83.dist-info/WHEEL,sha256=OVMc5UfuAQiSplgO0_WdW7vXVGAt9Hdd6qtN4HotdyA,91
73
+ siibra-0.4a83.dist-info/top_level.txt,sha256=NF0OSGLL0li2qyC7MaU0iBB5Y9S09_euPpvisD0-8Hg,7
74
+ siibra-0.4a83.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (75.1.0)
2
+ Generator: setuptools (75.2.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5