siibra 0.4a33__py3-none-any.whl → 0.4a46__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of siibra might be problematic. Click here for more details.
- siibra/VERSION +1 -1
- siibra/__init__.py +2 -0
- siibra/commons.py +53 -8
- siibra/configuration/configuration.py +21 -17
- siibra/configuration/factory.py +95 -19
- siibra/core/atlas.py +11 -8
- siibra/core/concept.py +41 -8
- siibra/core/parcellation.py +94 -43
- siibra/core/region.py +160 -187
- siibra/core/space.py +44 -39
- siibra/features/__init__.py +19 -19
- siibra/features/anchor.py +9 -6
- siibra/features/connectivity/__init__.py +0 -8
- siibra/features/connectivity/functional_connectivity.py +11 -3
- siibra/features/{basetypes → connectivity}/regional_connectivity.py +46 -33
- siibra/features/connectivity/streamline_counts.py +3 -2
- siibra/features/connectivity/streamline_lengths.py +3 -2
- siibra/features/{basetypes → dataset}/__init__.py +2 -0
- siibra/features/{external → dataset}/ebrains.py +3 -3
- siibra/features/feature.py +420 -0
- siibra/{samplers → features/image}/__init__.py +7 -1
- siibra/features/{basetypes/volume_of_interest.py → image/image.py} +12 -7
- siibra/features/{external/__init__.py → image/sections.py} +8 -5
- siibra/features/image/volume_of_interest.py +70 -0
- siibra/features/{cellular → tabular}/__init__.py +7 -11
- siibra/features/{cellular → tabular}/bigbrain_intensity_profile.py +5 -2
- siibra/features/{cellular → tabular}/cell_density_profile.py +6 -2
- siibra/features/{basetypes → tabular}/cortical_profile.py +48 -41
- siibra/features/{molecular → tabular}/gene_expression.py +5 -2
- siibra/features/{cellular → tabular}/layerwise_bigbrain_intensities.py +6 -2
- siibra/features/{cellular → tabular}/layerwise_cell_density.py +9 -3
- siibra/features/{molecular → tabular}/receptor_density_fingerprint.py +3 -2
- siibra/features/{molecular → tabular}/receptor_density_profile.py +6 -2
- siibra/features/tabular/regional_timeseries_activity.py +213 -0
- siibra/features/{basetypes → tabular}/tabular.py +14 -9
- siibra/livequeries/allen.py +1 -1
- siibra/livequeries/bigbrain.py +2 -3
- siibra/livequeries/ebrains.py +3 -9
- siibra/livequeries/query.py +1 -1
- siibra/locations/location.py +4 -3
- siibra/locations/point.py +21 -17
- siibra/locations/pointset.py +2 -2
- siibra/retrieval/__init__.py +1 -1
- siibra/retrieval/cache.py +8 -2
- siibra/retrieval/datasets.py +149 -29
- siibra/retrieval/repositories.py +19 -8
- siibra/retrieval/requests.py +98 -116
- siibra/volumes/gifti.py +26 -11
- siibra/volumes/neuroglancer.py +35 -19
- siibra/volumes/nifti.py +8 -9
- siibra/volumes/parcellationmap.py +341 -184
- siibra/volumes/sparsemap.py +67 -53
- siibra/volumes/volume.py +25 -13
- {siibra-0.4a33.dist-info → siibra-0.4a46.dist-info}/METADATA +4 -3
- siibra-0.4a46.dist-info/RECORD +69 -0
- {siibra-0.4a33.dist-info → siibra-0.4a46.dist-info}/WHEEL +1 -1
- siibra/features/basetypes/feature.py +0 -248
- siibra/features/fibres/__init__.py +0 -14
- siibra/features/functional/__init__.py +0 -14
- siibra/features/molecular/__init__.py +0 -26
- siibra/samplers/bigbrain.py +0 -181
- siibra-0.4a33.dist-info/RECORD +0 -71
- {siibra-0.4a33.dist-info → siibra-0.4a46.dist-info}/LICENSE +0 -0
- {siibra-0.4a33.dist-info → siibra-0.4a46.dist-info}/top_level.txt +0 -0
|
@@ -1,14 +0,0 @@
|
|
|
1
|
-
# Copyright 2018-2021
|
|
2
|
-
# Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH
|
|
3
|
-
|
|
4
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
-
# you may not use this file except in compliance with the License.
|
|
6
|
-
# You may obtain a copy of the License at
|
|
7
|
-
|
|
8
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
-
|
|
10
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
-
# See the License for the specific language governing permissions and
|
|
14
|
-
# limitations under the License.
|
|
@@ -1,14 +0,0 @@
|
|
|
1
|
-
# Copyright 2018-2021
|
|
2
|
-
# Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH
|
|
3
|
-
|
|
4
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
-
# you may not use this file except in compliance with the License.
|
|
6
|
-
# You may obtain a copy of the License at
|
|
7
|
-
|
|
8
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
-
|
|
10
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
-
# See the License for the specific language governing permissions and
|
|
14
|
-
# limitations under the License.
|
|
@@ -1,26 +0,0 @@
|
|
|
1
|
-
# Copyright 2018-2021
|
|
2
|
-
# Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH
|
|
3
|
-
|
|
4
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
-
# you may not use this file except in compliance with the License.
|
|
6
|
-
# You may obtain a copy of the License at
|
|
7
|
-
|
|
8
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
-
|
|
10
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
-
# See the License for the specific language governing permissions and
|
|
14
|
-
# limitations under the License.
|
|
15
|
-
|
|
16
|
-
from .receptor_density_profile import ReceptorDensityProfile
|
|
17
|
-
from .receptor_density_fingerprint import ReceptorDensityFingerprint
|
|
18
|
-
from .gene_expression import GeneExpressions
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
def __dir__():
|
|
22
|
-
return [
|
|
23
|
-
"ReceptorDensityProfile",
|
|
24
|
-
"ReceptorDensityFingerprint",
|
|
25
|
-
"GeneExpressions",
|
|
26
|
-
]
|
siibra/samplers/bigbrain.py
DELETED
|
@@ -1,181 +0,0 @@
|
|
|
1
|
-
# Copyright 2018-2021
|
|
2
|
-
# Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH
|
|
3
|
-
|
|
4
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
-
# you may not use this file except in compliance with the License.
|
|
6
|
-
# You may obtain a copy of the License at
|
|
7
|
-
|
|
8
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
-
|
|
10
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
-
# See the License for the specific language governing permissions and
|
|
14
|
-
# limitations under the License.
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
from ..commons import logger
|
|
18
|
-
from ..configuration.configuration import REGISTRY
|
|
19
|
-
from ..locations import Point, PointSet
|
|
20
|
-
|
|
21
|
-
from ctypes import ArgumentError
|
|
22
|
-
import numpy as np
|
|
23
|
-
from skimage import measure
|
|
24
|
-
from nilearn import image
|
|
25
|
-
from tqdm import tqdm
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
class BigBrainCortexSampler:
|
|
29
|
-
"""Sample layerwise grayvalue statistics from BigBrain cortex.
|
|
30
|
-
|
|
31
|
-
Given a coordinate in BigBrain space, the sampler centers a fixed-size box
|
|
32
|
-
near the given location in BigBrain cortex and extracts layerwise grayvalue
|
|
33
|
-
statistics. The center is found by identifying the closest point in Layer IV
|
|
34
|
-
which is inside a specified maximum distance (default 1mm) from the given point.
|
|
35
|
-
"""
|
|
36
|
-
|
|
37
|
-
def __init__(self, boxwidth_mm=3, maxdist_mm=1):
|
|
38
|
-
"""Create a new cortex sample for BigBrain.
|
|
39
|
-
|
|
40
|
-
Arguments
|
|
41
|
-
---------
|
|
42
|
-
boxwidth_mm : float
|
|
43
|
-
Sidelength of the boxes used for grayvalue sampling (default: 3mm)
|
|
44
|
-
maxdist_mm : float
|
|
45
|
-
Maximum distance allowed to shift given sampling locations towards the
|
|
46
|
-
mid surface of the cortex. If the mid surface is not found within
|
|
47
|
-
this distance, no data will be sampled.
|
|
48
|
-
"""
|
|
49
|
-
|
|
50
|
-
self.space = REGISTRY.Space["bigbrain"]
|
|
51
|
-
self._layermask = REGISTRY.Parcellation["layers"].get_map(self.space)
|
|
52
|
-
self._template = self.space.get_template()
|
|
53
|
-
self.boxwidth_mm = boxwidth_mm
|
|
54
|
-
self.maxdist_mm = maxdist_mm
|
|
55
|
-
|
|
56
|
-
def sample(self, location):
|
|
57
|
-
"""
|
|
58
|
-
Given sample locations in BigBrain space, the sampler centers a fixed-size box
|
|
59
|
-
near the given location in BigBrain cortex and extracts layerwise grayvalue
|
|
60
|
-
statistics. The center is found by identifying the closest point in Layer IV
|
|
61
|
-
which is inside a specified maximum distance (default 1mm) from the given point.
|
|
62
|
-
If the location is not close enough to the cortical midsurface, the data sample
|
|
63
|
-
will be empty and a warning will be printed.
|
|
64
|
-
|
|
65
|
-
Parameters
|
|
66
|
-
----------
|
|
67
|
-
location: Point, or PointSet
|
|
68
|
-
Candidate location(s) for sampling
|
|
69
|
-
|
|
70
|
-
Return
|
|
71
|
-
------
|
|
72
|
-
List of dicts, one per sample point, with keys:
|
|
73
|
-
- 'center': the physical coordinate of the cube used as a region of interest
|
|
74
|
-
- 'boxsize': sidelenght in mm f the cube used as a region of interest
|
|
75
|
-
- 'space': name of the space (bigbrain)
|
|
76
|
-
- 'layers': Dict of layer-wise statistics with mean gray value, standard deviation, and volume in mm
|
|
77
|
-
"""
|
|
78
|
-
if location.space != self.space:
|
|
79
|
-
logger.info(
|
|
80
|
-
f"Warping sample locations from {location.space.name} to {self.space.name}"
|
|
81
|
-
)
|
|
82
|
-
loc_bb = location.warp(self.space)
|
|
83
|
-
else:
|
|
84
|
-
loc_bb = location
|
|
85
|
-
|
|
86
|
-
result = []
|
|
87
|
-
if isinstance(loc_bb, Point):
|
|
88
|
-
result.append(self._sample_single_point(loc_bb))
|
|
89
|
-
elif isinstance(loc_bb, PointSet):
|
|
90
|
-
for p in tqdm(
|
|
91
|
-
loc_bb,
|
|
92
|
-
total=len(loc_bb),
|
|
93
|
-
unit="locations",
|
|
94
|
-
desc=f"Sampling from {len(loc_bb)} locations",
|
|
95
|
-
disable=logger.level > 20,
|
|
96
|
-
):
|
|
97
|
-
result.append(self._sample_single_point(p))
|
|
98
|
-
else:
|
|
99
|
-
raise ArgumentError(
|
|
100
|
-
f"Invalid location specification {location.__class__.__name__} BigBrain sampling."
|
|
101
|
-
)
|
|
102
|
-
|
|
103
|
-
return result
|
|
104
|
-
|
|
105
|
-
def _sample_single_point(self, point):
|
|
106
|
-
"""
|
|
107
|
-
Given a coordinate in BigBrain space, the sampler centers a fixed-size box
|
|
108
|
-
near the given location in BigBrain cortex and extracts layerwise grayvalue
|
|
109
|
-
statistics. The center is found by identifying the closest point in Layer IV
|
|
110
|
-
which is inside a specified maximum distance (default 1mm) from the given point.
|
|
111
|
-
|
|
112
|
-
Parameters
|
|
113
|
-
----------
|
|
114
|
-
point: Point
|
|
115
|
-
Candidate location for sampling
|
|
116
|
-
|
|
117
|
-
Return
|
|
118
|
-
------
|
|
119
|
-
dict with keys:
|
|
120
|
-
- 'center': the physical coordinate of the cube used as a region of interest
|
|
121
|
-
- 'boxsize': sidelenght in mm f the cube used as a region of interest
|
|
122
|
-
- 'space': name of the space (bigbrain)
|
|
123
|
-
- 'layers': Dict of layer-wise statistics with mean gray value, standard deviation, and number of voxels
|
|
124
|
-
|
|
125
|
-
"""
|
|
126
|
-
result = {
|
|
127
|
-
"center": tuple(point),
|
|
128
|
-
"boxsize": self.boxwidth_mm,
|
|
129
|
-
"space": self.space.name,
|
|
130
|
-
"layers": {},
|
|
131
|
-
}
|
|
132
|
-
|
|
133
|
-
# find closest point in layer 4, i.e. towards the mid surface,
|
|
134
|
-
# to make sure the box is well centered in the cortex.
|
|
135
|
-
voi = point.get_enclosing_cube(2 * self.maxdist_mm + 1)
|
|
136
|
-
voimask = self._layermask.fetch(voi=voi, resolution_mm=-1)
|
|
137
|
-
L = np.asanyarray(voimask.dataobj)
|
|
138
|
-
XYZ_ = np.array(np.where(L == 4)).T
|
|
139
|
-
if XYZ_.shape[0] == 0:
|
|
140
|
-
logger.warn(
|
|
141
|
-
f"The point {tuple(point)} seems too far away from Layer IV in BigBrain. "
|
|
142
|
-
f"No data sampled."
|
|
143
|
-
)
|
|
144
|
-
return result
|
|
145
|
-
XYZ = np.dot(voimask.affine, np.c_[XYZ_, np.ones(XYZ_.shape[0])].T)[:3, :].T
|
|
146
|
-
D = np.sum(np.sqrt((XYZ - tuple(point)) ** 2), axis=1)
|
|
147
|
-
p_mid = Point(XYZ[np.argmin(D), :], self.space)
|
|
148
|
-
|
|
149
|
-
# Load cube of fixed size at this cortica position
|
|
150
|
-
# from BigBrain and cortical layer maps,
|
|
151
|
-
# using maximum available resolution.
|
|
152
|
-
voi = p_mid.get_enclosing_cube(self.boxwidth_mm)
|
|
153
|
-
voidata = self._template.fetch(voi=voi, resolution_mm=-1)
|
|
154
|
-
voimask = image.resample_to_img(
|
|
155
|
-
self._layermask.fetch(voi=voi, resolution_mm=-1),
|
|
156
|
-
voidata,
|
|
157
|
-
interpolation="nearest",
|
|
158
|
-
)
|
|
159
|
-
|
|
160
|
-
# Get layer mask with possible additional segmentation
|
|
161
|
-
# components at box borders suppressed (e.g. from neighboring
|
|
162
|
-
# sulcal walls)
|
|
163
|
-
L = np.asanyarray(voimask.dataobj)
|
|
164
|
-
M = measure.label(L > 0)
|
|
165
|
-
cx, cy, cz = np.array(M.shape) // 2
|
|
166
|
-
L[M != M[cx, cy, cz]] = 0
|
|
167
|
-
|
|
168
|
-
# extract layerwise grayvalues, excluding value 255
|
|
169
|
-
# which we assume to belong to background.
|
|
170
|
-
result["center"] = tuple(p_mid)
|
|
171
|
-
arr = np.asanyarray(voidata.dataobj)
|
|
172
|
-
for layer in range(1, 7):
|
|
173
|
-
mask = (L == layer) & (arr != 255)
|
|
174
|
-
values = arr[mask].ravel()
|
|
175
|
-
result["layers"][layer] = {
|
|
176
|
-
"mean": values.mean(),
|
|
177
|
-
"std": values.std(),
|
|
178
|
-
"num_voxels": np.count_nonzero(mask),
|
|
179
|
-
}
|
|
180
|
-
|
|
181
|
-
return result
|
siibra-0.4a33.dist-info/RECORD
DELETED
|
@@ -1,71 +0,0 @@
|
|
|
1
|
-
siibra/VERSION,sha256=otffEPjs2TV1fUHqCjiUSfy2O22dsizcWDp9ufoyYWI,7
|
|
2
|
-
siibra/__init__.py,sha256=DT38YlkHdUP8Nfl6mB0cINOT4-iRSIxWJ34_4e43bj4,3771
|
|
3
|
-
siibra/commons.py,sha256=L0lrTgOuacQSdCrf-qh3bGuFXJJSzERX3fbQ2xltFNM,22896
|
|
4
|
-
siibra/configuration/__init__.py,sha256=gXtcw2wbHCJ1o6jnd_HBudpaptHWBke71gcBd3ze7zE,688
|
|
5
|
-
siibra/configuration/configuration.py,sha256=P2G2bKhTHxeIXZEYMKMb8Tse1rhfK7iaINCnlXvHM-c,6686
|
|
6
|
-
siibra/configuration/factory.py,sha256=9vvlFNEdRd-HaHTNo82VCYURbRYYxVkJyMcAVwplNDo,16214
|
|
7
|
-
siibra/core/__init__.py,sha256=YQkeqGqpOT3aH-PPHeGb1kxSyMbgR3ZHqDCy2I0Zlsk,735
|
|
8
|
-
siibra/core/atlas.py,sha256=-5BLxhFBh8WVBWfZ8t10n6UEIQcWBux-up2ej1NeZGk,7702
|
|
9
|
-
siibra/core/concept.py,sha256=oFiTAuhwRIIAkZAkLraxjMV8hjuvtGFnNQORVNknADU,7197
|
|
10
|
-
siibra/core/parcellation.py,sha256=5ogKnV0rGpSRh5EeWV2HluVSZjz2EpSkRpiz_6sLad8,11462
|
|
11
|
-
siibra/core/region.py,sha256=SZBFFGH3hP1FZIReaKg3qxvQ5ZEizyhmSMKiz8_8uFw,26181
|
|
12
|
-
siibra/core/space.py,sha256=wJC_v-qmoDnh7UL6xcLhGqrT6npk796LF46OedLXwb4,5728
|
|
13
|
-
siibra/features/__init__.py,sha256=GG3AgOK63dia9Rl6HklnGbWajOjVgKh-gF1OY7MWnh8,1250
|
|
14
|
-
siibra/features/anchor.py,sha256=l3nZ6jMQnbEvgpDGym3F-PO9pC01jwsXN5yl_rYEI4U,15874
|
|
15
|
-
siibra/features/basetypes/__init__.py,sha256=VtO-iWy5C74vNDxBHL07av9yH9WD56gKkD0O0PRm0Bs,646
|
|
16
|
-
siibra/features/basetypes/cortical_profile.py,sha256=tKnFX17lnB_FQjhJbdWtaheDAEG1xfmfgkOyXE2RynU,7947
|
|
17
|
-
siibra/features/basetypes/feature.py,sha256=GM66iDHvIX2zRdNvdPLAfPCs92pC18D2VrqrZReJFB4,9182
|
|
18
|
-
siibra/features/basetypes/regional_connectivity.py,sha256=CRQWOgsvMyNgGl9UUDoo-snXyWwIk9YddfieJnddPI4,11869
|
|
19
|
-
siibra/features/basetypes/tabular.py,sha256=fhj-QMQ5LPR1MibMEYfl1KaYU_iLa8PCaG8IoSzQDWk,3078
|
|
20
|
-
siibra/features/basetypes/volume_of_interest.py,sha256=FEOAZR0uWWTZK85jyAGMU6_9U-7qo3E2hBPWNM2P1Dc,2827
|
|
21
|
-
siibra/features/cellular/__init__.py,sha256=1sI-t1XNXSODJvGAEXAyOoiqVQY4TNn3py4imYeHowc,1069
|
|
22
|
-
siibra/features/cellular/bigbrain_intensity_profile.py,sha256=fPnsvoIg2MSK4hCM_oz28wLOLkb1FL6IbZfUWZGXC1U,2194
|
|
23
|
-
siibra/features/cellular/cell_density_profile.py,sha256=U46vA8eTTO_yy7XnAk9olf_ltCWZLS8xyJRuDVS8Wsg,9055
|
|
24
|
-
siibra/features/cellular/layerwise_bigbrain_intensities.py,sha256=iWH6HljR12U9bTw1AB-iLikSCnhDu0OfW9nNfXpSbSM,2104
|
|
25
|
-
siibra/features/cellular/layerwise_cell_density.py,sha256=PinmHAoN_VdHZrEMBSas-HDqJD61_pl8SnD6xr-PzrI,4157
|
|
26
|
-
siibra/features/connectivity/__init__.py,sha256=Ub3O9pvXdwIf6ZMXl6Y0JTtEJmIonkCsCTR1jExU-VM,932
|
|
27
|
-
siibra/features/connectivity/functional_connectivity.py,sha256=oYbTz0BSKLVB32cAhCdpNksDdCmXd762B1bKxhGK9WM,1069
|
|
28
|
-
siibra/features/connectivity/streamline_counts.py,sha256=Gaxg4c38OxKtdvkDAcviUYXNu2ER6TaQM6-I1rKUf3Y,1042
|
|
29
|
-
siibra/features/connectivity/streamline_lengths.py,sha256=C7c6CtnuD-XJaIs9yrWEQFuQ_2kMlNB63qr0lYrADo0,1045
|
|
30
|
-
siibra/features/external/__init__.py,sha256=v1ZjjL4T2LWMbll_CrWubw_SpAbUAkG_5j7ZJW5pWcs,753
|
|
31
|
-
siibra/features/external/ebrains.py,sha256=E9DBMpAeN-Uprhm3PUDa6gPFGox7l6sXgUP2SVj06QM,2697
|
|
32
|
-
siibra/features/fibres/__init__.py,sha256=VtO-iWy5C74vNDxBHL07av9yH9WD56gKkD0O0PRm0Bs,646
|
|
33
|
-
siibra/features/functional/__init__.py,sha256=VtO-iWy5C74vNDxBHL07av9yH9WD56gKkD0O0PRm0Bs,646
|
|
34
|
-
siibra/features/molecular/__init__.py,sha256=EBamcceBrBXBo8nIuNtfrourh8ikRJ7kpOV4boV1mKw,957
|
|
35
|
-
siibra/features/molecular/gene_expression.py,sha256=CjCTGYsbkAhpxXLcotXOJHFyG8tNjSDr4XOFdMVwGKo,4776
|
|
36
|
-
siibra/features/molecular/receptor_density_fingerprint.py,sha256=9V7aAFKMsUQsO8RUyNX-yBfkPqRvgwFc2A8g_skkuuA,5986
|
|
37
|
-
siibra/features/molecular/receptor_density_profile.py,sha256=dlJ42H8k1dy9ms61JU4EYddSZsRPJ0axXVt0k55y6oQ,3535
|
|
38
|
-
siibra/livequeries/__init__.py,sha256=b5qKiJt_SrgSzy4abRYqvnbLSo01vUHrK8-K2zbnKIo,804
|
|
39
|
-
siibra/livequeries/allen.py,sha256=0myo_W2oTB1Df5ov4djsg8TXnZsJU6PTwSIB0-v7c9A,12181
|
|
40
|
-
siibra/livequeries/bigbrain.py,sha256=xdWP79J0zsF31h5kF1Oyy3nRNUvbKDbdWRu8DUwEdsY,6827
|
|
41
|
-
siibra/livequeries/ebrains.py,sha256=-2mdyB3HjA5S9V4puzDlILFx4qKd-t6nVuJLK4Gwr6I,6016
|
|
42
|
-
siibra/livequeries/query.py,sha256=lzXfQZVE-WQ8D61Zxb3xIb1brK11dTTI7vusmOnvIxQ,1796
|
|
43
|
-
siibra/locations/__init__.py,sha256=ItA2BnaaqP9wdXUH78mMhPFR0dSDxnz66o-y9vJH2Ag,773
|
|
44
|
-
siibra/locations/boundingbox.py,sha256=Oh2FxRFcDIh3a59ko1wbp5LQBVgLPhJx8Tkn4R3z_MQ,16824
|
|
45
|
-
siibra/locations/location.py,sha256=i5EY6gt-rHZOYCAkCSOJzz4iABsBR6XOZ_yYBBJCL3o,4503
|
|
46
|
-
siibra/locations/point.py,sha256=IpEx3zeMipf8_Q-jqiwn6LAqejV3fHHNTgtMaezNNng,12543
|
|
47
|
-
siibra/locations/pointset.py,sha256=1KizkqAN4uESdCjUtJ-P3qVwRhQwRT-Cf3OsD4-Dc0M,7082
|
|
48
|
-
siibra/retrieval/__init__.py,sha256=7IadP90DyeR68Lo2hpLT0ujM2XHMA_El1ZQz1jXQQTQ,1044
|
|
49
|
-
siibra/retrieval/cache.py,sha256=SqbUoGBPlO0uuEhubJJR8rA5BTzYf3tT5arO_wbE2RA,4625
|
|
50
|
-
siibra/retrieval/datasets.py,sha256=iQNodF0xmeOnAuWSn1xGk3VRPDoA2swXj_jTsDf6dYc,4228
|
|
51
|
-
siibra/retrieval/repositories.py,sha256=kBNd7k566i0TyVdgEGmo2nQVGqfjCjlasx-UyiJh1lk,26023
|
|
52
|
-
siibra/retrieval/requests.py,sha256=sKhpHj0THYdkj4lC85Iwwftxt0u_yE98IZPKjBBSMvo,21567
|
|
53
|
-
siibra/retrieval/exceptions/__init__.py,sha256=STIPOyunBN2f7d26NTElLTL3xM1KoB3U7jLhNBivguA,173
|
|
54
|
-
siibra/samplers/__init__.py,sha256=cZbuM1FAubGmBjKzk-sZ88eY0y6el5JanTzePNwZJwk,691
|
|
55
|
-
siibra/samplers/bigbrain.py,sha256=5wLn-CN1npPcG3j_olI7HgDhbhtX7G99eEvicS9TtTc,7228
|
|
56
|
-
siibra/vocabularies/__init__.py,sha256=I_tTB-3xYAdVzRGP0CCVGgd3dP6QiltoJqEZFTr-lkI,1261
|
|
57
|
-
siibra/vocabularies/gene_names.json,sha256=i-gnh753GyZtQfX_dWibNYr_d5ccDPHooOwsdeKUYqE,1647972
|
|
58
|
-
siibra/vocabularies/receptor_symbols.json,sha256=F6DZIArPCBmJV_lWGV-zDpBBH_GOJOZm67LBE4qzMa4,5722
|
|
59
|
-
siibra/vocabularies/region_aliases.json,sha256=RFxH36D3JS-T6lGlATthcNbPkKINjiqZxFoeb7OTtJY,8449
|
|
60
|
-
siibra/volumes/__init__.py,sha256=b6O5aWKfFU0JGT8PMTUF6OewCti7aRyOno_kjJ4es_U,830
|
|
61
|
-
siibra/volumes/gifti.py,sha256=MxTrXZjwEa8AzrfVkgry9_EByIQupswebVPnn-FQgc0,5289
|
|
62
|
-
siibra/volumes/neuroglancer.py,sha256=sWdGw2SF17TpihZTi4Swcw6GCA4EdENYKjsRBs6sUIo,23462
|
|
63
|
-
siibra/volumes/nifti.py,sha256=ObdIilFRhvkbmD0DixSGmVZeZAxafrNYZ6qrII25Pv0,8937
|
|
64
|
-
siibra/volumes/parcellationmap.py,sha256=3uRreZEGImX8zKWImBJZgVFBW6NRHODvCSGjFn9eDJc,38349
|
|
65
|
-
siibra/volumes/sparsemap.py,sha256=ZxDxbILzTD2j2OASh6gaAfjoJ8qWGFUG1cf7G8i-40o,17605
|
|
66
|
-
siibra/volumes/volume.py,sha256=DSwhKolU8oAoXW74Oq7et3fU5q3Ji9Wyw6PauZMWBEQ,9758
|
|
67
|
-
siibra-0.4a33.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
|
68
|
-
siibra-0.4a33.dist-info/METADATA,sha256=0eSaR5EBZRnTd6e9RszHfWdHKavcmu01j57cYDJ2yeo,9224
|
|
69
|
-
siibra-0.4a33.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
|
70
|
-
siibra-0.4a33.dist-info/top_level.txt,sha256=NF0OSGLL0li2qyC7MaU0iBB5Y9S09_euPpvisD0-8Hg,7
|
|
71
|
-
siibra-0.4a33.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|