signalwire-agents 0.1.50__py3-none-any.whl → 0.1.53__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- signalwire_agents/__init__.py +1 -1
- signalwire_agents/cli/build_search.py +22 -5
- signalwire_agents/core/skill_base.py +20 -0
- signalwire_agents/schema.json +6 -2
- signalwire_agents/search/document_processor.py +112 -18
- signalwire_agents/search/search_engine.py +144 -104
- signalwire_agents/skills/datasphere/skill.py +2 -3
- signalwire_agents/skills/datetime/skill.py +4 -6
- signalwire_agents/skills/math/skill.py +2 -3
- signalwire_agents/skills/mcp_gateway/skill.py +2 -2
- signalwire_agents/skills/native_vector_search/skill.py +35 -13
- signalwire_agents/skills/spider/skill.py +6 -9
- signalwire_agents/skills/web_search/skill.py +50 -30
- signalwire_agents/skills/wikipedia_search/skill.py +2 -3
- {signalwire_agents-0.1.50.dist-info → signalwire_agents-0.1.53.dist-info}/METADATA +11 -11
- {signalwire_agents-0.1.50.dist-info → signalwire_agents-0.1.53.dist-info}/RECORD +20 -20
- {signalwire_agents-0.1.50.dist-info → signalwire_agents-0.1.53.dist-info}/WHEEL +0 -0
- {signalwire_agents-0.1.50.dist-info → signalwire_agents-0.1.53.dist-info}/entry_points.txt +0 -0
- {signalwire_agents-0.1.50.dist-info → signalwire_agents-0.1.53.dist-info}/licenses/LICENSE +0 -0
- {signalwire_agents-0.1.50.dist-info → signalwire_agents-0.1.53.dist-info}/top_level.txt +0 -0
signalwire_agents/__init__.py
CHANGED
|
@@ -18,7 +18,7 @@ A package for building AI agents using SignalWire's AI and SWML capabilities.
|
|
|
18
18
|
from .core.logging_config import configure_logging
|
|
19
19
|
configure_logging()
|
|
20
20
|
|
|
21
|
-
__version__ = "0.1.
|
|
21
|
+
__version__ = "0.1.53"
|
|
22
22
|
|
|
23
23
|
# Import core classes for easier access
|
|
24
24
|
from .core.agent_base import AgentBase
|
|
@@ -69,6 +69,16 @@ Examples:
|
|
|
69
69
|
sw-search ./docs \\
|
|
70
70
|
--chunking-strategy qa
|
|
71
71
|
|
|
72
|
+
# Markdown-aware chunking (preserves headers, detects code blocks, adds tags)
|
|
73
|
+
sw-search ./docs \\
|
|
74
|
+
--chunking-strategy markdown \\
|
|
75
|
+
--file-types md
|
|
76
|
+
# This strategy:
|
|
77
|
+
# - Chunks at header boundaries (h1, h2, h3...)
|
|
78
|
+
# - Detects code blocks and extracts language (python, bash, etc)
|
|
79
|
+
# - Adds "code" tags to chunks with code for better search
|
|
80
|
+
# - Preserves section hierarchy in metadata
|
|
81
|
+
|
|
72
82
|
# Model selection examples (performance vs quality tradeoff)
|
|
73
83
|
sw-search ./docs --model mini # Fastest (~5x faster), 384 dims, good for most use cases
|
|
74
84
|
sw-search ./docs --model base # Balanced speed/quality, 768 dims (previous default)
|
|
@@ -128,16 +138,23 @@ Examples:
|
|
|
128
138
|
--collection-name docs_collection
|
|
129
139
|
sw-search migrate --info ./docs.swsearch
|
|
130
140
|
|
|
131
|
-
# PostgreSQL pgvector backend
|
|
141
|
+
# PostgreSQL pgvector backend (direct build to PostgreSQL)
|
|
132
142
|
sw-search ./docs \\
|
|
133
143
|
--backend pgvector \\
|
|
134
|
-
--connection-string "postgresql://user:pass@localhost/knowledge" \\
|
|
144
|
+
--connection-string "postgresql://user:pass@localhost:5432/knowledge" \\
|
|
135
145
|
--output docs_collection
|
|
136
146
|
|
|
147
|
+
# pgvector with markdown strategy (best for documentation with code examples)
|
|
148
|
+
sw-search ./docs \\
|
|
149
|
+
--backend pgvector \\
|
|
150
|
+
--connection-string "postgresql://user:pass@localhost:5432/knowledge" \\
|
|
151
|
+
--output docs_collection \\
|
|
152
|
+
--chunking-strategy markdown
|
|
153
|
+
|
|
137
154
|
# Overwrite existing pgvector collection
|
|
138
155
|
sw-search ./docs \\
|
|
139
156
|
--backend pgvector \\
|
|
140
|
-
--connection-string "postgresql://user:pass@localhost/knowledge" \\
|
|
157
|
+
--connection-string "postgresql://user:pass@localhost:5432/knowledge" \\
|
|
141
158
|
--output docs_collection \\
|
|
142
159
|
--overwrite
|
|
143
160
|
|
|
@@ -191,9 +208,9 @@ Examples:
|
|
|
191
208
|
|
|
192
209
|
parser.add_argument(
|
|
193
210
|
'--chunking-strategy',
|
|
194
|
-
choices=['sentence', 'sliding', 'paragraph', 'page', 'semantic', 'topic', 'qa', 'json'],
|
|
211
|
+
choices=['sentence', 'sliding', 'paragraph', 'page', 'semantic', 'topic', 'qa', 'json', 'markdown'],
|
|
195
212
|
default='sentence',
|
|
196
|
-
help='Chunking strategy to use (default: sentence)'
|
|
213
|
+
help='Chunking strategy to use (default: sentence). Use "markdown" for documentation with code blocks.'
|
|
197
214
|
)
|
|
198
215
|
|
|
199
216
|
parser.add_argument(
|
|
@@ -53,6 +53,26 @@ class SkillBase(ABC):
|
|
|
53
53
|
"""Register SWAIG tools with the agent"""
|
|
54
54
|
pass
|
|
55
55
|
|
|
56
|
+
def define_tool(self, **kwargs) -> None:
|
|
57
|
+
"""
|
|
58
|
+
Wrapper method that automatically includes swaig_fields when defining tools.
|
|
59
|
+
|
|
60
|
+
This method delegates to self.agent.define_tool() but automatically merges
|
|
61
|
+
any swaig_fields configured for this skill. Skills should use this method
|
|
62
|
+
instead of calling self.agent.define_tool() directly.
|
|
63
|
+
|
|
64
|
+
Args:
|
|
65
|
+
**kwargs: All arguments supported by agent.define_tool()
|
|
66
|
+
(name, description, parameters, handler, etc.)
|
|
67
|
+
"""
|
|
68
|
+
# Merge swaig_fields with any explicitly passed fields
|
|
69
|
+
# Explicit fields take precedence over swaig_fields
|
|
70
|
+
merged_kwargs = dict(self.swaig_fields)
|
|
71
|
+
merged_kwargs.update(kwargs)
|
|
72
|
+
|
|
73
|
+
# Call the agent's define_tool with merged arguments
|
|
74
|
+
return self.agent.define_tool(**merged_kwargs)
|
|
75
|
+
|
|
56
76
|
|
|
57
77
|
|
|
58
78
|
def get_hints(self) -> List[str]:
|
signalwire_agents/schema.json
CHANGED
|
@@ -1937,9 +1937,13 @@
|
|
|
1937
1937
|
{
|
|
1938
1938
|
"type": "string",
|
|
1939
1939
|
"const": "qwen3-235b-A22b-instruct"
|
|
1940
|
+
},
|
|
1941
|
+
{
|
|
1942
|
+
"type": "string",
|
|
1943
|
+
"const": "llama-3.1-8b-instruct-turbo@together.ai"
|
|
1940
1944
|
}
|
|
1941
1945
|
],
|
|
1942
|
-
"description": "The model to use for the AI. Allowed values are `gpt-4o-mini`, `gpt-4.1-mini`, `gpt-4.1-nano`, `nova-micro`, `nova-lite`, and `qwen3-235b-A22b-instruct`."
|
|
1946
|
+
"description": "The model to use for the AI. Allowed values are `gpt-4o-mini`, `gpt-4.1-mini`, `gpt-4.1-nano`, `nova-micro`, `nova-lite`, and `qwen3-235b-A22b-instruct` and `qwen3-4b-instruct-2507@brian`."
|
|
1943
1947
|
},
|
|
1944
1948
|
"ai_volume": {
|
|
1945
1949
|
"anyOf": [
|
|
@@ -7663,4 +7667,4 @@
|
|
|
7663
7667
|
}
|
|
7664
7668
|
},
|
|
7665
7669
|
"unevaluatedProperties": false
|
|
7666
|
-
}
|
|
7670
|
+
}
|
|
@@ -88,9 +88,18 @@ class DocumentProcessor:
|
|
|
88
88
|
):
|
|
89
89
|
"""
|
|
90
90
|
Initialize document processor
|
|
91
|
-
|
|
91
|
+
|
|
92
92
|
Args:
|
|
93
|
-
chunking_strategy: Strategy for chunking documents
|
|
93
|
+
chunking_strategy: Strategy for chunking documents:
|
|
94
|
+
- 'sentence': Sentence-based chunking with overlap
|
|
95
|
+
- 'sliding': Sliding window with word-based chunks
|
|
96
|
+
- 'paragraph': Natural paragraph boundaries
|
|
97
|
+
- 'page': Page-based chunking (for PDFs)
|
|
98
|
+
- 'semantic': Semantic similarity-based chunking
|
|
99
|
+
- 'topic': Topic modeling-based chunking
|
|
100
|
+
- 'qa': Question-answer optimized chunking
|
|
101
|
+
- 'json': JSON structure-aware chunking
|
|
102
|
+
- 'markdown': Markdown structure-aware chunking with code block detection
|
|
94
103
|
max_sentences_per_chunk: For sentence strategy (default: 5)
|
|
95
104
|
chunk_size: For sliding strategy - words per chunk (default: 50)
|
|
96
105
|
chunk_overlap: For sliding strategy - overlap in words (default: 10)
|
|
@@ -142,6 +151,9 @@ class DocumentProcessor:
|
|
|
142
151
|
return self._chunk_by_qa_optimization(content, filename, file_type)
|
|
143
152
|
elif self.chunking_strategy == 'json':
|
|
144
153
|
return self._chunk_from_json(content, filename, file_type)
|
|
154
|
+
elif self.chunking_strategy == 'markdown':
|
|
155
|
+
# Use markdown-aware chunking for better structure preservation
|
|
156
|
+
return self._chunk_markdown_enhanced(content, filename)
|
|
145
157
|
else:
|
|
146
158
|
# Fallback to sentence-based chunking
|
|
147
159
|
return self._chunk_by_sentences(content, filename, file_type)
|
|
@@ -339,75 +351,114 @@ class DocumentProcessor:
|
|
|
339
351
|
return chunks
|
|
340
352
|
|
|
341
353
|
def _chunk_markdown_enhanced(self, content: str, filename: str) -> List[Dict[str, Any]]:
|
|
342
|
-
"""Enhanced markdown chunking with
|
|
354
|
+
"""Enhanced markdown chunking with code block detection and rich metadata
|
|
355
|
+
|
|
356
|
+
Features:
|
|
357
|
+
- Tracks header hierarchy for section paths
|
|
358
|
+
- Detects code blocks and extracts language
|
|
359
|
+
- Adds 'code' tags to chunks containing code
|
|
360
|
+
- Preserves markdown structure for better search
|
|
361
|
+
"""
|
|
343
362
|
chunks = []
|
|
344
363
|
lines = content.split('\n')
|
|
345
|
-
|
|
364
|
+
|
|
346
365
|
current_section = None
|
|
347
366
|
current_hierarchy = [] # Track header hierarchy
|
|
348
367
|
current_chunk = []
|
|
349
368
|
current_size = 0
|
|
350
369
|
line_start = 1
|
|
351
|
-
|
|
370
|
+
in_code_block = False
|
|
371
|
+
code_languages = [] # Track languages in current chunk
|
|
372
|
+
has_code = False
|
|
373
|
+
|
|
352
374
|
for line_num, line in enumerate(lines, 1):
|
|
375
|
+
# Check for code block fences
|
|
376
|
+
code_fence_match = re.match(r'^```(\w+)?', line)
|
|
377
|
+
if code_fence_match:
|
|
378
|
+
in_code_block = not in_code_block
|
|
379
|
+
if in_code_block:
|
|
380
|
+
# Starting code block
|
|
381
|
+
has_code = True
|
|
382
|
+
lang = code_fence_match.group(1)
|
|
383
|
+
if lang and lang not in code_languages:
|
|
384
|
+
code_languages.append(lang)
|
|
385
|
+
|
|
353
386
|
# Check for headers with hierarchy tracking
|
|
354
|
-
header_match = re.match(r'^(#{1,6})\s+(.+)', line)
|
|
387
|
+
header_match = re.match(r'^(#{1,6})\s+(.+)', line) if not in_code_block else None
|
|
355
388
|
if header_match:
|
|
356
389
|
header_level = len(header_match.group(1))
|
|
357
390
|
header_text = header_match.group(2).strip()
|
|
358
|
-
|
|
391
|
+
|
|
359
392
|
# Save current chunk if it exists
|
|
360
393
|
if current_chunk:
|
|
394
|
+
chunk_metadata = self._build_markdown_metadata(
|
|
395
|
+
current_hierarchy, code_languages, has_code
|
|
396
|
+
)
|
|
361
397
|
chunks.append(self._create_chunk(
|
|
362
398
|
content='\n'.join(current_chunk),
|
|
363
399
|
filename=filename,
|
|
364
400
|
section=self._build_section_path(current_hierarchy),
|
|
365
401
|
start_line=line_start,
|
|
366
|
-
end_line=line_num - 1
|
|
402
|
+
end_line=line_num - 1,
|
|
403
|
+
metadata=chunk_metadata
|
|
367
404
|
))
|
|
368
|
-
|
|
405
|
+
|
|
369
406
|
# Update hierarchy
|
|
370
407
|
current_hierarchy = current_hierarchy[:header_level-1] + [header_text]
|
|
371
408
|
current_section = header_text
|
|
372
409
|
current_chunk = [line]
|
|
373
410
|
current_size = len(line)
|
|
374
411
|
line_start = line_num
|
|
375
|
-
|
|
412
|
+
code_languages = []
|
|
413
|
+
has_code = False
|
|
414
|
+
|
|
376
415
|
else:
|
|
377
416
|
current_chunk.append(line)
|
|
378
417
|
current_size += len(line) + 1
|
|
379
|
-
|
|
418
|
+
|
|
380
419
|
# Check if chunk is getting too large - use smart splitting
|
|
381
|
-
|
|
420
|
+
# But don't split inside code blocks
|
|
421
|
+
if current_size >= self.chunk_size and not in_code_block:
|
|
382
422
|
# Try to split at paragraph boundary first
|
|
383
423
|
split_point = self._find_best_split_point(current_chunk)
|
|
384
|
-
|
|
424
|
+
|
|
385
425
|
chunk_to_save = current_chunk[:split_point]
|
|
426
|
+
chunk_metadata = self._build_markdown_metadata(
|
|
427
|
+
current_hierarchy, code_languages, has_code
|
|
428
|
+
)
|
|
386
429
|
chunks.append(self._create_chunk(
|
|
387
430
|
content='\n'.join(chunk_to_save),
|
|
388
431
|
filename=filename,
|
|
389
432
|
section=self._build_section_path(current_hierarchy),
|
|
390
433
|
start_line=line_start,
|
|
391
|
-
end_line=line_start + split_point - 1
|
|
434
|
+
end_line=line_start + split_point - 1,
|
|
435
|
+
metadata=chunk_metadata
|
|
392
436
|
))
|
|
393
|
-
|
|
437
|
+
|
|
394
438
|
# Start new chunk with overlap
|
|
395
439
|
overlap_lines = self._get_overlap_lines(chunk_to_save)
|
|
396
440
|
remaining_lines = current_chunk[split_point:]
|
|
397
441
|
current_chunk = overlap_lines + remaining_lines
|
|
398
442
|
current_size = sum(len(line) + 1 for line in current_chunk)
|
|
399
443
|
line_start = line_start + split_point - len(overlap_lines)
|
|
400
|
-
|
|
444
|
+
# Reset code tracking for new chunk
|
|
445
|
+
code_languages = []
|
|
446
|
+
has_code = False
|
|
447
|
+
|
|
401
448
|
# Add final chunk
|
|
402
449
|
if current_chunk:
|
|
450
|
+
chunk_metadata = self._build_markdown_metadata(
|
|
451
|
+
current_hierarchy, code_languages, has_code
|
|
452
|
+
)
|
|
403
453
|
chunks.append(self._create_chunk(
|
|
404
454
|
content='\n'.join(current_chunk),
|
|
405
455
|
filename=filename,
|
|
406
456
|
section=self._build_section_path(current_hierarchy),
|
|
407
457
|
start_line=line_start,
|
|
408
|
-
end_line=len(lines)
|
|
458
|
+
end_line=len(lines),
|
|
459
|
+
metadata=chunk_metadata
|
|
409
460
|
))
|
|
410
|
-
|
|
461
|
+
|
|
411
462
|
return chunks
|
|
412
463
|
|
|
413
464
|
def _chunk_python_enhanced(self, content: str, filename: str) -> List[Dict[str, Any]]:
|
|
@@ -575,6 +626,49 @@ class DocumentProcessor:
|
|
|
575
626
|
def _build_section_path(self, hierarchy: List[str]) -> str:
|
|
576
627
|
"""Build hierarchical section path from header hierarchy"""
|
|
577
628
|
return ' > '.join(hierarchy) if hierarchy else None
|
|
629
|
+
|
|
630
|
+
def _build_markdown_metadata(self, hierarchy: List[str], code_languages: List[str], has_code: bool) -> Dict[str, Any]:
|
|
631
|
+
"""Build rich metadata for markdown chunks
|
|
632
|
+
|
|
633
|
+
Args:
|
|
634
|
+
hierarchy: Current header hierarchy (e.g., ['Installation', 'Requirements', 'Python'])
|
|
635
|
+
code_languages: List of code block languages found in chunk (e.g., ['python', 'bash'])
|
|
636
|
+
has_code: Whether chunk contains any code blocks
|
|
637
|
+
|
|
638
|
+
Returns:
|
|
639
|
+
Dictionary with markdown-specific metadata including tags
|
|
640
|
+
"""
|
|
641
|
+
metadata = {
|
|
642
|
+
'chunk_type': 'markdown',
|
|
643
|
+
}
|
|
644
|
+
|
|
645
|
+
# Add header level metadata
|
|
646
|
+
if hierarchy:
|
|
647
|
+
for i, header in enumerate(hierarchy, 1):
|
|
648
|
+
metadata[f'h{i}'] = header
|
|
649
|
+
|
|
650
|
+
# Add code-related metadata
|
|
651
|
+
if has_code:
|
|
652
|
+
metadata['has_code'] = True
|
|
653
|
+
if code_languages:
|
|
654
|
+
metadata['code_languages'] = code_languages
|
|
655
|
+
|
|
656
|
+
# Build tags for enhanced searching
|
|
657
|
+
tags = []
|
|
658
|
+
if has_code:
|
|
659
|
+
tags.append('code')
|
|
660
|
+
# Add language-specific tags
|
|
661
|
+
for lang in code_languages:
|
|
662
|
+
tags.append(f'code:{lang}')
|
|
663
|
+
|
|
664
|
+
# Add tags for header levels (searchable by section depth)
|
|
665
|
+
if len(hierarchy) > 0:
|
|
666
|
+
tags.append(f'depth:{len(hierarchy)}')
|
|
667
|
+
|
|
668
|
+
if tags:
|
|
669
|
+
metadata['tags'] = tags
|
|
670
|
+
|
|
671
|
+
return metadata
|
|
578
672
|
|
|
579
673
|
def _build_python_section(self, class_name: Optional[str], function_name: Optional[str]) -> str:
|
|
580
674
|
"""Build section name for Python code"""
|
|
@@ -114,51 +114,48 @@ class SearchEngine:
|
|
|
114
114
|
logger.error(f"Error converting query vector: {e}")
|
|
115
115
|
return self._keyword_search_only(enhanced_text, count, tags, original_query)
|
|
116
116
|
|
|
117
|
-
#
|
|
117
|
+
# HYBRID APPROACH: Search vector AND metadata in parallel
|
|
118
|
+
# Stage 1: Run both search types simultaneously
|
|
119
|
+
search_multiplier = 3
|
|
120
|
+
|
|
121
|
+
# Vector search (semantic similarity - primary ranking signal)
|
|
122
|
+
vector_results = self._vector_search(query_array, count * search_multiplier)
|
|
123
|
+
|
|
124
|
+
# Metadata/keyword searches (confirmation signals and backfill)
|
|
125
|
+
filename_results = self._filename_search(original_query or enhanced_text, count * search_multiplier)
|
|
126
|
+
metadata_results = self._metadata_search(original_query or enhanced_text, count * search_multiplier)
|
|
127
|
+
keyword_results = self._keyword_search(enhanced_text, count * search_multiplier, original_query)
|
|
128
|
+
|
|
129
|
+
logger.debug(f"Parallel search: vector={len(vector_results)}, filename={len(filename_results)}, "
|
|
130
|
+
f"metadata={len(metadata_results)}, keyword={len(keyword_results)}")
|
|
131
|
+
|
|
132
|
+
# Stage 2: Merge all results into candidate pool
|
|
118
133
|
candidates = {}
|
|
119
|
-
|
|
120
|
-
#
|
|
121
|
-
|
|
122
|
-
|
|
123
|
-
|
|
124
|
-
|
|
125
|
-
|
|
126
|
-
|
|
127
|
-
|
|
128
|
-
|
|
129
|
-
|
|
130
|
-
|
|
134
|
+
|
|
135
|
+
# Add vector results first (primary signal)
|
|
136
|
+
for result in vector_results:
|
|
137
|
+
chunk_id = result['id']
|
|
138
|
+
candidates[chunk_id] = result
|
|
139
|
+
candidates[chunk_id]['vector_score'] = result['score']
|
|
140
|
+
candidates[chunk_id]['vector_distance'] = 1 - result['score']
|
|
141
|
+
candidates[chunk_id]['sources'] = {'vector': True}
|
|
142
|
+
candidates[chunk_id]['source_scores'] = {'vector': result['score']}
|
|
143
|
+
|
|
144
|
+
# Add metadata/keyword results (secondary signals that boost or backfill)
|
|
145
|
+
for result_set, source_type, source_weight in [(filename_results, 'filename', 2.0),
|
|
146
|
+
(metadata_results, 'metadata', 1.5),
|
|
147
|
+
(keyword_results, 'keyword', 1.0)]:
|
|
131
148
|
for result in result_set:
|
|
132
149
|
chunk_id = result['id']
|
|
133
150
|
if chunk_id not in candidates:
|
|
151
|
+
# New candidate from metadata/keyword (no vector match)
|
|
134
152
|
candidates[chunk_id] = result
|
|
135
|
-
candidates[chunk_id]['sources'] = {}
|
|
136
|
-
candidates[chunk_id]['source_scores'] = {}
|
|
137
|
-
|
|
138
|
-
|
|
139
|
-
|
|
140
|
-
|
|
141
|
-
|
|
142
|
-
# Stage 2: Check if we have enough candidates
|
|
143
|
-
if len(candidates) < count * 2:
|
|
144
|
-
# Not enough candidates from fast searches - add full vector search
|
|
145
|
-
logger.debug(f"Only {len(candidates)} candidates from fast search, adding full vector search")
|
|
146
|
-
vector_results = self._vector_search(query_array, count * 3)
|
|
147
|
-
|
|
148
|
-
for result in vector_results:
|
|
149
|
-
chunk_id = result['id']
|
|
150
|
-
if chunk_id not in candidates:
|
|
151
|
-
candidates[chunk_id] = result
|
|
152
|
-
candidates[chunk_id]['sources'] = {'vector': True}
|
|
153
|
-
candidates[chunk_id]['source_scores'] = {}
|
|
154
|
-
|
|
155
|
-
# Add vector score
|
|
156
|
-
candidates[chunk_id]['vector_score'] = result['score']
|
|
157
|
-
candidates[chunk_id]['vector_distance'] = 1 - result['score']
|
|
158
|
-
else:
|
|
159
|
-
# We have enough candidates - just re-rank them with vectors
|
|
160
|
-
logger.debug(f"Re-ranking {len(candidates)} candidates with vector similarity")
|
|
161
|
-
self._add_vector_scores_to_candidates(candidates, query_array, distance_threshold)
|
|
153
|
+
candidates[chunk_id]['sources'] = {source_type: True}
|
|
154
|
+
candidates[chunk_id]['source_scores'] = {source_type: result['score'] * source_weight}
|
|
155
|
+
else:
|
|
156
|
+
# Exists in vector results - add metadata/keyword as confirmation signal
|
|
157
|
+
candidates[chunk_id]['sources'][source_type] = True
|
|
158
|
+
candidates[chunk_id]['source_scores'][source_type] = result['score'] * source_weight
|
|
162
159
|
|
|
163
160
|
# Stage 3: Score and rank all candidates
|
|
164
161
|
final_results = []
|
|
@@ -190,12 +187,12 @@ class SearchEngine:
|
|
|
190
187
|
|
|
191
188
|
# Apply diversity penalties to prevent single-file dominance
|
|
192
189
|
final_results = self._apply_diversity_penalties(final_results, count)
|
|
193
|
-
|
|
190
|
+
|
|
194
191
|
# Ensure 'score' field exists for CLI compatibility
|
|
195
192
|
for r in final_results:
|
|
196
193
|
if 'score' not in r:
|
|
197
194
|
r['score'] = r.get('final_score', 0.0)
|
|
198
|
-
|
|
195
|
+
|
|
199
196
|
return final_results[:count]
|
|
200
197
|
|
|
201
198
|
def _keyword_search_only(self, enhanced_text: str, count: int,
|
|
@@ -1038,70 +1035,55 @@ class SearchEngine:
|
|
|
1038
1035
|
logger.error(f"Error in vector re-ranking: {e}")
|
|
1039
1036
|
|
|
1040
1037
|
def _calculate_combined_score(self, candidate: Dict, distance_threshold: float) -> float:
|
|
1041
|
-
"""Calculate final score
|
|
1042
|
-
|
|
1043
|
-
|
|
1044
|
-
|
|
1045
|
-
|
|
1038
|
+
"""Calculate final score with hybrid vector + metadata weighting
|
|
1039
|
+
|
|
1040
|
+
Hybrid approach:
|
|
1041
|
+
- Vector score is the primary ranking signal (semantic similarity)
|
|
1042
|
+
- Metadata/keyword matches provide confirmation boost
|
|
1043
|
+
- Multiple signal types indicate high relevance (confirmation bonus)
|
|
1044
|
+
- Special boost for 'code' tag matches when query contains code-related terms
|
|
1045
|
+
"""
|
|
1046
1046
|
sources = candidate.get('sources', {})
|
|
1047
|
-
|
|
1048
|
-
|
|
1049
|
-
#
|
|
1050
|
-
match_coverage = candidate.get('match_coverage', 0)
|
|
1051
|
-
fields_matched = candidate.get('fields_matched', 0)
|
|
1052
|
-
|
|
1053
|
-
# Calculate base score with exponential boost for multiple sources
|
|
1054
|
-
if num_sources > 1:
|
|
1055
|
-
# Multiple signal matches are exponentially better
|
|
1056
|
-
multi_signal_boost = 1.0 + (0.3 * (num_sources - 1))
|
|
1057
|
-
base_score = sum(source_scores.values()) * multi_signal_boost
|
|
1058
|
-
else:
|
|
1059
|
-
base_score = sum(source_scores.values())
|
|
1060
|
-
|
|
1061
|
-
# Apply comprehensive match bonus
|
|
1062
|
-
if match_coverage > 0.5: # More than 50% of query terms matched
|
|
1063
|
-
coverage_bonus = 1.0 + (match_coverage - 0.5) * 0.5
|
|
1064
|
-
base_score *= coverage_bonus
|
|
1065
|
-
|
|
1066
|
-
# Apply field diversity bonus (matching in multiple metadata fields)
|
|
1067
|
-
if fields_matched > 2:
|
|
1068
|
-
field_bonus = 1.0 + (fields_matched - 2) * 0.1
|
|
1069
|
-
base_score *= field_bonus
|
|
1070
|
-
|
|
1071
|
-
# Apply vector similarity multiplier if available
|
|
1047
|
+
source_scores = candidate.get('source_scores', {})
|
|
1048
|
+
|
|
1049
|
+
# Vector score is PRIMARY
|
|
1072
1050
|
if 'vector_score' in candidate:
|
|
1073
1051
|
vector_score = candidate['vector_score']
|
|
1074
|
-
|
|
1075
|
-
|
|
1076
|
-
#
|
|
1077
|
-
if
|
|
1078
|
-
|
|
1079
|
-
|
|
1080
|
-
|
|
1081
|
-
|
|
1082
|
-
|
|
1083
|
-
|
|
1084
|
-
|
|
1085
|
-
|
|
1086
|
-
|
|
1087
|
-
|
|
1088
|
-
|
|
1089
|
-
|
|
1090
|
-
|
|
1091
|
-
#
|
|
1092
|
-
|
|
1093
|
-
|
|
1094
|
-
|
|
1095
|
-
#
|
|
1096
|
-
|
|
1097
|
-
|
|
1098
|
-
|
|
1099
|
-
|
|
1100
|
-
|
|
1101
|
-
#
|
|
1102
|
-
|
|
1103
|
-
|
|
1104
|
-
|
|
1052
|
+
base_score = vector_score
|
|
1053
|
+
|
|
1054
|
+
# Metadata/keyword matches provide confirmation boost
|
|
1055
|
+
if len(sources) > 1:
|
|
1056
|
+
# Has both vector AND metadata/keyword matches - strong confirmation signal
|
|
1057
|
+
keyword_signals = sum(source_scores.get(k, 0) for k in ['keyword', 'filename', 'metadata'])
|
|
1058
|
+
if keyword_signals > 0:
|
|
1059
|
+
# Normalize and apply boost (up to 30% for strong confirmation)
|
|
1060
|
+
keyword_boost = min(0.3, keyword_signals * 0.15)
|
|
1061
|
+
base_score = vector_score * (1.0 + keyword_boost)
|
|
1062
|
+
|
|
1063
|
+
# Additional boost if multiple signal types confirm (2+ sources)
|
|
1064
|
+
num_metadata_sources = sum(1 for s in ['keyword', 'filename', 'metadata'] if s in sources)
|
|
1065
|
+
if num_metadata_sources >= 2:
|
|
1066
|
+
# Multiple confirmation signals - very high confidence
|
|
1067
|
+
base_score *= 1.1
|
|
1068
|
+
|
|
1069
|
+
# Check for code-related tags to boost code examples
|
|
1070
|
+
tags = candidate.get('metadata', {}).get('tags', [])
|
|
1071
|
+
if 'code' in tags:
|
|
1072
|
+
# This chunk contains code - boost if query is code-related
|
|
1073
|
+
# (metadata search would have found it if query mentioned code/example/python/etc)
|
|
1074
|
+
if 'metadata' in sources or 'keyword' in sources:
|
|
1075
|
+
# Query matched code-related metadata - apply code boost
|
|
1076
|
+
base_score *= 1.2
|
|
1077
|
+
else:
|
|
1078
|
+
# No vector score - this is a keyword-only result (backfill)
|
|
1079
|
+
# Use keyword scores but penalize for lack of semantic match
|
|
1080
|
+
base_score = sum(source_scores.values()) * 0.6 # 40% penalty for no vector
|
|
1081
|
+
|
|
1082
|
+
# Still boost code chunks if metadata matched
|
|
1083
|
+
tags = candidate.get('metadata', {}).get('tags', [])
|
|
1084
|
+
if 'code' in tags and 'metadata' in sources:
|
|
1085
|
+
base_score *= 1.15
|
|
1086
|
+
|
|
1105
1087
|
return base_score
|
|
1106
1088
|
|
|
1107
1089
|
def _apply_diversity_penalties(self, results: List[Dict], target_count: int) -> List[Dict]:
|
|
@@ -1166,7 +1148,65 @@ class SearchEngine:
|
|
|
1166
1148
|
penalized_results[:target_count] = selected
|
|
1167
1149
|
|
|
1168
1150
|
return penalized_results
|
|
1169
|
-
|
|
1151
|
+
|
|
1152
|
+
def _apply_match_type_diversity(self, results: List[Dict], target_count: int) -> List[Dict]:
|
|
1153
|
+
"""Ensure diversity of match types in final results
|
|
1154
|
+
|
|
1155
|
+
Ensures we have a mix of:
|
|
1156
|
+
- Vector-only matches (semantic similarity, good for code examples)
|
|
1157
|
+
- Keyword-only matches (exact term matches)
|
|
1158
|
+
- Hybrid matches (both vector + keyword/metadata)
|
|
1159
|
+
"""
|
|
1160
|
+
if not results or len(results) <= target_count:
|
|
1161
|
+
return results
|
|
1162
|
+
|
|
1163
|
+
# Categorize results by match type
|
|
1164
|
+
vector_only = []
|
|
1165
|
+
keyword_only = []
|
|
1166
|
+
hybrid = []
|
|
1167
|
+
|
|
1168
|
+
for result in results:
|
|
1169
|
+
sources = result.get('sources', {})
|
|
1170
|
+
has_vector = 'vector' in sources
|
|
1171
|
+
has_keyword = any(k in sources for k in ['keyword', 'filename', 'metadata'])
|
|
1172
|
+
|
|
1173
|
+
if has_vector and not has_keyword:
|
|
1174
|
+
vector_only.append(result)
|
|
1175
|
+
elif has_keyword and not has_vector:
|
|
1176
|
+
keyword_only.append(result)
|
|
1177
|
+
else:
|
|
1178
|
+
hybrid.append(result)
|
|
1179
|
+
|
|
1180
|
+
# Build diverse result set
|
|
1181
|
+
# Target distribution: 40% hybrid, 40% vector-only, 20% keyword-only
|
|
1182
|
+
# This ensures we include semantic matches (code examples) even if keywords don't match
|
|
1183
|
+
diversified = []
|
|
1184
|
+
|
|
1185
|
+
# Take top hybrid matches first (best overall)
|
|
1186
|
+
hybrid_target = max(1, int(target_count * 0.4))
|
|
1187
|
+
diversified.extend(hybrid[:hybrid_target])
|
|
1188
|
+
|
|
1189
|
+
# Ensure we have vector-only matches (critical for code examples)
|
|
1190
|
+
vector_target = max(1, int(target_count * 0.4))
|
|
1191
|
+
diversified.extend(vector_only[:vector_target])
|
|
1192
|
+
|
|
1193
|
+
# Add keyword-only matches
|
|
1194
|
+
keyword_target = max(1, int(target_count * 0.2))
|
|
1195
|
+
diversified.extend(keyword_only[:keyword_target])
|
|
1196
|
+
|
|
1197
|
+
# Fill remaining slots with best remaining results regardless of type
|
|
1198
|
+
remaining_slots = target_count - len(diversified)
|
|
1199
|
+
if remaining_slots > 0:
|
|
1200
|
+
# Get all unused results
|
|
1201
|
+
used_ids = set(r['id'] for r in diversified)
|
|
1202
|
+
unused = [r for r in results if r['id'] not in used_ids]
|
|
1203
|
+
diversified.extend(unused[:remaining_slots])
|
|
1204
|
+
|
|
1205
|
+
# Sort by final score to maintain quality ordering
|
|
1206
|
+
diversified.sort(key=lambda x: x['final_score'], reverse=True)
|
|
1207
|
+
|
|
1208
|
+
return diversified
|
|
1209
|
+
|
|
1170
1210
|
def get_stats(self) -> Dict[str, Any]:
|
|
1171
1211
|
"""Get statistics about the search index"""
|
|
1172
1212
|
# Use pgvector backend if available
|
|
@@ -159,7 +159,7 @@ class DataSphereSkill(SkillBase):
|
|
|
159
159
|
|
|
160
160
|
def register_tools(self) -> None:
|
|
161
161
|
"""Register knowledge search tool with the agent"""
|
|
162
|
-
self.
|
|
162
|
+
self.define_tool(
|
|
163
163
|
name=self.tool_name,
|
|
164
164
|
description="Search the knowledge base for information on any topic and return relevant results",
|
|
165
165
|
parameters={
|
|
@@ -168,8 +168,7 @@ class DataSphereSkill(SkillBase):
|
|
|
168
168
|
"description": "The search query - what information you're looking for in the knowledge base"
|
|
169
169
|
}
|
|
170
170
|
},
|
|
171
|
-
handler=self._search_knowledge_handler
|
|
172
|
-
**self.swaig_fields
|
|
171
|
+
handler=self._search_knowledge_handler
|
|
173
172
|
)
|
|
174
173
|
|
|
175
174
|
def _search_knowledge_handler(self, args, raw_data):
|
|
@@ -30,7 +30,7 @@ class DateTimeSkill(SkillBase):
|
|
|
30
30
|
def register_tools(self) -> None:
|
|
31
31
|
"""Register datetime tools with the agent"""
|
|
32
32
|
|
|
33
|
-
self.
|
|
33
|
+
self.define_tool(
|
|
34
34
|
name="get_current_time",
|
|
35
35
|
description="Get the current time, optionally in a specific timezone",
|
|
36
36
|
parameters={
|
|
@@ -39,11 +39,10 @@ class DateTimeSkill(SkillBase):
|
|
|
39
39
|
"description": "Timezone name (e.g., 'America/New_York', 'Europe/London'). Defaults to UTC."
|
|
40
40
|
}
|
|
41
41
|
},
|
|
42
|
-
handler=self._get_time_handler
|
|
43
|
-
**self.swaig_fields
|
|
42
|
+
handler=self._get_time_handler
|
|
44
43
|
)
|
|
45
44
|
|
|
46
|
-
self.
|
|
45
|
+
self.define_tool(
|
|
47
46
|
name="get_current_date",
|
|
48
47
|
description="Get the current date",
|
|
49
48
|
parameters={
|
|
@@ -52,8 +51,7 @@ class DateTimeSkill(SkillBase):
|
|
|
52
51
|
"description": "Timezone name for the date. Defaults to UTC."
|
|
53
52
|
}
|
|
54
53
|
},
|
|
55
|
-
handler=self._get_date_handler
|
|
56
|
-
**self.swaig_fields
|
|
54
|
+
handler=self._get_date_handler
|
|
57
55
|
)
|
|
58
56
|
|
|
59
57
|
def _get_time_handler(self, args, raw_data):
|
|
@@ -29,7 +29,7 @@ class MathSkill(SkillBase):
|
|
|
29
29
|
def register_tools(self) -> None:
|
|
30
30
|
"""Register math tools with the agent"""
|
|
31
31
|
|
|
32
|
-
self.
|
|
32
|
+
self.define_tool(
|
|
33
33
|
name="calculate",
|
|
34
34
|
description="Perform a mathematical calculation with basic operations (+, -, *, /, %, **)",
|
|
35
35
|
parameters={
|
|
@@ -38,8 +38,7 @@ class MathSkill(SkillBase):
|
|
|
38
38
|
"description": "Mathematical expression to evaluate (e.g., '2 + 3 * 4', '(10 + 5) / 3')"
|
|
39
39
|
}
|
|
40
40
|
},
|
|
41
|
-
handler=self._calculate_handler
|
|
42
|
-
**self.swaig_fields
|
|
41
|
+
handler=self._calculate_handler
|
|
43
42
|
)
|
|
44
43
|
|
|
45
44
|
def _calculate_handler(self, args, raw_data):
|
|
@@ -215,7 +215,7 @@ class MCPGatewaySkill(SkillBase):
|
|
|
215
215
|
self.logger.error(f"Failed to get tools for service '{service_name}': {e}")
|
|
216
216
|
|
|
217
217
|
# Register the hangup hook for session cleanup
|
|
218
|
-
self.
|
|
218
|
+
self.define_tool(
|
|
219
219
|
name="_mcp_gateway_hangup",
|
|
220
220
|
description="Internal cleanup function for MCP sessions",
|
|
221
221
|
parameters={},
|
|
@@ -260,7 +260,7 @@ class MCPGatewaySkill(SkillBase):
|
|
|
260
260
|
return self._call_mcp_tool(service_name, tool_name, args, raw_data)
|
|
261
261
|
|
|
262
262
|
# Register the SWAIG function
|
|
263
|
-
self.
|
|
263
|
+
self.define_tool(
|
|
264
264
|
name=swaig_name,
|
|
265
265
|
description=f"[{service_name}] {tool_def.get('description', tool_name)}",
|
|
266
266
|
parameters=swaig_params,
|
|
@@ -136,6 +136,13 @@ class NativeVectorSearchSkill(SkillBase):
|
|
|
136
136
|
"default": "",
|
|
137
137
|
"required": False
|
|
138
138
|
},
|
|
139
|
+
"max_content_length": {
|
|
140
|
+
"type": "integer",
|
|
141
|
+
"description": "Maximum total response size in characters (distributed across all results)",
|
|
142
|
+
"default": 32768,
|
|
143
|
+
"required": False,
|
|
144
|
+
"minimum": 1000
|
|
145
|
+
},
|
|
139
146
|
"response_format_callback": {
|
|
140
147
|
"type": "callable",
|
|
141
148
|
"description": "Optional callback function to format/transform the response. Called with (response, agent, query, results, args). Must return a string.",
|
|
@@ -251,6 +258,7 @@ class NativeVectorSearchSkill(SkillBase):
|
|
|
251
258
|
)
|
|
252
259
|
self.response_prefix = self.params.get('response_prefix', '')
|
|
253
260
|
self.response_postfix = self.params.get('response_postfix', '')
|
|
261
|
+
self.max_content_length = self.params.get('max_content_length', 32768)
|
|
254
262
|
self.response_format_callback = self.params.get('response_format_callback')
|
|
255
263
|
self.keyword_weight = self.params.get('keyword_weight')
|
|
256
264
|
self.model_name = self.params.get('model_name', 'mini')
|
|
@@ -274,8 +282,8 @@ class NativeVectorSearchSkill(SkillBase):
|
|
|
274
282
|
if parsed.path:
|
|
275
283
|
self.remote_base_url += parsed.path
|
|
276
284
|
|
|
277
|
-
# SWAIG fields
|
|
278
|
-
|
|
285
|
+
# SWAIG fields are already extracted by SkillBase.__init__()
|
|
286
|
+
# No need to re-fetch from params - use self.swaig_fields inherited from parent
|
|
279
287
|
|
|
280
288
|
# **EARLY REMOTE CHECK - Option 1**
|
|
281
289
|
# If remote URL is configured, skip all heavy local imports and just validate remote connectivity
|
|
@@ -460,7 +468,7 @@ class NativeVectorSearchSkill(SkillBase):
|
|
|
460
468
|
'Search the local knowledge base for information'
|
|
461
469
|
)
|
|
462
470
|
|
|
463
|
-
self.
|
|
471
|
+
self.define_tool(
|
|
464
472
|
name=self.tool_name,
|
|
465
473
|
description=description,
|
|
466
474
|
parameters={
|
|
@@ -474,8 +482,7 @@ class NativeVectorSearchSkill(SkillBase):
|
|
|
474
482
|
"default": self.count
|
|
475
483
|
}
|
|
476
484
|
},
|
|
477
|
-
handler=self._search_handler
|
|
478
|
-
**self.swaig_fields
|
|
485
|
+
handler=self._search_handler
|
|
479
486
|
)
|
|
480
487
|
|
|
481
488
|
# Add our tool to the Knowledge Search section
|
|
@@ -601,21 +608,36 @@ class NativeVectorSearchSkill(SkillBase):
|
|
|
601
608
|
|
|
602
609
|
return SwaigFunctionResult(no_results_msg)
|
|
603
610
|
|
|
604
|
-
# Format results
|
|
611
|
+
# Format results with dynamic per-result truncation
|
|
605
612
|
response_parts = []
|
|
606
|
-
|
|
613
|
+
|
|
607
614
|
# Add response prefix if configured
|
|
608
615
|
if self.response_prefix:
|
|
609
616
|
response_parts.append(self.response_prefix)
|
|
610
|
-
|
|
617
|
+
|
|
611
618
|
response_parts.append(f"Found {len(results)} relevant results for '{query}':\n")
|
|
612
|
-
|
|
619
|
+
|
|
620
|
+
# Calculate per-result content budget
|
|
621
|
+
# Estimate overhead per result: metadata (~200 chars) + formatting (~100 chars)
|
|
622
|
+
estimated_overhead_per_result = 300
|
|
623
|
+
# Account for prefix/postfix/header in total overhead
|
|
624
|
+
prefix_postfix_overhead = len(self.response_prefix) + len(self.response_postfix) + 100
|
|
625
|
+
total_overhead = (len(results) * estimated_overhead_per_result) + prefix_postfix_overhead
|
|
626
|
+
available_for_content = self.max_content_length - total_overhead
|
|
627
|
+
|
|
628
|
+
# Ensure minimum of 500 chars per result
|
|
629
|
+
per_result_limit = max(500, available_for_content // len(results)) if len(results) > 0 else 1000
|
|
630
|
+
|
|
613
631
|
for i, result in enumerate(results, 1):
|
|
614
632
|
filename = result['metadata']['filename']
|
|
615
633
|
section = result['metadata'].get('section', '')
|
|
616
634
|
score = result['score']
|
|
617
635
|
content = result['content']
|
|
618
|
-
|
|
636
|
+
|
|
637
|
+
# Truncate content to per-result limit
|
|
638
|
+
if len(content) > per_result_limit:
|
|
639
|
+
content = content[:per_result_limit] + "..."
|
|
640
|
+
|
|
619
641
|
# Get tags from either top level or metadata
|
|
620
642
|
tags = result.get('tags', [])
|
|
621
643
|
if not tags and 'metadata' in result['metadata'] and 'tags' in result['metadata']['metadata']:
|
|
@@ -624,16 +646,16 @@ class NativeVectorSearchSkill(SkillBase):
|
|
|
624
646
|
elif not tags and 'tags' in result['metadata']:
|
|
625
647
|
# Check in metadata directly
|
|
626
648
|
tags = result['metadata']['tags']
|
|
627
|
-
|
|
649
|
+
|
|
628
650
|
result_text = f"**Result {i}** (from {filename}"
|
|
629
651
|
if section:
|
|
630
652
|
result_text += f", section: {section}"
|
|
631
653
|
if tags:
|
|
632
654
|
result_text += f", tags: {', '.join(tags)}"
|
|
633
655
|
result_text += f", relevance: {score:.2f})\n{content}\n"
|
|
634
|
-
|
|
656
|
+
|
|
635
657
|
response_parts.append(result_text)
|
|
636
|
-
|
|
658
|
+
|
|
637
659
|
# Add response postfix if configured
|
|
638
660
|
if self.response_postfix:
|
|
639
661
|
response_parts.append(self.response_postfix)
|
|
@@ -223,7 +223,7 @@ class SpiderSkill(SkillBase):
|
|
|
223
223
|
tool_prefix = f"{tool_prefix}_"
|
|
224
224
|
|
|
225
225
|
# Register scrape_url tool
|
|
226
|
-
self.
|
|
226
|
+
self.define_tool(
|
|
227
227
|
name=f"{tool_prefix}scrape_url",
|
|
228
228
|
description="Extract text content from a single web page",
|
|
229
229
|
parameters={
|
|
@@ -233,12 +233,11 @@ class SpiderSkill(SkillBase):
|
|
|
233
233
|
}
|
|
234
234
|
},
|
|
235
235
|
required=["url"],
|
|
236
|
-
handler=self._scrape_url_handler
|
|
237
|
-
**self.swaig_fields
|
|
236
|
+
handler=self._scrape_url_handler
|
|
238
237
|
)
|
|
239
238
|
|
|
240
239
|
# Register crawl_site tool
|
|
241
|
-
self.
|
|
240
|
+
self.define_tool(
|
|
242
241
|
name=f"{tool_prefix}crawl_site",
|
|
243
242
|
description="Crawl multiple pages starting from a URL",
|
|
244
243
|
parameters={
|
|
@@ -248,12 +247,11 @@ class SpiderSkill(SkillBase):
|
|
|
248
247
|
}
|
|
249
248
|
},
|
|
250
249
|
required=["start_url"],
|
|
251
|
-
handler=self._crawl_site_handler
|
|
252
|
-
**self.swaig_fields
|
|
250
|
+
handler=self._crawl_site_handler
|
|
253
251
|
)
|
|
254
252
|
|
|
255
253
|
# Register extract_structured_data tool
|
|
256
|
-
self.
|
|
254
|
+
self.define_tool(
|
|
257
255
|
name=f"{tool_prefix}extract_structured_data",
|
|
258
256
|
description="Extract specific data from a web page using selectors",
|
|
259
257
|
parameters={
|
|
@@ -263,8 +261,7 @@ class SpiderSkill(SkillBase):
|
|
|
263
261
|
}
|
|
264
262
|
},
|
|
265
263
|
required=["url"],
|
|
266
|
-
handler=self._extract_structured_handler
|
|
267
|
-
**self.swaig_fields
|
|
264
|
+
handler=self._extract_structured_handler
|
|
268
265
|
)
|
|
269
266
|
|
|
270
267
|
def _fetch_url(self, url: str) -> Optional[requests.Response]:
|
|
@@ -21,7 +21,7 @@ from signalwire_agents.core.function_result import SwaigFunctionResult
|
|
|
21
21
|
class GoogleSearchScraper:
|
|
22
22
|
"""Google Search and Web Scraping functionality"""
|
|
23
23
|
|
|
24
|
-
def __init__(self, api_key: str, search_engine_id: str, max_content_length: int =
|
|
24
|
+
def __init__(self, api_key: str, search_engine_id: str, max_content_length: int = 32768):
|
|
25
25
|
self.api_key = api_key
|
|
26
26
|
self.search_engine_id = search_engine_id
|
|
27
27
|
self.max_content_length = max_content_length
|
|
@@ -62,63 +62,84 @@ class GoogleSearchScraper:
|
|
|
62
62
|
except Exception as e:
|
|
63
63
|
return []
|
|
64
64
|
|
|
65
|
-
def extract_text_from_url(self, url: str, timeout: int = 10) -> str:
|
|
66
|
-
"""Scrape a URL and extract readable text content
|
|
65
|
+
def extract_text_from_url(self, url: str, content_limit: int = None, timeout: int = 10) -> str:
|
|
66
|
+
"""Scrape a URL and extract readable text content
|
|
67
|
+
|
|
68
|
+
Args:
|
|
69
|
+
url: URL to scrape
|
|
70
|
+
content_limit: Maximum characters to return (uses self.max_content_length if not provided)
|
|
71
|
+
timeout: Request timeout in seconds
|
|
72
|
+
"""
|
|
67
73
|
try:
|
|
68
74
|
response = self.session.get(url, timeout=timeout)
|
|
69
75
|
response.raise_for_status()
|
|
70
|
-
|
|
76
|
+
|
|
71
77
|
soup = BeautifulSoup(response.content, 'html.parser')
|
|
72
|
-
|
|
78
|
+
|
|
73
79
|
# Remove unwanted elements
|
|
74
80
|
for script in soup(["script", "style", "nav", "footer", "header", "aside"]):
|
|
75
81
|
script.decompose()
|
|
76
|
-
|
|
82
|
+
|
|
77
83
|
text = soup.get_text()
|
|
78
|
-
|
|
84
|
+
|
|
79
85
|
# Clean up the text
|
|
80
86
|
lines = (line.strip() for line in text.splitlines())
|
|
81
87
|
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
|
|
82
88
|
text = ' '.join(chunk for chunk in chunks if chunk)
|
|
83
|
-
|
|
89
|
+
|
|
84
90
|
# Limit text length
|
|
85
|
-
if
|
|
86
|
-
|
|
87
|
-
|
|
91
|
+
limit = content_limit if content_limit is not None else self.max_content_length
|
|
92
|
+
if len(text) > limit:
|
|
93
|
+
text = text[:limit]
|
|
94
|
+
|
|
88
95
|
return text
|
|
89
|
-
|
|
96
|
+
|
|
90
97
|
except Exception as e:
|
|
91
98
|
return ""
|
|
92
99
|
|
|
93
100
|
def search_and_scrape(self, query: str, num_results: int = 3, delay: float = 0.5) -> str:
|
|
94
|
-
"""Main function: search Google and scrape the resulting pages
|
|
101
|
+
"""Main function: search Google and scrape the resulting pages
|
|
102
|
+
|
|
103
|
+
Dynamically calculates per-result content limit based on total max_content_length
|
|
104
|
+
and number of results to ensure total response stays within bounds.
|
|
105
|
+
"""
|
|
95
106
|
search_results = self.search_google(query, num_results)
|
|
96
|
-
|
|
107
|
+
|
|
97
108
|
if not search_results:
|
|
98
109
|
return f"No search results found for query: {query}"
|
|
99
|
-
|
|
110
|
+
|
|
111
|
+
# Calculate per-result content budget
|
|
112
|
+
# Reserve ~300 chars per result for overhead (titles, URLs, snippets, formatting)
|
|
113
|
+
estimated_overhead_per_result = 300
|
|
114
|
+
total_overhead = num_results * estimated_overhead_per_result
|
|
115
|
+
available_for_content = self.max_content_length - total_overhead
|
|
116
|
+
|
|
117
|
+
# Ensure we have at least 1000 chars per result
|
|
118
|
+
per_result_limit = max(1000, available_for_content // num_results)
|
|
119
|
+
|
|
100
120
|
all_text = []
|
|
101
|
-
|
|
121
|
+
|
|
102
122
|
for i, result in enumerate(search_results, 1):
|
|
103
123
|
text_content = f"=== RESULT {i} ===\n"
|
|
104
124
|
text_content += f"Title: {result['title']}\n"
|
|
105
125
|
text_content += f"URL: {result['url']}\n"
|
|
106
126
|
text_content += f"Snippet: {result['snippet']}\n"
|
|
107
127
|
text_content += f"Content:\n"
|
|
108
|
-
|
|
109
|
-
|
|
110
|
-
|
|
128
|
+
|
|
129
|
+
# Pass the calculated per-result limit
|
|
130
|
+
page_text = self.extract_text_from_url(result['url'], content_limit=per_result_limit)
|
|
131
|
+
|
|
111
132
|
if page_text:
|
|
112
133
|
text_content += page_text
|
|
113
134
|
else:
|
|
114
135
|
text_content += "Failed to extract content from this page."
|
|
115
|
-
|
|
136
|
+
|
|
116
137
|
text_content += f"\n{'='*50}\n\n"
|
|
117
138
|
all_text.append(text_content)
|
|
118
|
-
|
|
139
|
+
|
|
119
140
|
if i < len(search_results):
|
|
120
141
|
time.sleep(delay)
|
|
121
|
-
|
|
142
|
+
|
|
122
143
|
return '\n'.join(all_text)
|
|
123
144
|
|
|
124
145
|
|
|
@@ -163,7 +184,7 @@ class WebSearchSkill(SkillBase):
|
|
|
163
184
|
# Set default parameters
|
|
164
185
|
self.default_num_results = self.params.get('num_results', 1)
|
|
165
186
|
self.default_delay = self.params.get('delay', 0)
|
|
166
|
-
self.max_content_length = self.params.get('max_content_length',
|
|
187
|
+
self.max_content_length = self.params.get('max_content_length', 32768)
|
|
167
188
|
self.no_results_message = self.params.get('no_results_message',
|
|
168
189
|
"I couldn't find any results for '{query}'. "
|
|
169
190
|
"This might be due to a very specific query or temporary issues. "
|
|
@@ -184,7 +205,7 @@ class WebSearchSkill(SkillBase):
|
|
|
184
205
|
|
|
185
206
|
def register_tools(self) -> None:
|
|
186
207
|
"""Register web search tool with the agent"""
|
|
187
|
-
self.
|
|
208
|
+
self.define_tool(
|
|
188
209
|
name=self.tool_name,
|
|
189
210
|
description="Search the web for information on any topic and return detailed results with content from multiple sources",
|
|
190
211
|
parameters={
|
|
@@ -193,8 +214,7 @@ class WebSearchSkill(SkillBase):
|
|
|
193
214
|
"description": "The search query - what you want to find information about"
|
|
194
215
|
}
|
|
195
216
|
},
|
|
196
|
-
handler=self._web_search_handler
|
|
197
|
-
**self.swaig_fields
|
|
217
|
+
handler=self._web_search_handler
|
|
198
218
|
)
|
|
199
219
|
|
|
200
220
|
def _web_search_handler(self, args, raw_data):
|
|
@@ -308,10 +328,10 @@ class WebSearchSkill(SkillBase):
|
|
|
308
328
|
},
|
|
309
329
|
"max_content_length": {
|
|
310
330
|
"type": "integer",
|
|
311
|
-
"description": "Maximum
|
|
312
|
-
"default":
|
|
331
|
+
"description": "Maximum total response size in characters (distributed across all results)",
|
|
332
|
+
"default": 32768,
|
|
313
333
|
"required": False,
|
|
314
|
-
"min":
|
|
334
|
+
"min": 1000
|
|
315
335
|
},
|
|
316
336
|
"no_results_message": {
|
|
317
337
|
"type": "string",
|
|
@@ -321,4 +341,4 @@ class WebSearchSkill(SkillBase):
|
|
|
321
341
|
}
|
|
322
342
|
})
|
|
323
343
|
|
|
324
|
-
return schema
|
|
344
|
+
return schema
|
|
@@ -84,7 +84,7 @@ class WikipediaSearchSkill(SkillBase):
|
|
|
84
84
|
"""
|
|
85
85
|
Register the SWAIG tool for Wikipedia search.
|
|
86
86
|
"""
|
|
87
|
-
self.
|
|
87
|
+
self.define_tool(
|
|
88
88
|
name="search_wiki",
|
|
89
89
|
description="Search Wikipedia for information about a topic and get article summaries",
|
|
90
90
|
parameters={
|
|
@@ -93,8 +93,7 @@ class WikipediaSearchSkill(SkillBase):
|
|
|
93
93
|
"description": "The search term or topic to look up on Wikipedia"
|
|
94
94
|
}
|
|
95
95
|
},
|
|
96
|
-
handler=self._search_wiki_handler
|
|
97
|
-
**self.swaig_fields
|
|
96
|
+
handler=self._search_wiki_handler
|
|
98
97
|
)
|
|
99
98
|
|
|
100
99
|
def _search_wiki_handler(self, args, raw_data):
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: signalwire_agents
|
|
3
|
-
Version: 0.1.
|
|
3
|
+
Version: 0.1.53
|
|
4
4
|
Summary: SignalWire AI Agents SDK
|
|
5
5
|
Author-email: SignalWire Team <info@signalwire.com>
|
|
6
6
|
License: MIT
|
|
@@ -18,16 +18,16 @@ Classifier: Programming Language :: Python :: 3.11
|
|
|
18
18
|
Requires-Python: >=3.7
|
|
19
19
|
Description-Content-Type: text/markdown
|
|
20
20
|
License-File: LICENSE
|
|
21
|
-
Requires-Dist: fastapi
|
|
22
|
-
Requires-Dist: pydantic
|
|
23
|
-
Requires-Dist: PyYAML
|
|
24
|
-
Requires-Dist: Requests
|
|
25
|
-
Requires-Dist: setuptools
|
|
26
|
-
Requires-Dist: signalwire_pom
|
|
27
|
-
Requires-Dist: structlog
|
|
28
|
-
Requires-Dist: uvicorn
|
|
29
|
-
Requires-Dist: beautifulsoup4
|
|
30
|
-
Requires-Dist: pytz
|
|
21
|
+
Requires-Dist: fastapi>=0.115.12
|
|
22
|
+
Requires-Dist: pydantic>=2.11.4
|
|
23
|
+
Requires-Dist: PyYAML>=6.0.2
|
|
24
|
+
Requires-Dist: Requests>=2.32.3
|
|
25
|
+
Requires-Dist: setuptools>=66.1.1
|
|
26
|
+
Requires-Dist: signalwire_pom>=2.7.1
|
|
27
|
+
Requires-Dist: structlog>=25.3.0
|
|
28
|
+
Requires-Dist: uvicorn>=0.34.2
|
|
29
|
+
Requires-Dist: beautifulsoup4>=4.12.3
|
|
30
|
+
Requires-Dist: pytz>=2023.3
|
|
31
31
|
Requires-Dist: lxml>=4.9.0
|
|
32
32
|
Provides-Extra: search-queryonly
|
|
33
33
|
Requires-Dist: numpy>=1.24.0; extra == "search-queryonly"
|
|
@@ -1,9 +1,9 @@
|
|
|
1
|
-
signalwire_agents/__init__.py,sha256=
|
|
1
|
+
signalwire_agents/__init__.py,sha256=FNhNMJEBAOvXnnAw0S04cqxLRF4kW0uoASgIc6sglMs,5031
|
|
2
2
|
signalwire_agents/agent_server.py,sha256=x9HyWia8D3r6KMqY-Q4DtNVivfJWLTx8B-KzUI8okuA,26880
|
|
3
|
-
signalwire_agents/schema.json,sha256=
|
|
3
|
+
signalwire_agents/schema.json,sha256=rxXtjWsyCKokj0ONGIs0k-VnWMJrbR2w2ZsYoQmYjCc,240585
|
|
4
4
|
signalwire_agents/agents/bedrock.py,sha256=J582gooNtxtep4xdVOfyDzRtHp_XrurPMS93xf2Xod0,10836
|
|
5
5
|
signalwire_agents/cli/__init__.py,sha256=XbxAQFaCIdGXIXJiriVBWoFPOJsC401u21588nO4TG8,388
|
|
6
|
-
signalwire_agents/cli/build_search.py,sha256=
|
|
6
|
+
signalwire_agents/cli/build_search.py,sha256=_DcwRcrlr9uwmrI7FYp6WZT9aSU6KWgZmtcnimf1YnA,54925
|
|
7
7
|
signalwire_agents/cli/config.py,sha256=2i4e0BArdKsaXxjeueYYRNke7GWicHPYC2wuitVrP7A,2541
|
|
8
8
|
signalwire_agents/cli/swaig_test_wrapper.py,sha256=t63HQpEc1Up5AcysEHP1OsEQcgSMKH-9H1L2IhFso18,1533
|
|
9
9
|
signalwire_agents/cli/test_swaig.py,sha256=-v-XjTUWZNxmMJuOF5_cB1Jz8x8emJoqgqS_8jLeT4Y,31487
|
|
@@ -33,7 +33,7 @@ signalwire_agents/core/function_result.py,sha256=4CcbxwstlSRUQtbCty2evewvNZP35dW
|
|
|
33
33
|
signalwire_agents/core/logging_config.py,sha256=x4d_RAjBjVpJOFA2vXnPP2dNr13BZHz091J5rGpC77Y,13142
|
|
34
34
|
signalwire_agents/core/pom_builder.py,sha256=ywuiIfP8BeLBPo_G4X1teZlG6zTCMkW71CZnmyoDTAQ,6636
|
|
35
35
|
signalwire_agents/core/security_config.py,sha256=iAnAzKEJQiXL6mMpDaYm3Sjkxwm4x2N9HD6DeWSI8yI,12536
|
|
36
|
-
signalwire_agents/core/skill_base.py,sha256=
|
|
36
|
+
signalwire_agents/core/skill_base.py,sha256=kCgzvlA9uu3CblLAigYuM-0LL-n0xEEoXV-JmNn-Beo,7795
|
|
37
37
|
signalwire_agents/core/skill_manager.py,sha256=D4erpz0tmSYLqyfeteNNIY0VRWDtX0rDw3n7Z_f0W5U,10493
|
|
38
38
|
signalwire_agents/core/swaig_function.py,sha256=KnUQ2g99kDSzOzD1PJ0Iqs8DeeZ6jDIIN54C5MA4TWw,7521
|
|
39
39
|
signalwire_agents/core/swml_builder.py,sha256=tJBFDAVTENEfjGLp2h9_AKOYt5O9FrSYLI-nZZVwM1E,15604
|
|
@@ -70,13 +70,13 @@ signalwire_agents/prefabs/info_gatherer.py,sha256=0LpYTaU7C76Efp3yUIdNX6xzWH7mj5
|
|
|
70
70
|
signalwire_agents/prefabs/receptionist.py,sha256=em0uk_F0tmePvzE6Hi9HFlL3MHChH0RaHHqSvww9pK0,10323
|
|
71
71
|
signalwire_agents/prefabs/survey.py,sha256=a-0-xAnQYhdX4Lzgyna14lpNfaCV-rLUFkQF6QOCQAY,14534
|
|
72
72
|
signalwire_agents/search/__init__.py,sha256=cb8Rtg4Jut9ZhuSbiaHl79G0iWgMhJkLu84urkY0lRc,4215
|
|
73
|
-
signalwire_agents/search/document_processor.py,sha256=
|
|
73
|
+
signalwire_agents/search/document_processor.py,sha256=emlmYAgr34Qyhfqm4VppqTCpm1cj8Db6ziHoFuw4ekE,51929
|
|
74
74
|
signalwire_agents/search/index_builder.py,sha256=v1LGhbzzKlCilO4g6nqQJVYEAWvInP2j5B1QrAEj4V8,33772
|
|
75
75
|
signalwire_agents/search/migration.py,sha256=UZPrpUOMZeLVNO1cEDp3tnZYG6ys8-VCFlZXmzig_E0,16582
|
|
76
76
|
signalwire_agents/search/models.py,sha256=isYOYwQT0eWCVdcYSSd8w6z2gFYUobtC8BAUhV7FUVI,840
|
|
77
77
|
signalwire_agents/search/pgvector_backend.py,sha256=waneT_cBmWGE79kpN5Ie4ax6VDuyWb7QmjzXzGFjY7w,28400
|
|
78
78
|
signalwire_agents/search/query_processor.py,sha256=qpUFQqxobx8IymcXBTdPUirfawZVCKtRdSlMHw3nA0s,19656
|
|
79
|
-
signalwire_agents/search/search_engine.py,sha256=
|
|
79
|
+
signalwire_agents/search/search_engine.py,sha256=SRUNXJlDBej_kK4JpsksY0bW-pDdnY6Cdpbu648ox9E,57445
|
|
80
80
|
signalwire_agents/search/search_service.py,sha256=KV0luon18gPBcoyQ8L_Lagi1CgkJSOwGWshpCjvj1ks,20360
|
|
81
81
|
signalwire_agents/skills/README.md,sha256=sM1_08IsKdRDCzYHPLzppJbaK5MvRelsVL6Kd9A9Ubo,12193
|
|
82
82
|
signalwire_agents/skills/__init__.py,sha256=9AMEcyk2tDaGiUjwVIson_tVWxV4oU_2NnGGNTbHuyQ,533
|
|
@@ -86,31 +86,31 @@ signalwire_agents/skills/api_ninjas_trivia/__init__.py,sha256=zN305bBQkzlJyUNsPU
|
|
|
86
86
|
signalwire_agents/skills/api_ninjas_trivia/skill.py,sha256=ajJm0Vd07Oz3h0sHP0rRyckAXAbFRtcP7ws9GiAhfjw,8626
|
|
87
87
|
signalwire_agents/skills/datasphere/README.md,sha256=7G5t0V04SlnJ39U-3zOoIOfkNFrVEo-s45lCUlYmJGo,7351
|
|
88
88
|
signalwire_agents/skills/datasphere/__init__.py,sha256=SJJlmeMSeezjINPgkuWN1XzDPN_Z3GzZ_StzO1BtxQs,257
|
|
89
|
-
signalwire_agents/skills/datasphere/skill.py,sha256=
|
|
89
|
+
signalwire_agents/skills/datasphere/skill.py,sha256=OcDgmFSvIA3qy6a24E_fIgXrPKGRnLRHtPh9JeJ5YOY,12643
|
|
90
90
|
signalwire_agents/skills/datasphere_serverless/README.md,sha256=FErV97NEdYD_N1wZxkLqy6DSml5B9mCJmEgCUdGxh6A,9299
|
|
91
91
|
signalwire_agents/skills/datasphere_serverless/__init__.py,sha256=jpMNDcGiXsVbSCVUrc_AwLARqEtVu4dPYZPJSJ-K3rc,261
|
|
92
92
|
signalwire_agents/skills/datasphere_serverless/skill.py,sha256=i57VkMo2gU5YE9Z2lIxFfZtYkvkwMpnek49eSSfMFS0,9882
|
|
93
93
|
signalwire_agents/skills/datetime/README.md,sha256=95SzVz-Pcm9MPqZ4D3sSYKMwdpsDNwwCpWFRK027-Pc,4534
|
|
94
94
|
signalwire_agents/skills/datetime/__init__.py,sha256=Irajm2sUhmQVFgais-J-q-3d58tNnJ4nbLmnphr90nI,234
|
|
95
|
-
signalwire_agents/skills/datetime/skill.py,sha256
|
|
95
|
+
signalwire_agents/skills/datetime/skill.py,sha256=-MnycSmhK2JWwuHAStxz0mHNuMIvvWCW-I9La44WDts,4292
|
|
96
96
|
signalwire_agents/skills/joke/README.md,sha256=xUa2_0Pk9neli-UJxI4BPt3Fb1_5Xa3m8RuDlrkfBao,3594
|
|
97
97
|
signalwire_agents/skills/joke/__init__.py,sha256=8Rc5_nj30bdga2n9H9JSI2WzMn40pjApd-y-tk5WIkI,244
|
|
98
98
|
signalwire_agents/skills/joke/skill.py,sha256=BKPA50iht8I_mVBJ-PIQHjJJz1m0V2w5J69AfVMx23o,4092
|
|
99
99
|
signalwire_agents/skills/math/README.md,sha256=Nrv7PxkFPSxdnAN6856Fp1CfvsUwdncpRFFDERxmMe0,5335
|
|
100
100
|
signalwire_agents/skills/math/__init__.py,sha256=F7emZqBpAAkqJZxA3RNTzRSAXE5e2xu8PtFOPHebfKo,230
|
|
101
|
-
signalwire_agents/skills/math/skill.py,sha256
|
|
101
|
+
signalwire_agents/skills/math/skill.py,sha256=pfwlljnN_UoT9rzkggzPrgGWuoZ_wnovrph-aLG4ULY,3761
|
|
102
102
|
signalwire_agents/skills/mcp_gateway/README.md,sha256=t-71TTWlEvjgWLTcT3v4kMw9zlrKXTAC_sCjb1haNew,5826
|
|
103
103
|
signalwire_agents/skills/mcp_gateway/__init__.py,sha256=zLgOa7s0sIQphTNJjvasIAW7llxAApez7moC_e1tzP0,236
|
|
104
|
-
signalwire_agents/skills/mcp_gateway/skill.py,sha256=
|
|
104
|
+
signalwire_agents/skills/mcp_gateway/skill.py,sha256=bOdfBFsboRWSVoRA5X9vcmkH9OJIQxUllhMzhqHV1XI,17155
|
|
105
105
|
signalwire_agents/skills/native_vector_search/README.md,sha256=eFVRoDwZlZwbBXUKyKrvfC6AL4T8MXj0B-IgIdBZF70,5526
|
|
106
106
|
signalwire_agents/skills/native_vector_search/__init__.py,sha256=RofpN3Sd-vyWeUCTYH2dRVrl7h6YuyG5OK772UQ-KFk,220
|
|
107
|
-
signalwire_agents/skills/native_vector_search/skill.py,sha256=
|
|
107
|
+
signalwire_agents/skills/native_vector_search/skill.py,sha256=SwJ3fkFbAdW-zkbhTkzdj_0VJGXm-j2bRxE89CLu4B8,37403
|
|
108
108
|
signalwire_agents/skills/play_background_file/README.md,sha256=omJ_jY5Co6Mk-gJt_hoSl40wemmTbzae3DBll6HL0B4,7026
|
|
109
109
|
signalwire_agents/skills/play_background_file/__init__.py,sha256=iETc6e-0Cai3RUTQWhg9BieWi3NF3_DWWBKdYXcd4ok,273
|
|
110
110
|
signalwire_agents/skills/play_background_file/skill.py,sha256=HgPc2FIvXKJHZ7gO2QEzQe6-uUBPrw_6sRJJpU83GTY,8822
|
|
111
111
|
signalwire_agents/skills/spider/README.md,sha256=yBa09JzgLikG3STbDNbRCKUM3l3XU5-D923I2g8CTVc,6909
|
|
112
112
|
signalwire_agents/skills/spider/__init__.py,sha256=bZcCGLX5Cz18qY8rOvAAync6BRtketxaU19l6YcA_iI,285
|
|
113
|
-
signalwire_agents/skills/spider/skill.py,sha256=
|
|
113
|
+
signalwire_agents/skills/spider/skill.py,sha256=_gdw_fJO8wZhs1yx-JGdY8Tf-605NjOG-KH44-Js9Cc,23020
|
|
114
114
|
signalwire_agents/skills/swml_transfer/README.md,sha256=2Y6CH5Bm9kI5IYCLczIQIYlaYUq6VX_S4Irct2CQMmQ,14681
|
|
115
115
|
signalwire_agents/skills/swml_transfer/__init__.py,sha256=YyfxRpbgT4ZpEjGolwffKqjUzX4VqDNLdqfSoA0D0IY,238
|
|
116
116
|
signalwire_agents/skills/swml_transfer/skill.py,sha256=_qzJRd9P5VN8flTDe9N-9cvsLU0sN7XuY5yjk-DNlv8,15363
|
|
@@ -119,10 +119,10 @@ signalwire_agents/skills/weather_api/__init__.py,sha256=WCS--GFBX8straIZPuGAmTDZ
|
|
|
119
119
|
signalwire_agents/skills/weather_api/skill.py,sha256=LNJItYzgRSZYNYcH7Z37BOjjPy3aaM0OjMRnAxiUhOI,7204
|
|
120
120
|
signalwire_agents/skills/web_search/README.md,sha256=Y95cxEScMzhmslUJF8u_Nh15FbEBuus4P-E8_kk2an0,5438
|
|
121
121
|
signalwire_agents/skills/web_search/__init__.py,sha256=kv4CzmF1lldRZcL_HivieslP7gtTFvxcfprKG4n6b-Q,236
|
|
122
|
-
signalwire_agents/skills/web_search/skill.py,sha256=
|
|
122
|
+
signalwire_agents/skills/web_search/skill.py,sha256=h1zrAUFhC5Ul2BaKQY4Fn05Pob8AG-9eaSwE3ko-g3Y,13459
|
|
123
123
|
signalwire_agents/skills/wikipedia_search/README.md,sha256=KFIQ8XhqrTG8NRs72dIbjJacy2DlYEXLtxgy23gyRi4,7585
|
|
124
124
|
signalwire_agents/skills/wikipedia_search/__init__.py,sha256=yJ6iYTSyJC96mwwUsI_FneFhDBcLYD4xEerBKlWLTb8,375
|
|
125
|
-
signalwire_agents/skills/wikipedia_search/skill.py,sha256=
|
|
125
|
+
signalwire_agents/skills/wikipedia_search/skill.py,sha256=peNxT3GHMJY5OFQ-weneO83NpSstGjcmrTN_ENzUsEo,7910
|
|
126
126
|
signalwire_agents/utils/__init__.py,sha256=1KVsHzwgfktSXHe3vqSRGImjtIE58szwD2FHHoFBtvY,601
|
|
127
127
|
signalwire_agents/utils/pom_utils.py,sha256=4Mr7baQ_xR_hfJ72YxQRAT_GFa663YjFX_PumJ35Xds,191
|
|
128
128
|
signalwire_agents/utils/schema_utils.py,sha256=i4okv_O9bUApwT_jJf4Yoij3bLCrGrW3DC-vzSy2RuY,16392
|
|
@@ -130,9 +130,9 @@ signalwire_agents/utils/token_generators.py,sha256=4Mr7baQ_xR_hfJ72YxQRAT_GFa663
|
|
|
130
130
|
signalwire_agents/utils/validators.py,sha256=4Mr7baQ_xR_hfJ72YxQRAT_GFa663YjFX_PumJ35Xds,191
|
|
131
131
|
signalwire_agents/web/__init__.py,sha256=XE_pSTY9Aalzr7J7wqFth1Zr3cccQHPPcF5HWNrOpz8,383
|
|
132
132
|
signalwire_agents/web/web_service.py,sha256=a2PSHJgX1tlZr0Iz1A1UouZjXEePJAZL632evvLVM38,21071
|
|
133
|
-
signalwire_agents-0.1.
|
|
134
|
-
signalwire_agents-0.1.
|
|
135
|
-
signalwire_agents-0.1.
|
|
136
|
-
signalwire_agents-0.1.
|
|
137
|
-
signalwire_agents-0.1.
|
|
138
|
-
signalwire_agents-0.1.
|
|
133
|
+
signalwire_agents-0.1.53.dist-info/licenses/LICENSE,sha256=NYvAsB-rTcSvG9cqHt9EUHAWLiA9YzM4Qfz-mPdvDR0,1067
|
|
134
|
+
signalwire_agents-0.1.53.dist-info/METADATA,sha256=_6Ucazw9iFa0MnkICONuv0ckR6_5lkFMcUq5-yg46RY,41596
|
|
135
|
+
signalwire_agents-0.1.53.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
136
|
+
signalwire_agents-0.1.53.dist-info/entry_points.txt,sha256=ZDT65zfTO_YyDzi_hwQbCxIhrUfu_t8RpNXMMXlUPWI,144
|
|
137
|
+
signalwire_agents-0.1.53.dist-info/top_level.txt,sha256=kDGS6ZYv84K9P5Kyg9_S8P_pbUXoHkso0On_DB5bbWc,18
|
|
138
|
+
signalwire_agents-0.1.53.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|