siglab-py 0.5.48__py3-none-any.whl → 0.5.51__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of siglab-py might be problematic. Click here for more details.
- siglab_py/tests/unit/simple_math_tests.py +151 -3
- siglab_py/tests/unit/trading_util_tests.py +0 -21
- siglab_py/util/analytic_util.py +10 -0
- siglab_py/util/simple_math.py +178 -3
- siglab_py/util/trading_util.py +0 -12
- {siglab_py-0.5.48.dist-info → siglab_py-0.5.51.dist-info}/METADATA +1 -1
- {siglab_py-0.5.48.dist-info → siglab_py-0.5.51.dist-info}/RECORD +9 -9
- {siglab_py-0.5.48.dist-info → siglab_py-0.5.51.dist-info}/WHEEL +0 -0
- {siglab_py-0.5.48.dist-info → siglab_py-0.5.51.dist-info}/top_level.txt +0 -0
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
import unittest
|
|
2
|
-
from typing import List
|
|
2
|
+
from typing import List, Dict, Union
|
|
3
3
|
|
|
4
|
-
from util.simple_math import generate_rand_nums
|
|
4
|
+
from util.simple_math import generate_rand_nums, round_to_level, bucket_series, bucketize_val
|
|
5
5
|
|
|
6
6
|
class SimpleMathTests(unittest.TestCase):
|
|
7
7
|
|
|
@@ -84,4 +84,152 @@ class SimpleMathTests(unittest.TestCase):
|
|
|
84
84
|
|
|
85
85
|
assert(len(rand_nums)==size)
|
|
86
86
|
assert(len([x for x in rand_nums if x>=range_min and x<=range_max]) == (percentage_in_range/100) * size)
|
|
87
|
-
assert(len([x for x in rand_nums if x<abs_min or x>abs_max]) == 0)
|
|
87
|
+
assert(len([x for x in rand_nums if x<abs_min or x>abs_max]) == 0)
|
|
88
|
+
|
|
89
|
+
def test_round_to_level(self):
|
|
90
|
+
prices = [
|
|
91
|
+
{ 'price' : 15080, 'rounded' : 15000},
|
|
92
|
+
{ 'price' : 15180, 'rounded' : 15200},
|
|
93
|
+
{ 'price' : 25080, 'rounded' : 25200},
|
|
94
|
+
{ 'price' : 25180, 'rounded' : 25200},
|
|
95
|
+
{ 'price' : 25380, 'rounded' : 25500},
|
|
96
|
+
{ 'price' : 95332, 'rounded' : 95000},
|
|
97
|
+
{ 'price' : 95878, 'rounded' : 96000},
|
|
98
|
+
{ 'price' : 103499, 'rounded' : 103000},
|
|
99
|
+
{ 'price' : 103500, 'rounded' : 104000},
|
|
100
|
+
{ 'price' : 150800, 'rounded' : 150000},
|
|
101
|
+
{ 'price' : 151800, 'rounded' : 152000}
|
|
102
|
+
]
|
|
103
|
+
for entry in prices:
|
|
104
|
+
price = entry['price']
|
|
105
|
+
expected = entry['rounded']
|
|
106
|
+
rounded_price = round_to_level(price, level_granularity=0.01)
|
|
107
|
+
print(f"{price} rounded to: {rounded_price}")
|
|
108
|
+
assert(rounded_price==expected)
|
|
109
|
+
|
|
110
|
+
def test_bucket_series(self):
|
|
111
|
+
|
|
112
|
+
level_granularity : float = 0.1
|
|
113
|
+
|
|
114
|
+
range_min : float = 0
|
|
115
|
+
range_max : float = 1
|
|
116
|
+
size : int = 100
|
|
117
|
+
percentage_in_range : float = 91
|
|
118
|
+
abs_min : float = -0.5
|
|
119
|
+
abs_max : float = 1.1
|
|
120
|
+
|
|
121
|
+
rand_nums : List[float] = generate_rand_nums(
|
|
122
|
+
range_min = range_min,
|
|
123
|
+
range_max = range_max,
|
|
124
|
+
size = size,
|
|
125
|
+
percent_in_range = percentage_in_range,
|
|
126
|
+
abs_min = abs_min,
|
|
127
|
+
abs_max = abs_max
|
|
128
|
+
)
|
|
129
|
+
|
|
130
|
+
buckets : Dict[
|
|
131
|
+
str,
|
|
132
|
+
Dict[str,Union[float, List[float]]]
|
|
133
|
+
] = bucket_series(
|
|
134
|
+
values = rand_nums,
|
|
135
|
+
outlier_threshold_percent = 10,
|
|
136
|
+
level_granularity=level_granularity
|
|
137
|
+
)
|
|
138
|
+
|
|
139
|
+
bucketized = []
|
|
140
|
+
for num in rand_nums:
|
|
141
|
+
bucketized.append(
|
|
142
|
+
bucketize_val(num, buckets=buckets)
|
|
143
|
+
)
|
|
144
|
+
|
|
145
|
+
|
|
146
|
+
range_min = -1
|
|
147
|
+
range_max = 1
|
|
148
|
+
size : int = 100
|
|
149
|
+
percentage_in_range = 91
|
|
150
|
+
abs_min = -1.5
|
|
151
|
+
abs_max = 1.5
|
|
152
|
+
|
|
153
|
+
rand_nums : List[float] = generate_rand_nums(
|
|
154
|
+
range_min = range_min,
|
|
155
|
+
range_max = range_max,
|
|
156
|
+
size = size,
|
|
157
|
+
percent_in_range = percentage_in_range,
|
|
158
|
+
abs_min = abs_min,
|
|
159
|
+
abs_max = abs_max
|
|
160
|
+
)
|
|
161
|
+
|
|
162
|
+
buckets = bucket_series(
|
|
163
|
+
values = rand_nums,
|
|
164
|
+
outlier_threshold_percent = 10,
|
|
165
|
+
level_granularity=level_granularity
|
|
166
|
+
)
|
|
167
|
+
|
|
168
|
+
|
|
169
|
+
range_min = 0
|
|
170
|
+
range_max = 100
|
|
171
|
+
size : int = 100
|
|
172
|
+
percentage_in_range = 91
|
|
173
|
+
abs_min = -0.5
|
|
174
|
+
abs_max = 150
|
|
175
|
+
|
|
176
|
+
rand_nums : List[float] = generate_rand_nums(
|
|
177
|
+
range_min = range_min,
|
|
178
|
+
range_max = range_max,
|
|
179
|
+
size = size,
|
|
180
|
+
percent_in_range = percentage_in_range,
|
|
181
|
+
abs_min = abs_min,
|
|
182
|
+
abs_max = abs_max
|
|
183
|
+
)
|
|
184
|
+
|
|
185
|
+
buckets = bucket_series(
|
|
186
|
+
values = rand_nums,
|
|
187
|
+
outlier_threshold_percent = 10,
|
|
188
|
+
level_granularity=level_granularity
|
|
189
|
+
)
|
|
190
|
+
|
|
191
|
+
|
|
192
|
+
range_min = -100
|
|
193
|
+
range_max = 100
|
|
194
|
+
size : int = 100
|
|
195
|
+
percentage_in_range = 91
|
|
196
|
+
abs_min = -150
|
|
197
|
+
abs_max = 150
|
|
198
|
+
|
|
199
|
+
rand_nums : List[float] = generate_rand_nums(
|
|
200
|
+
range_min = range_min,
|
|
201
|
+
range_max = range_max,
|
|
202
|
+
size = size,
|
|
203
|
+
percent_in_range = percentage_in_range,
|
|
204
|
+
abs_min = abs_min,
|
|
205
|
+
abs_max = abs_max
|
|
206
|
+
)
|
|
207
|
+
|
|
208
|
+
buckets = bucket_series(
|
|
209
|
+
values = rand_nums,
|
|
210
|
+
outlier_threshold_percent = 10,
|
|
211
|
+
level_granularity=level_granularity
|
|
212
|
+
)
|
|
213
|
+
|
|
214
|
+
|
|
215
|
+
range_min = 20_000
|
|
216
|
+
range_max = 120_000
|
|
217
|
+
size : int = 100
|
|
218
|
+
percentage_in_range = 91
|
|
219
|
+
abs_min = 15_000
|
|
220
|
+
abs_max = 130_000
|
|
221
|
+
|
|
222
|
+
rand_nums : List[float] = generate_rand_nums(
|
|
223
|
+
range_min = range_min,
|
|
224
|
+
range_max = range_max,
|
|
225
|
+
size = size,
|
|
226
|
+
percent_in_range = percentage_in_range,
|
|
227
|
+
abs_min = abs_min,
|
|
228
|
+
abs_max = abs_max
|
|
229
|
+
)
|
|
230
|
+
|
|
231
|
+
buckets = bucket_series(
|
|
232
|
+
values = rand_nums,
|
|
233
|
+
outlier_threshold_percent = 10,
|
|
234
|
+
level_granularity=level_granularity
|
|
235
|
+
)
|
|
@@ -63,24 +63,3 @@ class TradingUtilTests(unittest.TestCase):
|
|
|
63
63
|
default_effective_tp_trailing_percent = default_effective_tp_trailing_percent
|
|
64
64
|
)
|
|
65
65
|
assert(effective_tp_trailing_percent==0) # Most tight trailing SL
|
|
66
|
-
|
|
67
|
-
def test_round_to_level(self):
|
|
68
|
-
prices = [
|
|
69
|
-
{ 'price' : 15080, 'rounded' : 15000},
|
|
70
|
-
{ 'price' : 15180, 'rounded' : 15200},
|
|
71
|
-
{ 'price' : 25080, 'rounded' : 25200},
|
|
72
|
-
{ 'price' : 25180, 'rounded' : 25200},
|
|
73
|
-
{ 'price' : 25380, 'rounded' : 25500},
|
|
74
|
-
{ 'price' : 95332, 'rounded' : 95000},
|
|
75
|
-
{ 'price' : 95878, 'rounded' : 96000},
|
|
76
|
-
{ 'price' : 103499, 'rounded' : 103000},
|
|
77
|
-
{ 'price' : 103500, 'rounded' : 104000},
|
|
78
|
-
{ 'price' : 150800, 'rounded' : 150000},
|
|
79
|
-
{ 'price' : 151800, 'rounded' : 152000}
|
|
80
|
-
]
|
|
81
|
-
for entry in prices:
|
|
82
|
-
price = entry['price']
|
|
83
|
-
expected = entry['rounded']
|
|
84
|
-
rounded_price = round_to_level(price, level_granularity=0.01)
|
|
85
|
-
print(f"{price} rounded to: {rounded_price}")
|
|
86
|
-
assert(rounded_price==expected)
|
siglab_py/util/analytic_util.py
CHANGED
|
@@ -11,6 +11,7 @@ from hurst import compute_Hc # compatible with pypy
|
|
|
11
11
|
from ccxt.base.exchange import Exchange as CcxtExchange
|
|
12
12
|
from ccxt import deribit
|
|
13
13
|
|
|
14
|
+
from siglab_py.util.simple_math import bucket_series
|
|
14
15
|
from siglab_py.util.market_data_util import fix_column_types
|
|
15
16
|
from siglab_py.constants import TrendDirection
|
|
16
17
|
|
|
@@ -473,6 +474,15 @@ def compute_candles_stats(
|
|
|
473
474
|
|
|
474
475
|
lo_rs = lo_ma_up / lo_ma_down
|
|
475
476
|
pd_candles.loc[:,'rsi'] = 100 - (100/(1 + lo_rs))
|
|
477
|
+
rsi_buckets = bucket_series(
|
|
478
|
+
values = pd_candles['rsi'].to_list(),
|
|
479
|
+
outlier_threshold_percent=10,
|
|
480
|
+
level_granularity=0.1
|
|
481
|
+
)
|
|
482
|
+
|
|
483
|
+
pd_candles['rsi_bucket'] = pd_candles['rsi'].rolling(
|
|
484
|
+
window=sliding_window_how_many_candles
|
|
485
|
+
).apply(lambda x: bucketize_val(x, buckets=rsi_buckets))
|
|
476
486
|
pd_candles['ema_rsi'] = pd_candles['rsi'].ewm(
|
|
477
487
|
span=rsi_sliding_window_how_many_candles,
|
|
478
488
|
adjust=False).mean()
|
siglab_py/util/simple_math.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
|
1
|
+
import math
|
|
1
2
|
import random
|
|
2
|
-
from typing import List
|
|
3
|
+
from typing import List, Dict, Union
|
|
3
4
|
|
|
4
5
|
def generate_rand_nums(
|
|
5
6
|
range_min : float = 0,
|
|
@@ -8,7 +9,7 @@ def generate_rand_nums(
|
|
|
8
9
|
percent_in_range : float = 100,
|
|
9
10
|
abs_min : float = 0,
|
|
10
11
|
abs_max : float = 1
|
|
11
|
-
):
|
|
12
|
+
) -> List[float]:
|
|
12
13
|
assert(range_min<range_max)
|
|
13
14
|
|
|
14
15
|
if abs_min>range_min:
|
|
@@ -16,7 +17,7 @@ def generate_rand_nums(
|
|
|
16
17
|
if abs_max<range_max:
|
|
17
18
|
abs_max = range_max
|
|
18
19
|
|
|
19
|
-
result = []
|
|
20
|
+
result : List[float] = []
|
|
20
21
|
for _ in range(int(size * percent_in_range/100)):
|
|
21
22
|
result.append(random.uniform(range_min, range_max))
|
|
22
23
|
for _ in range(size - len(result)):
|
|
@@ -28,3 +29,177 @@ def generate_rand_nums(
|
|
|
28
29
|
random.shuffle(result)
|
|
29
30
|
|
|
30
31
|
return result
|
|
32
|
+
|
|
33
|
+
# https://norman-lm-fung.medium.com/levels-are-psychological-7176cdefb5f2
|
|
34
|
+
def round_to_level(
|
|
35
|
+
num : float,
|
|
36
|
+
level_granularity : float = 0.01
|
|
37
|
+
) -> float:
|
|
38
|
+
level_size = num * level_granularity
|
|
39
|
+
magnitude = math.floor(math.log10(level_size))
|
|
40
|
+
base_increment = 10 ** magnitude
|
|
41
|
+
rounded_level_size = round(level_size / base_increment) * base_increment
|
|
42
|
+
rounded_num = round(num / rounded_level_size) * rounded_level_size
|
|
43
|
+
return rounded_num
|
|
44
|
+
|
|
45
|
+
def bucket_series(
|
|
46
|
+
values : List[float],
|
|
47
|
+
outlier_threshold_percent : float = 0,
|
|
48
|
+
level_granularity : float = 0.1 # 0.1 = 10%
|
|
49
|
+
) -> Dict[
|
|
50
|
+
str,
|
|
51
|
+
Dict[str,Union[float, List[float]]]
|
|
52
|
+
]:
|
|
53
|
+
buckets : Dict[
|
|
54
|
+
str,
|
|
55
|
+
Dict[str,Union[float, List[float]]]
|
|
56
|
+
] = {}
|
|
57
|
+
list_0_to_1 : bool = True if len([x for x in values if x<0 or x>1])/len(values)*100 <= outlier_threshold_percent else False
|
|
58
|
+
list_m1_to_1 : bool = True if len([x for x in values if x<-1 or x>1])/len(values)*100 <= outlier_threshold_percent else False
|
|
59
|
+
list_0_to_100 : bool = True if len([x for x in values if x<0 or x>100])/len(values)*100 <= outlier_threshold_percent else False
|
|
60
|
+
list_m100_to_100 : bool = True if len([x for x in values if x<-100 or x>100])/len(values)*100 <= outlier_threshold_percent else False
|
|
61
|
+
|
|
62
|
+
def _generate_sequence(start, stop, step):
|
|
63
|
+
result = []
|
|
64
|
+
current = start
|
|
65
|
+
num_steps = int((stop - start) / step) + 1
|
|
66
|
+
for i in range(num_steps):
|
|
67
|
+
result.append(round(start + i * step, 10))
|
|
68
|
+
return result
|
|
69
|
+
|
|
70
|
+
if list_0_to_1:
|
|
71
|
+
intervals = _generate_sequence(0.1, 1, 0.1)
|
|
72
|
+
last_interval = 0
|
|
73
|
+
buckets[f"< 0"] = {
|
|
74
|
+
'min' : float("-inf"),
|
|
75
|
+
'max' : 0,
|
|
76
|
+
'values' : [ x for x in values if x<0 ]
|
|
77
|
+
}
|
|
78
|
+
for interval in intervals:
|
|
79
|
+
buckets[f"{last_interval} - {interval}"] = {
|
|
80
|
+
'min' : last_interval,
|
|
81
|
+
'max' : interval,
|
|
82
|
+
'values' : [ x for x in values if x>=last_interval and x<interval ]
|
|
83
|
+
}
|
|
84
|
+
last_interval = interval
|
|
85
|
+
buckets[f">1"] = {
|
|
86
|
+
'min' : last_interval,
|
|
87
|
+
'max' : float("inf"),
|
|
88
|
+
'values' : [ x for x in values if x>=1 ]
|
|
89
|
+
}
|
|
90
|
+
|
|
91
|
+
elif not list_0_to_1 and list_m1_to_1:
|
|
92
|
+
intervals = _generate_sequence(-0.9, 1, 0.1)
|
|
93
|
+
last_interval = -1
|
|
94
|
+
buckets[f"< -1"] = {
|
|
95
|
+
'min' : float("-inf"),
|
|
96
|
+
'max' : -1,
|
|
97
|
+
'values' : [ x for x in values if x<-1 ]
|
|
98
|
+
}
|
|
99
|
+
for interval in intervals:
|
|
100
|
+
buckets[f"{last_interval} - {interval}"] = {
|
|
101
|
+
'min' : last_interval,
|
|
102
|
+
'max' : interval,
|
|
103
|
+
'values' : [ x for x in values if x>=last_interval and x<interval ]
|
|
104
|
+
}
|
|
105
|
+
last_interval = interval
|
|
106
|
+
buckets[f">1"] = {
|
|
107
|
+
'min' : last_interval,
|
|
108
|
+
'max' : float("inf"),
|
|
109
|
+
'values' : [ x for x in values if x>=1 ]
|
|
110
|
+
}
|
|
111
|
+
|
|
112
|
+
elif not list_0_to_1 and not list_m1_to_1 and list_0_to_100:
|
|
113
|
+
intervals = _generate_sequence(10, 100, 10)
|
|
114
|
+
last_interval = 0
|
|
115
|
+
buckets[f"<0"] = {
|
|
116
|
+
'min' : float("-inf"),
|
|
117
|
+
'max' : 0,
|
|
118
|
+
'values' : [ x for x in values if x<0 ]
|
|
119
|
+
}
|
|
120
|
+
for interval in intervals:
|
|
121
|
+
buckets[f"{last_interval} - {interval}"] = {
|
|
122
|
+
'min' : last_interval,
|
|
123
|
+
'max' : interval,
|
|
124
|
+
'values' : [ x for x in values if x>=last_interval and x<interval ]
|
|
125
|
+
}
|
|
126
|
+
last_interval = interval
|
|
127
|
+
buckets[f">100"] = {
|
|
128
|
+
'min' : last_interval,
|
|
129
|
+
'max' : float("inf"),
|
|
130
|
+
'values' : [ x for x in values if x>=100 ]
|
|
131
|
+
}
|
|
132
|
+
|
|
133
|
+
elif not list_0_to_1 and not list_m1_to_1 and not list_0_to_100 and list_m100_to_100:
|
|
134
|
+
intervals = _generate_sequence(-90, 100, 10)
|
|
135
|
+
last_interval = -100
|
|
136
|
+
buckets[f"<-100"] = {
|
|
137
|
+
'min' : float("-inf"),
|
|
138
|
+
'max' : -100,
|
|
139
|
+
'values' : [ x for x in values if x<-100 ]
|
|
140
|
+
}
|
|
141
|
+
for interval in intervals:
|
|
142
|
+
buckets[f"{last_interval} - {interval}"] = {
|
|
143
|
+
'min' : last_interval,
|
|
144
|
+
'max' : interval,
|
|
145
|
+
'values' : [ x for x in values if x>=last_interval and x<interval ]
|
|
146
|
+
}
|
|
147
|
+
last_interval = interval
|
|
148
|
+
buckets[f">100"] = {
|
|
149
|
+
'min' : last_interval,
|
|
150
|
+
'max' : float("inf"),
|
|
151
|
+
'values' : [ x for x in values if x>=100 ]
|
|
152
|
+
}
|
|
153
|
+
|
|
154
|
+
else:
|
|
155
|
+
range_min = round_to_level(
|
|
156
|
+
min(values),
|
|
157
|
+
level_granularity=level_granularity
|
|
158
|
+
)
|
|
159
|
+
range_max = round_to_level(
|
|
160
|
+
max(values),
|
|
161
|
+
level_granularity=level_granularity
|
|
162
|
+
)
|
|
163
|
+
step = round_to_level(
|
|
164
|
+
abs(range_max - range_min) * level_granularity,
|
|
165
|
+
level_granularity=level_granularity
|
|
166
|
+
)
|
|
167
|
+
|
|
168
|
+
intervals = _generate_sequence(range_min+step, range_max, step)
|
|
169
|
+
last_interval = range_min
|
|
170
|
+
buckets[f"< {range_min}"] = {
|
|
171
|
+
'min' : float("-inf"),
|
|
172
|
+
'max' : range_min,
|
|
173
|
+
'values' : [ x for x in values if x<range_min ]
|
|
174
|
+
}
|
|
175
|
+
for interval in intervals:
|
|
176
|
+
buckets[f"{last_interval} - {interval}"] = {
|
|
177
|
+
'min' : last_interval,
|
|
178
|
+
'max' : interval,
|
|
179
|
+
'values' : [ x for x in values if x>=last_interval and x<interval ]
|
|
180
|
+
}
|
|
181
|
+
last_interval = interval
|
|
182
|
+
buckets[f"> {range_max}"] = {
|
|
183
|
+
'min' : last_interval,
|
|
184
|
+
'max' : float("inf"),
|
|
185
|
+
'values' : [ x for x in values if x>=range_max ]
|
|
186
|
+
}
|
|
187
|
+
|
|
188
|
+
for key in buckets:
|
|
189
|
+
bucket = buckets[key]
|
|
190
|
+
assert(len([x for x in bucket['values'] if x<bucket['min'] or x>bucket['max']])==0) # type: ignore
|
|
191
|
+
|
|
192
|
+
return buckets
|
|
193
|
+
|
|
194
|
+
def bucketize_val(
|
|
195
|
+
x : float,
|
|
196
|
+
buckets : Dict[
|
|
197
|
+
str,
|
|
198
|
+
Dict[str,Union[float, List[float]]]
|
|
199
|
+
]
|
|
200
|
+
) -> Union[str,None]:
|
|
201
|
+
for key in buckets:
|
|
202
|
+
bucket = buckets[key]
|
|
203
|
+
if x>=bucket['min'] and x<=bucket['max']: # type: ignore
|
|
204
|
+
return key
|
|
205
|
+
return None
|
siglab_py/util/trading_util.py
CHANGED
|
@@ -116,15 +116,3 @@ def calc_eff_trailing_sl(
|
|
|
116
116
|
effective_tp_trailing_percent = default_effective_tp_trailing_percent
|
|
117
117
|
|
|
118
118
|
return effective_tp_trailing_percent
|
|
119
|
-
|
|
120
|
-
# https://norman-lm-fung.medium.com/levels-are-psychological-7176cdefb5f2
|
|
121
|
-
def round_to_level(
|
|
122
|
-
price : float,
|
|
123
|
-
level_granularity : float = 0.01
|
|
124
|
-
) -> float:
|
|
125
|
-
level_size = price * level_granularity
|
|
126
|
-
magnitude = math.floor(math.log10(level_size))
|
|
127
|
-
base_increment = 10 ** magnitude
|
|
128
|
-
rounded_level_size = round(level_size / base_increment) * base_increment
|
|
129
|
-
rounded_price = round(price / rounded_level_size) * rounded_level_size
|
|
130
|
-
return rounded_price
|
|
@@ -24,18 +24,18 @@ siglab_py/tests/integration/market_data_util_tests.py,sha256=p-RWIJZLyj0lAdfi4QT
|
|
|
24
24
|
siglab_py/tests/unit/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
25
25
|
siglab_py/tests/unit/analytic_util_tests.py,sha256=K7jtuKJLynW8EFyNgjOVHA2e2d6Gl2f0ONggFy9tD7g,5780
|
|
26
26
|
siglab_py/tests/unit/market_data_util_tests.py,sha256=A1y83itISmMJdn6wLpfwcr4tGola8wTf1D1xbelMvgw,2026
|
|
27
|
-
siglab_py/tests/unit/simple_math_tests.py,sha256=
|
|
28
|
-
siglab_py/tests/unit/trading_util_tests.py,sha256=
|
|
27
|
+
siglab_py/tests/unit/simple_math_tests.py,sha256=rWqq93W4Vlqmu0UeZCmSOfLirr0gPh2ASVIZ8O77qXY,9653
|
|
28
|
+
siglab_py/tests/unit/trading_util_tests.py,sha256=LiflZrduWXyLMbpSFQCaydA7jdJx3vFR-3KuKRRGhjQ,2927
|
|
29
29
|
siglab_py/util/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
30
|
-
siglab_py/util/analytic_util.py,sha256=
|
|
30
|
+
siglab_py/util/analytic_util.py,sha256=2TXBnxoO2dUNtVv_YAq_1zKEuGpVGIWKLyHF0nLd4JU,61697
|
|
31
31
|
siglab_py/util/aws_util.py,sha256=KGmjHrr1rpnnxr33nXHNzTul4tvyyxl9p6gpwNv0Ygc,2557
|
|
32
32
|
siglab_py/util/market_data_util.py,sha256=mUXg4uaiX3b6_klgJWIEgnUQU4IUd6CwTOqKLiQWRlU,31307
|
|
33
33
|
siglab_py/util/notification_util.py,sha256=tNZMUkkjz4q1CKqcQq62oEmZgHgNIwz2Iw9J22V22Zw,2668
|
|
34
34
|
siglab_py/util/retry_util.py,sha256=g-UU6pkPouWZZRZEqP99R2Z0lX5xzckYkzjwqqSDpVQ,922
|
|
35
|
-
siglab_py/util/simple_math.py,sha256=
|
|
35
|
+
siglab_py/util/simple_math.py,sha256=kVBa-h7sH6IrDJOSxd0LtrLAe0ROMiIEg4fc53XO-IA,7416
|
|
36
36
|
siglab_py/util/slack_notification_util.py,sha256=G27n-adbT3Q6oaHSMvu_Nom794rrda5PprSF-zvmzkM,1912
|
|
37
|
-
siglab_py/util/trading_util.py,sha256
|
|
38
|
-
siglab_py-0.5.
|
|
39
|
-
siglab_py-0.5.
|
|
40
|
-
siglab_py-0.5.
|
|
41
|
-
siglab_py-0.5.
|
|
37
|
+
siglab_py/util/trading_util.py,sha256=dlIOzoMGnddLSFODcJ61EBH1Aeruq4IT2MsxIdFkV9I,5252
|
|
38
|
+
siglab_py-0.5.51.dist-info/METADATA,sha256=7tXlpFvkoadF0GXl8R22N9rQpFnqDYGKZ_NiN4F7uXg,829
|
|
39
|
+
siglab_py-0.5.51.dist-info/WHEEL,sha256=lTU6B6eIfYoiQJTZNc-fyaR6BpL6ehTzU3xGYxn2n8k,91
|
|
40
|
+
siglab_py-0.5.51.dist-info/top_level.txt,sha256=AbD4VR9OqmMOGlMJLkAVPGQMtUPIQv0t1BF5xmcLJSk,10
|
|
41
|
+
siglab_py-0.5.51.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|