siglab-py 0.5.23__py3-none-any.whl → 0.5.26__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of siglab-py might be problematic. Click here for more details.

@@ -51,10 +51,12 @@ def calculate_slope(
51
51
  pd_data[f"normalized_{slope_col_name}_idmin"] = normalized_slope_rolling.apply(lambda x : x.idxmin())
52
52
  pd_data[f"normalized_{slope_col_name}_idmax"] = normalized_slope_rolling.apply(lambda x : x.idxmax())
53
53
 
54
- def higherhighs(series: pd.Series) -> str:
54
+ def higherhighs(series: pd.Series) -> Union[str, None]:
55
+ if pd.isna(series.iloc[0]):
56
+ return None
55
57
  unique_maxima = series.dropna()[series.dropna().diff().ne(0)]
56
58
  if len(unique_maxima) < 2:
57
- return 'sideways'
59
+ return None
58
60
  first, last = unique_maxima.iloc[0], unique_maxima.iloc[-1]
59
61
  if first > last:
60
62
  return 'lower_highs'
@@ -63,10 +65,12 @@ def higherhighs(series: pd.Series) -> str:
63
65
  else:
64
66
  return 'sideways'
65
67
 
66
- def lowerlows(series: pd.Series) -> str:
68
+ def lowerlows(series: pd.Series) -> Union[str, None]:
69
+ if pd.isna(series.iloc[0]):
70
+ return None
67
71
  unique_minima = series.dropna()[series.dropna().diff().ne(0)]
68
72
  if len(unique_minima) < 2:
69
- return 'sideways'
73
+ return None
70
74
  first, last = unique_minima.iloc[0], unique_minima.iloc[-1]
71
75
  if first > last:
72
76
  return 'lower_lows'
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: siglab_py
3
- Version: 0.5.23
3
+ Version: 0.5.26
4
4
  Summary: Market data fetches, TA calculations and generic order gateway.
5
5
  Author: r0bbarh00d
6
6
  Author-email: r0bbarh00d <r0bbarh00d@gmail.com>
@@ -26,14 +26,14 @@ siglab_py/tests/unit/analytic_util_tests.py,sha256=aY6OvICgIrNz-Is4lPPlBtDBF0c8T
26
26
  siglab_py/tests/unit/market_data_util_tests.py,sha256=A1y83itISmMJdn6wLpfwcr4tGola8wTf1D1xbelMvgw,2026
27
27
  siglab_py/tests/unit/trading_util_tests.py,sha256=9DZmTZlW55lPtNfTCukgDdiyBiMYv9R4mEFWJIJiTNg,3870
28
28
  siglab_py/util/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
29
- siglab_py/util/analytic_util.py,sha256=rVP7srGSgCidhB79GXWdYjuAy3G1HCGPblV-kmHAiKg,51713
29
+ siglab_py/util/analytic_util.py,sha256=Q5xHLYojPHdiuWJJbF4IsYMCgg0Zh4IVl9bro3C2wv0,51835
30
30
  siglab_py/util/aws_util.py,sha256=KGmjHrr1rpnnxr33nXHNzTul4tvyyxl9p6gpwNv0Ygc,2557
31
31
  siglab_py/util/market_data_util.py,sha256=mUXg4uaiX3b6_klgJWIEgnUQU4IUd6CwTOqKLiQWRlU,31307
32
32
  siglab_py/util/notification_util.py,sha256=vySgHjpHgwFDLW0tHSi_AGh9JBbPc25IUgvWxmjAeT8,2658
33
33
  siglab_py/util/retry_util.py,sha256=g-UU6pkPouWZZRZEqP99R2Z0lX5xzckYkzjwqqSDpVQ,922
34
34
  siglab_py/util/slack_notification_util.py,sha256=G27n-adbT3Q6oaHSMvu_Nom794rrda5PprSF-zvmzkM,1912
35
35
  siglab_py/util/trading_util.py,sha256=-TGNgJdy4HMDPgq31KQn_lRawFxuXnFU5NnLRb1XM5o,5757
36
- siglab_py-0.5.23.dist-info/METADATA,sha256=PkNx6i-RLTKhh1iIaFM3SOQIgXEGg4LTGDiXoKg2i-E,829
37
- siglab_py-0.5.23.dist-info/WHEEL,sha256=lTU6B6eIfYoiQJTZNc-fyaR6BpL6ehTzU3xGYxn2n8k,91
38
- siglab_py-0.5.23.dist-info/top_level.txt,sha256=AbD4VR9OqmMOGlMJLkAVPGQMtUPIQv0t1BF5xmcLJSk,10
39
- siglab_py-0.5.23.dist-info/RECORD,,
36
+ siglab_py-0.5.26.dist-info/METADATA,sha256=I0jcb9C5zIinr4qpchHFWOMc6QdsL5ovyqS1loOK0bE,829
37
+ siglab_py-0.5.26.dist-info/WHEEL,sha256=lTU6B6eIfYoiQJTZNc-fyaR6BpL6ehTzU3xGYxn2n8k,91
38
+ siglab_py-0.5.26.dist-info/top_level.txt,sha256=AbD4VR9OqmMOGlMJLkAVPGQMtUPIQv0t1BF5xmcLJSk,10
39
+ siglab_py-0.5.26.dist-info/RECORD,,