siglab-py 0.3.7__py3-none-any.whl → 0.3.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of siglab-py might be problematic. Click here for more details.

@@ -894,4 +894,11 @@ def compute_pair_stats(
894
894
  pd_candles['close_spread_std'] = std
895
895
  pd_candles['zscore_close_spread'] = (pd_candles['close_spread'] - mean)/std
896
896
  pd_candles['zscore_close_spread_min'] = pd_candles['zscore_close_spread'].rolling(how_many_candles).min()
897
- pd_candles['zscore_close_spread_max'] = pd_candles['zscore_close_spread'].rolling(how_many_candles).max()
897
+ pd_candles['zscore_close_spread_max'] = pd_candles['zscore_close_spread'].rolling(how_many_candles).max()
898
+
899
+ calculate_slope(
900
+ pd_data=pd_candles,
901
+ src_col_name='zscore_close_spread',
902
+ slope_col_name='zscore_slope',
903
+ sliding_window_how_many_candles=how_many_candles
904
+ )
@@ -672,6 +672,8 @@ def build_pair_candles(
672
672
  pd_candles['timestamp_ms_gap'] = pd_candles['timestamp_ms_1'] - pd_candles['timestamp_ms_2']
673
673
  assert(pd_candles[pd_candles.timestamp_ms_gap!=0].shape[0]==0)
674
674
 
675
+ pd_candles.drop(pd_candles.columns[pd_candles.columns.str.contains('unnamed',case = False)],axis = 1, inplace = True)
676
+
675
677
  return pd_candles
676
678
 
677
679
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: siglab-py
3
- Version: 0.3.7
3
+ Version: 0.3.9
4
4
  Summary: Market data fetches, TA calculations and generic order gateway.
5
5
  Author: r0bbarh00d
6
6
  Author-email: r0bbarh00d <r0bbarh00d@gmail.com>
@@ -25,15 +25,14 @@ siglab_py/tests/unit/analytic_util_tests.py,sha256=eeusM5zkQR2QyVhT7nqF0mwHVg7vl
25
25
  siglab_py/tests/unit/market_data_util_tests.py,sha256=A1y83itISmMJdn6wLpfwcr4tGola8wTf1D1xbelMvgw,2026
26
26
  siglab_py/tests/unit/trading_util_tests.py,sha256=tyefqOTQOoXSlemSDonqmdHp61-1nuXb0_6oeLlaNSM,2689
27
27
  siglab_py/util/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
28
- siglab_py/util/analytic_util.py,sha256=S5jPJ8ualPDlGvAyf7DG9pYFgod7p39ykKrzF670AM4,47069
28
+ siglab_py/util/analytic_util.py,sha256=blFJ1kY_aSJeuzzk28vdB4nhLgmosz0L8IJaJCZy9OM,47272
29
29
  siglab_py/util/aws_util.py,sha256=KGmjHrr1rpnnxr33nXHNzTul4tvyyxl9p6gpwNv0Ygc,2557
30
- siglab_py/util/market_data_util.py,sha256=OPoSB8WW9AulYxkTF79_mPQgmQ1aCSMUnYTTfarAtYw,28975
30
+ siglab_py/util/market_data_util.py,sha256=GSEpGG3wpR7kaM8Ou4lzy8MHqbbRp-tvSGZhNJymALc,29100
31
31
  siglab_py/util/notification_util.py,sha256=vySgHjpHgwFDLW0tHSi_AGh9JBbPc25IUgvWxmjAeT8,2658
32
32
  siglab_py/util/retry_util.py,sha256=mxYuRFZRZoaQQjENcwPmxhxixtd1TFvbxIdPx4RwfRc,743
33
33
  siglab_py/util/slack_notification_util.py,sha256=G27n-adbT3Q6oaHSMvu_Nom794rrda5PprSF-zvmzkM,1912
34
- siglab_py/util/test_market_data_analytic_util.py,sha256=vWzPbJL8lgdC-oBoiLv2OVgfplFUdyWh95-J2PoUyIg,2152
35
34
  siglab_py/util/trading_util.py,sha256=FmqsamuPhMjZUkz4lCyuE8MHFapXn6yNl8Isy7peQEs,3047
36
- siglab_py-0.3.7.dist-info/METADATA,sha256=Y1DLORvYX-UcCQwe8kQwhkkV5InYsa9EMDl4wTqAJOA,979
37
- siglab_py-0.3.7.dist-info/WHEEL,sha256=yQN5g4mg4AybRjkgi-9yy4iQEFibGQmlz78Pik5Or-A,92
38
- siglab_py-0.3.7.dist-info/top_level.txt,sha256=AbD4VR9OqmMOGlMJLkAVPGQMtUPIQv0t1BF5xmcLJSk,10
39
- siglab_py-0.3.7.dist-info/RECORD,,
35
+ siglab_py-0.3.9.dist-info/METADATA,sha256=5s95ToohGOXArDateCWXBCMSybFtxkxb3P2hVMlB2M0,979
36
+ siglab_py-0.3.9.dist-info/WHEEL,sha256=yQN5g4mg4AybRjkgi-9yy4iQEFibGQmlz78Pik5Or-A,92
37
+ siglab_py-0.3.9.dist-info/top_level.txt,sha256=AbD4VR9OqmMOGlMJLkAVPGQMtUPIQv0t1BF5xmcLJSk,10
38
+ siglab_py-0.3.9.dist-info/RECORD,,
@@ -1,64 +0,0 @@
1
- from datetime import datetime
2
- import time
3
- from typing import Union
4
- import pandas as pd
5
-
6
- from ccxt.okx import okx
7
-
8
- from market_data_util import fetch_candles
9
- from analytic_util import compute_candles_stats
10
-
11
- base_ccy : str = "BTC"
12
- # ticker = "GRIFFAIN/USDT:USDT"
13
- # ticker = "OL/USDT:USDT"
14
- ticker = f"{base_ccy}/USDT:USDT"
15
-
16
- reload_raw_candles : bool = True
17
- raw_candles_file : str = f"{base_ccy}_raw_candles.csv"
18
- candles_with_ta_file : str = f"{base_ccy}_candles_ta.csv"
19
-
20
- param = {
21
- 'rateLimit' : 100, # In ms
22
- 'options' : {
23
- 'defaultType': 'swap', # Should test linear instead
24
- }
25
- }
26
- exchange = okx(param) # type: ignore
27
-
28
- start_date : datetime = datetime(2024,1,1)
29
- end_date : datetime = datetime(2025,4,22)
30
- candle_size : str = '1h'
31
- ma_long_intervals : int = 24*30
32
- ma_short_intervals : int = 24
33
- boillenger_std_multiples : int = 2
34
- pypy_compatible : bool = False
35
-
36
- markets = exchange.load_markets()
37
- assert(ticker in markets)
38
-
39
- start = time.time()
40
-
41
- if reload_raw_candles:
42
- pd_candles: Union[pd.DataFrame, None] = fetch_candles(
43
- start_ts=int(start_date.timestamp()),
44
- end_ts=int(end_date.timestamp()),
45
- exchange=exchange,
46
- normalized_symbols=[ ticker ],
47
- candle_size=candle_size
48
- )[ ticker ]
49
-
50
- pd_candles.to_csv(raw_candles_file) # type: ignore
51
- else:
52
- pd_candles = pd.read_csv(raw_candles_file) # type: ignore
53
-
54
- compute_candles_stats(
55
- pd_candles=pd_candles, # type: ignore
56
- boillenger_std_multiples=boillenger_std_multiples,
57
- sliding_window_how_many_candles=ma_long_intervals,
58
- slow_fast_interval_ratio=(ma_long_intervals/ma_short_intervals),
59
- pypy_compat=pypy_compatible
60
- )
61
- pd_candles.to_csv(candles_with_ta_file) # type: ignore
62
-
63
- compute_candles_stats_elapsed_ms = int((time.time() - start) *1000)
64
- print(f"elapsed (ms): {compute_candles_stats_elapsed_ms}")