siglab-py 0.3.6__py3-none-any.whl → 0.3.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of siglab-py might be problematic. Click here for more details.

@@ -27,7 +27,7 @@ from siglab_py.util.analytic_util import compute_candles_stats
27
27
  Usage:
28
28
  set PYTHONPATH=%PYTHONPATH%;D:\dev\siglab\siglab_py
29
29
  python ccxt_candles_ta_to_csv.py --exchange_name okx --symbol BTC/USDT:USDT --candle_size 1h --end_date "2025-04-22 0:0:0" --start_date "2024-01-01 0:0:0" --default_type linear --compute_ta Y --pypy_compatible N
30
-
30
+
31
31
  (Remember: python -mpip install siglab_py)
32
32
 
33
33
  This script is pypy compatible. Set "pypy_compatible" to True, in which case "compute_candles_stats" will skip calculation for TAs which requires: scipy, statsmodels, scikit-learn, sklearn.preprocessing
@@ -83,7 +83,7 @@ param : Dict = {
83
83
  'start_date' : start_date,
84
84
  'end_date' : end_date,
85
85
  'exchange_params' : {
86
- 'rateLimit' : 300, # in ms
86
+ 'rateLimit' : 100, # in ms
87
87
  'options' : {
88
88
  'defaultType' : "linear"
89
89
  }
@@ -865,3 +865,33 @@ def partition_sliding_window(
865
865
  'maxima' : maxima,
866
866
  'segments' : consolidated_segements
867
867
  }
868
+
869
+ # This relies on statsmodels.api, which is not pypy compatible
870
+ def compute_pair_stats(
871
+ pd_candles : pd.DataFrame,
872
+ how_many_candles : int = 24*7
873
+ ) -> None:
874
+ import statsmodels.api as sm
875
+
876
+ def _compute_hedge_ratio(
877
+ prices0 : List[float],
878
+ prices1 : List[float]
879
+ ):
880
+ model = sm.OLS(prices0, prices1).fit()
881
+ hedge_ratio = model.params[0]
882
+ return hedge_ratio
883
+
884
+ pd_candles['hedge_ratio'] = np.nan
885
+ for j in range(how_many_candles, pd_candles.shape[0]):
886
+ window = pd_candles.iloc[j-how_many_candles:j]
887
+ hedge_ratio = _compute_hedge_ratio(window['close_1'].values, window['close_2'].values) # type: ignore
888
+ pd_candles.loc[j, 'hedge_ratio'] = hedge_ratio
889
+
890
+ pd_candles['close_spread'] = pd_candles['close_1'] - (pd_candles['close_2'] * pd_candles['hedge_ratio']) # You're fitting one hedge_ratio over a windows
891
+ mean = pd_candles['close_spread'].rolling(how_many_candles).mean()
892
+ std = pd_candles['close_spread'].rolling(how_many_candles).std()
893
+ pd_candles['close_spread_mean'] = mean
894
+ pd_candles['close_spread_std'] = std
895
+ pd_candles['zscore_close_spread'] = (pd_candles['close_spread'] - mean)/std
896
+ pd_candles['zscore_close_spread_min'] = pd_candles['zscore_close_spread'].rolling(how_many_candles).min()
897
+ pd_candles['zscore_close_spread_max'] = pd_candles['zscore_close_spread'].rolling(how_many_candles).max()
@@ -672,6 +672,8 @@ def build_pair_candles(
672
672
  pd_candles['timestamp_ms_gap'] = pd_candles['timestamp_ms_1'] - pd_candles['timestamp_ms_2']
673
673
  assert(pd_candles[pd_candles.timestamp_ms_gap!=0].shape[0]==0)
674
674
 
675
+ pd_candles.drop(pd_candles.columns[pd_candles.columns.str.contains('unnamed',case = False)],axis = 1, inplace = True)
676
+
675
677
  return pd_candles
676
678
 
677
679
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: siglab-py
3
- Version: 0.3.6
3
+ Version: 0.3.8
4
4
  Summary: Market data fetches, TA calculations and generic order gateway.
5
5
  Author: r0bbarh00d
6
6
  Author-email: r0bbarh00d <r0bbarh00d@gmail.com>
@@ -7,7 +7,7 @@ siglab_py/market_data_providers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm
7
7
  siglab_py/market_data_providers/aggregated_orderbook_provider.py,sha256=FZRobEBNRzcNGlOG3u38OVhmOZYlkNm8dVvR-S7Ii2g,23342
8
8
  siglab_py/market_data_providers/candles_provider.py,sha256=fqHJjlECsBiBlpgyywrc4gTgxiROPNzZM8KxQBB5cOg,14139
9
9
  siglab_py/market_data_providers/candles_ta_provider.py,sha256=uiAhbEZZdTF-YulBHpSLwabos5LHCKU91NTiTmpUc0w,12001
10
- siglab_py/market_data_providers/ccxt_candles_ta_to_csv.py,sha256=j17D62JvKBW-Oc-gIrAWVbF7cCaE70X-X_uKvbtkilo,11154
10
+ siglab_py/market_data_providers/ccxt_candles_ta_to_csv.py,sha256=DHj51QTbkCmEd9RFNVhWWpsSPz1aLd6zTLqkUUbEkK0,11158
11
11
  siglab_py/market_data_providers/deribit_options_expiry_provider.py,sha256=e9Ee8TmC8pXaid8-jouSLKIpuW6_JBBgwRTieI665yQ,8684
12
12
  siglab_py/market_data_providers/futu_candles_ta_to_csv.py,sha256=S4GXaJ7AveEh-Cm9-VhENBdlj_1CfyBTrQO7acTqfUE,10226
13
13
  siglab_py/market_data_providers/orderbooks_provider.py,sha256=olt-3LIkoyzQWfNNQRhJtKibLbkTutt_q_rCCTM7i1g,16216
@@ -25,15 +25,15 @@ siglab_py/tests/unit/analytic_util_tests.py,sha256=eeusM5zkQR2QyVhT7nqF0mwHVg7vl
25
25
  siglab_py/tests/unit/market_data_util_tests.py,sha256=A1y83itISmMJdn6wLpfwcr4tGola8wTf1D1xbelMvgw,2026
26
26
  siglab_py/tests/unit/trading_util_tests.py,sha256=tyefqOTQOoXSlemSDonqmdHp61-1nuXb0_6oeLlaNSM,2689
27
27
  siglab_py/util/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
28
- siglab_py/util/analytic_util.py,sha256=BI0_nYgs4R9FogyEN3KYaFHigLLsV05IMF7b2-Twemo,45608
28
+ siglab_py/util/analytic_util.py,sha256=S5jPJ8ualPDlGvAyf7DG9pYFgod7p39ykKrzF670AM4,47069
29
29
  siglab_py/util/aws_util.py,sha256=KGmjHrr1rpnnxr33nXHNzTul4tvyyxl9p6gpwNv0Ygc,2557
30
- siglab_py/util/market_data_util.py,sha256=OPoSB8WW9AulYxkTF79_mPQgmQ1aCSMUnYTTfarAtYw,28975
30
+ siglab_py/util/market_data_util.py,sha256=GSEpGG3wpR7kaM8Ou4lzy8MHqbbRp-tvSGZhNJymALc,29100
31
31
  siglab_py/util/notification_util.py,sha256=vySgHjpHgwFDLW0tHSi_AGh9JBbPc25IUgvWxmjAeT8,2658
32
32
  siglab_py/util/retry_util.py,sha256=mxYuRFZRZoaQQjENcwPmxhxixtd1TFvbxIdPx4RwfRc,743
33
33
  siglab_py/util/slack_notification_util.py,sha256=G27n-adbT3Q6oaHSMvu_Nom794rrda5PprSF-zvmzkM,1912
34
34
  siglab_py/util/test_market_data_analytic_util.py,sha256=vWzPbJL8lgdC-oBoiLv2OVgfplFUdyWh95-J2PoUyIg,2152
35
35
  siglab_py/util/trading_util.py,sha256=FmqsamuPhMjZUkz4lCyuE8MHFapXn6yNl8Isy7peQEs,3047
36
- siglab_py-0.3.6.dist-info/METADATA,sha256=OaKPU3SBDpdvYtvH4Hu3KOPxp654IoKrLuatH48WLu4,979
37
- siglab_py-0.3.6.dist-info/WHEEL,sha256=yQN5g4mg4AybRjkgi-9yy4iQEFibGQmlz78Pik5Or-A,92
38
- siglab_py-0.3.6.dist-info/top_level.txt,sha256=AbD4VR9OqmMOGlMJLkAVPGQMtUPIQv0t1BF5xmcLJSk,10
39
- siglab_py-0.3.6.dist-info/RECORD,,
36
+ siglab_py-0.3.8.dist-info/METADATA,sha256=0BMzrjb5hc1UpqYxpF7-rITfWBmWYgHciDPZYVtgHDQ,979
37
+ siglab_py-0.3.8.dist-info/WHEEL,sha256=yQN5g4mg4AybRjkgi-9yy4iQEFibGQmlz78Pik5Or-A,92
38
+ siglab_py-0.3.8.dist-info/top_level.txt,sha256=AbD4VR9OqmMOGlMJLkAVPGQMtUPIQv0t1BF5xmcLJSk,10
39
+ siglab_py-0.3.8.dist-info/RECORD,,