siglab-py 0.1.32__py3-none-any.whl → 0.1.35__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of siglab-py might be problematic. Click here for more details.
- siglab_py/util/analytic_util.py +18 -12
- siglab_py/util/market_data_util.py +1 -1
- {siglab_py-0.1.32.dist-info → siglab_py-0.1.35.dist-info}/METADATA +1 -1
- {siglab_py-0.1.32.dist-info → siglab_py-0.1.35.dist-info}/RECORD +6 -6
- {siglab_py-0.1.32.dist-info → siglab_py-0.1.35.dist-info}/WHEEL +0 -0
- {siglab_py-0.1.32.dist-info → siglab_py-0.1.35.dist-info}/top_level.txt +0 -0
siglab_py/util/analytic_util.py
CHANGED
|
@@ -86,11 +86,17 @@ def compute_candles_stats(
|
|
|
86
86
|
|
|
87
87
|
pd_candles['is_green'] = pd_candles['close'] >= pd_candles['open']
|
|
88
88
|
|
|
89
|
+
close_short_periods_rolling = pd_candles['close'].rolling(window=int(sliding_window_how_many_candles/slow_fast_interval_ratio))
|
|
90
|
+
close_long_periods_rolling = pd_candles['close'].rolling(window=sliding_window_how_many_candles)
|
|
91
|
+
close_short_periods_ewm = pd_candles['close'].ewm(span=int(sliding_window_how_many_candles/slow_fast_interval_ratio), adjust=False)
|
|
92
|
+
close_long_periods_ewm = pd_candles['close'].ewm(span=sliding_window_how_many_candles, adjust=False)
|
|
93
|
+
|
|
94
|
+
|
|
89
95
|
pd_candles['pct_change_close'] = pd_candles['close'].pct_change() * 100
|
|
90
|
-
pd_candles['sma_short_periods'] =
|
|
91
|
-
pd_candles['sma_long_periods'] =
|
|
92
|
-
pd_candles['ema_short_periods'] =
|
|
93
|
-
pd_candles['ema_long_periods'] =
|
|
96
|
+
pd_candles['sma_short_periods'] = close_short_periods_rolling.mean()
|
|
97
|
+
pd_candles['sma_long_periods'] = close_long_periods_rolling.mean()
|
|
98
|
+
pd_candles['ema_short_periods'] = close_short_periods_ewm.mean()
|
|
99
|
+
pd_candles['ema_long_periods'] = close_long_periods_ewm.mean()
|
|
94
100
|
pd_candles['ema_close'] = pd_candles['ema_long_periods'] # Alias, shorter name
|
|
95
101
|
pd_candles['std'] = pd_candles['close'].rolling(window=sliding_window_how_many_candles).std()
|
|
96
102
|
|
|
@@ -106,15 +112,15 @@ def compute_candles_stats(
|
|
|
106
112
|
pd_candles['ema_volume_short_periods'] = pd_candles['volume'].ewm(span=sliding_window_how_many_candles/slow_fast_interval_ratio, adjust=False).mean()
|
|
107
113
|
pd_candles['ema_volume_long_periods'] = pd_candles['volume'].ewm(span=sliding_window_how_many_candles, adjust=False).mean()
|
|
108
114
|
|
|
109
|
-
pd_candles['max_short_periods'] =
|
|
110
|
-
pd_candles['max_long_periods'] =
|
|
111
|
-
pd_candles['idmax_short_periods'] =
|
|
112
|
-
pd_candles['idmax_long_periods'] =
|
|
115
|
+
pd_candles['max_short_periods'] = close_short_periods_rolling.max()
|
|
116
|
+
pd_candles['max_long_periods'] = close_long_periods_rolling.max()
|
|
117
|
+
pd_candles['idmax_short_periods'] = close_short_periods_rolling.apply(lambda x : x.idxmax())
|
|
118
|
+
pd_candles['idmax_long_periods'] = close_long_periods_rolling.apply(lambda x : x.idxmax())
|
|
113
119
|
|
|
114
|
-
pd_candles['min_short_periods'] =
|
|
115
|
-
pd_candles['min_long_periods'] =
|
|
116
|
-
pd_candles['idmin_short_periods'] =
|
|
117
|
-
pd_candles['idmin_long_periods'] =
|
|
120
|
+
pd_candles['min_short_periods'] = close_short_periods_rolling.min()
|
|
121
|
+
pd_candles['min_long_periods'] = close_long_periods_rolling.min()
|
|
122
|
+
pd_candles['idmin_short_periods'] = close_short_periods_rolling.apply(lambda x : x.idxmin())
|
|
123
|
+
pd_candles['idmin_long_periods'] = close_long_periods_rolling.apply(lambda x : x.idxmin())
|
|
118
124
|
|
|
119
125
|
|
|
120
126
|
# ATR https://medium.com/codex/detecting-ranging-and-trending-markets-with-choppiness-index-in-python-1942e6450b58
|
|
@@ -19,7 +19,7 @@ from siglab_py.exchanges.futubull import Futubull
|
|
|
19
19
|
|
|
20
20
|
def timestamp_to_datetime_cols(pd_candles : pd.DataFrame):
|
|
21
21
|
pd_candles['datetime'] = pd_candles['timestamp_ms'].apply(
|
|
22
|
-
lambda x: datetime.fromtimestamp(int(x.timestamp()) if isinstance(x, pd.Timestamp) else int(x / 1000))
|
|
22
|
+
lambda x: datetime.fromtimestamp(int(x.timestamp()) if isinstance(x, pd.Timestamp) else (int(x / 1000) if len(str(int(x)))==13 else int(x)) )
|
|
23
23
|
)
|
|
24
24
|
pd_candles['datetime'] = pd.to_datetime(pd_candles['datetime'])
|
|
25
25
|
pd_candles['datetime'] = pd_candles['datetime'].dt.tz_localize(None)
|
|
@@ -24,11 +24,11 @@ siglab_py/tests/unit/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hS
|
|
|
24
24
|
siglab_py/tests/unit/analytic_util_tests.py,sha256=BzT__hxfqXMRAKvqtYDVYNrcMGGDF3-gFoXhxiJ0Lew,3703
|
|
25
25
|
siglab_py/tests/unit/market_data_util_tests.py,sha256=A1y83itISmMJdn6wLpfwcr4tGola8wTf1D1xbelMvgw,2026
|
|
26
26
|
siglab_py/util/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
27
|
-
siglab_py/util/analytic_util.py,sha256=
|
|
27
|
+
siglab_py/util/analytic_util.py,sha256=xo9gD1ELQt_1v84yu9d4NgxtOIXthePZGipvDrjZAQ8,43834
|
|
28
28
|
siglab_py/util/aws_util.py,sha256=KGmjHrr1rpnnxr33nXHNzTul4tvyyxl9p6gpwNv0Ygc,2557
|
|
29
|
-
siglab_py/util/market_data_util.py,sha256=
|
|
29
|
+
siglab_py/util/market_data_util.py,sha256=mXEcWO1FirySHNBYFe-PFnBJp4FR9PlruQyaSCHN0MI,19358
|
|
30
30
|
siglab_py/util/retry_util.py,sha256=mxYuRFZRZoaQQjENcwPmxhxixtd1TFvbxIdPx4RwfRc,743
|
|
31
|
-
siglab_py-0.1.
|
|
32
|
-
siglab_py-0.1.
|
|
33
|
-
siglab_py-0.1.
|
|
34
|
-
siglab_py-0.1.
|
|
31
|
+
siglab_py-0.1.35.dist-info/METADATA,sha256=RGBNsgJFUo8x1aD3KbqAuDqRxOgMFKO99frX-8gEDwI,980
|
|
32
|
+
siglab_py-0.1.35.dist-info/WHEEL,sha256=yQN5g4mg4AybRjkgi-9yy4iQEFibGQmlz78Pik5Or-A,92
|
|
33
|
+
siglab_py-0.1.35.dist-info/top_level.txt,sha256=AbD4VR9OqmMOGlMJLkAVPGQMtUPIQv0t1BF5xmcLJSk,10
|
|
34
|
+
siglab_py-0.1.35.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|