siglab-py 0.1.30__py3-none-any.whl → 0.6.33__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- siglab_py/algo/__init__.py +0 -0
- siglab_py/algo/macdrsi_crosses_15m_tc_strategy.py +107 -0
- siglab_py/algo/strategy_base.py +122 -0
- siglab_py/algo/strategy_executor.py +1308 -0
- siglab_py/algo/tp_algo.py +529 -0
- siglab_py/backtests/__init__.py +0 -0
- siglab_py/backtests/backtest_core.py +2405 -0
- siglab_py/backtests/coinflip_15m_crypto.py +432 -0
- siglab_py/backtests/fibonacci_d_mv_crypto.py +541 -0
- siglab_py/backtests/macdrsi_crosses_15m_tc_crypto.py +473 -0
- siglab_py/constants.py +26 -1
- siglab_py/exchanges/binance.py +38 -0
- siglab_py/exchanges/deribit.py +83 -0
- siglab_py/exchanges/futubull.py +12 -2
- siglab_py/market_data_providers/candles_provider.py +11 -10
- siglab_py/market_data_providers/candles_ta_provider.py +5 -5
- siglab_py/market_data_providers/ccxt_candles_ta_to_csv.py +4 -4
- siglab_py/market_data_providers/futu_candles_ta_to_csv.py +7 -2
- siglab_py/market_data_providers/google_monitor.py +320 -0
- siglab_py/market_data_providers/orderbooks_provider.py +15 -12
- siglab_py/market_data_providers/tg_monitor.py +428 -0
- siglab_py/market_data_providers/{test_provider.py → trigger_provider.py} +9 -8
- siglab_py/ordergateway/client.py +172 -41
- siglab_py/ordergateway/encrypt_keys_util.py +1 -1
- siglab_py/ordergateway/gateway.py +456 -347
- siglab_py/ordergateway/test_ordergateway.py +8 -7
- siglab_py/tests/integration/market_data_util_tests.py +75 -2
- siglab_py/tests/unit/analytic_util_tests.py +47 -12
- siglab_py/tests/unit/market_data_util_tests.py +45 -1
- siglab_py/tests/unit/simple_math_tests.py +252 -0
- siglab_py/tests/unit/trading_util_tests.py +65 -0
- siglab_py/util/analytic_util.py +476 -67
- siglab_py/util/datetime_util.py +39 -0
- siglab_py/util/market_data_util.py +528 -98
- siglab_py/util/module_util.py +40 -0
- siglab_py/util/notification_util.py +78 -0
- siglab_py/util/retry_util.py +16 -3
- siglab_py/util/simple_math.py +262 -0
- siglab_py/util/slack_notification_util.py +59 -0
- siglab_py/util/trading_util.py +118 -0
- {siglab_py-0.1.30.dist-info → siglab_py-0.6.33.dist-info}/METADATA +5 -9
- siglab_py-0.6.33.dist-info/RECORD +56 -0
- {siglab_py-0.1.30.dist-info → siglab_py-0.6.33.dist-info}/WHEEL +1 -1
- siglab_py-0.1.30.dist-info/RECORD +0 -34
- {siglab_py-0.1.30.dist-info → siglab_py-0.6.33.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,1308 @@
|
|
|
1
|
+
# type: ignore
|
|
2
|
+
import sys
|
|
3
|
+
import traceback
|
|
4
|
+
import os
|
|
5
|
+
import logging
|
|
6
|
+
from dotenv import load_dotenv
|
|
7
|
+
import argparse
|
|
8
|
+
import re
|
|
9
|
+
from datetime import datetime, timedelta, timezone
|
|
10
|
+
import time
|
|
11
|
+
import arrow
|
|
12
|
+
from zoneinfo import ZoneInfo
|
|
13
|
+
from typing import List, Dict, Any, Union, Callable
|
|
14
|
+
from io import StringIO
|
|
15
|
+
import json
|
|
16
|
+
import asyncio
|
|
17
|
+
from redis import StrictRedis
|
|
18
|
+
import pandas as pd
|
|
19
|
+
import numpy as np
|
|
20
|
+
import inspect
|
|
21
|
+
from tabulate import tabulate
|
|
22
|
+
|
|
23
|
+
from siglab_py.exchanges.any_exchange import AnyExchange
|
|
24
|
+
from siglab_py.ordergateway.client import DivisiblePosition, execute_positions
|
|
25
|
+
from siglab_py.util.datetime_util import parse_trading_window
|
|
26
|
+
from siglab_py.util.market_data_util import async_instantiate_exchange, interval_to_ms
|
|
27
|
+
from siglab_py.util.trading_util import calc_eff_trailing_sl
|
|
28
|
+
from siglab_py.util.notification_util import dispatch_notification
|
|
29
|
+
from siglab_py.util.aws_util import AwsKmsUtil
|
|
30
|
+
|
|
31
|
+
from siglab_py.constants import INVALID, JSON_SERIALIZABLE_TYPES, LogLevel, PositionStatus, OrderSide
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
'''
|
|
35
|
+
For dry-runs/testing, swap back to StrategyBase, it will not fire an order.
|
|
36
|
+
'''
|
|
37
|
+
# from strategy_base import StrategyBase as TargetStrategy # Import whatever strategy subclassed from StrategyBase here!
|
|
38
|
+
from macd_crosses_targets_from_level_15m_tc_strategy import MACDCrossesTargetFromLevel15mTCStrategy as TargetStrategy
|
|
39
|
+
|
|
40
|
+
current_filename = os.path.basename(__file__)
|
|
41
|
+
|
|
42
|
+
'''
|
|
43
|
+
Error: RuntimeError: aiodns needs a SelectorEventLoop on Windows.
|
|
44
|
+
Hack, by far the filthest hack I done in my career: Set SelectorEventLoop on Windows
|
|
45
|
+
'''
|
|
46
|
+
if sys.platform == 'win32':
|
|
47
|
+
asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy())
|
|
48
|
+
|
|
49
|
+
'''
|
|
50
|
+
Usage:
|
|
51
|
+
Step 1. Start candles_providers
|
|
52
|
+
set PYTHONPATH=%PYTHONPATH%;D:\dev\siglab\siglab_py
|
|
53
|
+
python candles_provider.py --provider_id aaa --candle_size 1h --how_many_candles 720 --redis_ttl_ms 3600000
|
|
54
|
+
python candles_provider.py --provider_id bbb --candle_size 15m --how_many_candles 672 --redis_ttl_ms 3600000
|
|
55
|
+
|
|
56
|
+
Note: how_many_candles should be larger than compute_candles_stats.sliding_window_how_many_candles by a few times.
|
|
57
|
+
720 = 24 x 30 days
|
|
58
|
+
672 = 4 x 24 x 7 days (Each hour has four 15m candles. 672 candles means 672 15m candles)
|
|
59
|
+
|
|
60
|
+
Step 2. Start candles_ta_providers
|
|
61
|
+
set PYTHONPATH=%PYTHONPATH%;D:\dev\siglab\siglab_py
|
|
62
|
+
python candles_ta_provider.py --candle_size 1h --ma_long_intervals 48 --ma_short_intervals 12 --boillenger_std_multiples 2 --redis_ttl_ms 3600000 --processed_hash_queue_max_size 999 --pypy_compat N
|
|
63
|
+
python candles_ta_provider.py --candle_size 15m --ma_long_intervals 150 --ma_short_intervals 5 --boillenger_std_multiples 2 --redis_ttl_ms 3600000 --processed_hash_queue_max_size 999 --pypy_compat N
|
|
64
|
+
|
|
65
|
+
Note, for 15m bars, a sliding window of size 150 means 150 x 15m = 2250 minutes
|
|
66
|
+
|
|
67
|
+
Step 3. Start orderbooks_provider
|
|
68
|
+
set PYTHONPATH=%PYTHONPATH%;D:\dev\siglab\siglab_py
|
|
69
|
+
python orderbooks_provider.py --provider_id ccc --instance_capacity 25 --ts_delta_observation_ms_threshold 150 --ts_delta_consecutive_ms_threshold 150 --redis_ttl_ms 3600000
|
|
70
|
+
|
|
71
|
+
Step 4. To trigger candles_providers and orderbooks_provider
|
|
72
|
+
set PYTHONPATH=%PYTHONPATH%;D:\dev\siglab\siglab_py
|
|
73
|
+
python trigger_provider.py --provider_id aaa --tickers "okx_linear|SOL/USDT:USDT"
|
|
74
|
+
python trigger_provider.py --provider_id bbb --tickers "okx_linear|SOL/USDT:USDT"
|
|
75
|
+
python trigger_provider.py --provider_id ccc --tickers "okx_linear|SOL/USDT:USDT"
|
|
76
|
+
|
|
77
|
+
Step 5. Start strategy_executor
|
|
78
|
+
set PYTHONPATH=%PYTHONPATH%;D:\dev\siglab\siglab_py
|
|
79
|
+
python strategy_executor.py --gateway_id hyperliquid_01 --default_type linear --rate_limit_ms 100 --encrypt_decrypt_with_aws_kms Y --aws_kms_key_id xxx --apikey xxx --secret xxx --ticker SUSHI/USDC:USDC --order_type limit --amount_base_ccy 45 --residual_pos_usdt_threshold 10 --slices 3 --wait_fill_threshold_ms 15000 --leg_room_bps 5 --tp_min_percent 1.5 --tp_max_percent 2.5 --sl_percent_trailing 50 --sl_hard_percent 1 --reversal_num_intervals 3 --slack_info_url https://hooks.slack.com/services/xxx --slack_critial_url https://hooks.slack.com/services/xxx --slack_alert_url https://hooks.slack.com/services/xxx --economic_calendar_source xxx --block_entry_impacting_events Y --num_intervals_current_ecoevents 96 --trading_window_start Mon_00:00 --trading_window_end Fri_17:00
|
|
80
|
+
|
|
81
|
+
Step 6. Start order gateway
|
|
82
|
+
Top of the script for instructions
|
|
83
|
+
https://github.com/r0bbar/siglab/blob/master/siglab_py/ordergateway/gateway.py
|
|
84
|
+
|
|
85
|
+
Debug from VSCode, launch.json:
|
|
86
|
+
{
|
|
87
|
+
"version": "0.2.0",
|
|
88
|
+
"configurations": [
|
|
89
|
+
{
|
|
90
|
+
"name": "Python Debugger: Current File",
|
|
91
|
+
"type": "debugpy",
|
|
92
|
+
"request": "launch",
|
|
93
|
+
"program": "${file}",
|
|
94
|
+
"console": "integratedTerminal",
|
|
95
|
+
"args" : [
|
|
96
|
+
"--gateway_id", "hyperliquid_01",
|
|
97
|
+
"--default_type", "linear",
|
|
98
|
+
"--rate_limit_ms", "100",
|
|
99
|
+
"--encrypt_decrypt_with_aws_kms", "Y",
|
|
100
|
+
"--aws_kms_key_id", "xxx",
|
|
101
|
+
"--apikey", "xxx",
|
|
102
|
+
"--secret", "xxx",
|
|
103
|
+
|
|
104
|
+
"--ticker", "SOL/USDC:USDC",
|
|
105
|
+
"--order_type", "limit",
|
|
106
|
+
"--amount_base_ccy", "3",
|
|
107
|
+
"--slices", "3",
|
|
108
|
+
"--wait_fill_threshold_ms", "15000",
|
|
109
|
+
"--leg_room_bps", "5",
|
|
110
|
+
"--tp_min_percent", "3",
|
|
111
|
+
"--tp_max_percent", "5",
|
|
112
|
+
"--sl_percent_trailing", "35",
|
|
113
|
+
"--sl_hard_percent", "2.5",
|
|
114
|
+
"--reversal_num_intervals", "3",
|
|
115
|
+
|
|
116
|
+
"--economic_calendar_source", "xxx",
|
|
117
|
+
"--block_entry_impacting_events","Y",
|
|
118
|
+
"--num_intervals_current_ecoevents", "96",
|
|
119
|
+
|
|
120
|
+
"--trading_window_start", "Mon_00:00",
|
|
121
|
+
"--trading_window_end", "Fri_17:00",
|
|
122
|
+
|
|
123
|
+
"--slack_info_url", "https://hooks.slack.com/services/xxx",
|
|
124
|
+
"--slack_critial_url", "https://hooks.slack.com/services/xxx",
|
|
125
|
+
"--slack_alert_url", "https://hooks.slack.com/services/xxx",
|
|
126
|
+
],
|
|
127
|
+
"env": {
|
|
128
|
+
"PYTHONPATH": "${workspaceFolder}"
|
|
129
|
+
}
|
|
130
|
+
}
|
|
131
|
+
]
|
|
132
|
+
}
|
|
133
|
+
'''
|
|
134
|
+
param : Dict = {
|
|
135
|
+
'trailing_sl_min_percent_linear': 1.0, # This is threshold used for tp_algo to decide if use linear stops tightening, or non-linear. If tp_max_percent far (>100bps), there's more uncertainty if target can be reached: Go with linear.
|
|
136
|
+
'non_linear_pow' : 5, # For non-linear trailing stops tightening.
|
|
137
|
+
|
|
138
|
+
'rolldate_tz' : 'Asia/Hong_Kong', # Roll date based on what timezone?
|
|
139
|
+
|
|
140
|
+
# economic_calendar related
|
|
141
|
+
'mapped_regions' : [ 'united_states' ],
|
|
142
|
+
|
|
143
|
+
'mapped_event_codes' : [
|
|
144
|
+
'core_inflation_rate_mom', 'core_inflation_rate_yoy',
|
|
145
|
+
'inflation_rate_mom', 'inflation_rate_yoy',
|
|
146
|
+
'fed_interest_rate_decision',
|
|
147
|
+
'fed_chair_speech',
|
|
148
|
+
'core_pce_price_index_mom',
|
|
149
|
+
'core_pce_price_index_yoy',
|
|
150
|
+
'unemployment_rate',
|
|
151
|
+
'non_farm_payrolls',
|
|
152
|
+
'gdp_growth_rate_qoq_adv',
|
|
153
|
+
'gdp_growth_rate_qoq_final',
|
|
154
|
+
'gdp_growth_rate_yoy',
|
|
155
|
+
|
|
156
|
+
'manual_event'
|
|
157
|
+
],
|
|
158
|
+
'max_current_economic_calendar_age_sec' : 10,
|
|
159
|
+
'num_intervals_current_ecoevents' : 4* 24, # x4 because lo_interval "15m" per 'lo_candles_w_ta_topic': If you want to convert to 24 hrs ...
|
|
160
|
+
|
|
161
|
+
"loop_freq_ms" : 5000, # reduce this if you need trade faster
|
|
162
|
+
|
|
163
|
+
'current_filename' : current_filename,
|
|
164
|
+
|
|
165
|
+
'notification' : {
|
|
166
|
+
'footer' : None,
|
|
167
|
+
|
|
168
|
+
# slack webhook url's for notifications
|
|
169
|
+
'slack' : {
|
|
170
|
+
'info' : { 'webhook_url' : None },
|
|
171
|
+
'critical' : { 'webhook_url' : None },
|
|
172
|
+
'alert' : { 'webhook_url' : None },
|
|
173
|
+
}
|
|
174
|
+
},
|
|
175
|
+
|
|
176
|
+
'mds' : {
|
|
177
|
+
'topics' : {
|
|
178
|
+
"hi_candles_provider_topic" : "mds_assign_aaa",
|
|
179
|
+
"lo_candles_provider_topic" : "mds_assign_bbb",
|
|
180
|
+
"orderbooks_provider_topic" : "mds_assign_ccc",
|
|
181
|
+
"hi_candles_w_ta_topic" : "candles_ta-SOL-USDT-SWAP-okx-1h",
|
|
182
|
+
"lo_candles_w_ta_topic" : "candles_ta-SOL-USDT-SWAP-okx-15m",
|
|
183
|
+
"orderbook_topic" : "orderbooks_SOL/USDT:USDT_okx",
|
|
184
|
+
|
|
185
|
+
"full_economic_calendars_topic" : "economic_calendars_full_$SOURCE$",
|
|
186
|
+
},
|
|
187
|
+
'redis' : {
|
|
188
|
+
'host' : 'localhost',
|
|
189
|
+
'port' : 6379,
|
|
190
|
+
'db' : 0,
|
|
191
|
+
'ttl_ms' : 1000*60*15 # 15 min?
|
|
192
|
+
}
|
|
193
|
+
}
|
|
194
|
+
}
|
|
195
|
+
|
|
196
|
+
logging.Formatter.converter = time.gmtime
|
|
197
|
+
logger = logging.getLogger()
|
|
198
|
+
log_level = logging.INFO # DEBUG --> INFO --> WARNING --> ERROR
|
|
199
|
+
logger.setLevel(log_level)
|
|
200
|
+
format_str = '%(asctime)s %(message)s'
|
|
201
|
+
formatter = logging.Formatter(format_str)
|
|
202
|
+
sh = logging.StreamHandler()
|
|
203
|
+
sh.setLevel(log_level)
|
|
204
|
+
sh.setFormatter(formatter)
|
|
205
|
+
logger.addHandler(sh)
|
|
206
|
+
|
|
207
|
+
POSITION_CACHE_FILE_NAME = f"{TargetStrategy.__name__}_position_cache_$GATEWAY_ID$.csv"
|
|
208
|
+
POSITION_CACHE_COLUMNS = [
|
|
209
|
+
'exchange', 'ticker',
|
|
210
|
+
'status',
|
|
211
|
+
'pos', 'pos_usdt', 'multiplier', 'created', 'closed',
|
|
212
|
+
'pos_entries',
|
|
213
|
+
'spread_bps', 'entry_px', 'close_px',
|
|
214
|
+
'ob_mid', 'ob_best_bid', 'ob_best_ask',
|
|
215
|
+
'unreal_live',
|
|
216
|
+
'max_unreal_live',
|
|
217
|
+
'max_pain',
|
|
218
|
+
'max_recovered_pnl',
|
|
219
|
+
'pnl_live_bps',
|
|
220
|
+
'pnl_open_bps',
|
|
221
|
+
'max_unreal_live_bps',
|
|
222
|
+
'max_unreal_open_bps',
|
|
223
|
+
|
|
224
|
+
'tp_max_target',
|
|
225
|
+
'tp_min_target',
|
|
226
|
+
|
|
227
|
+
'running_sl_percent_hard',
|
|
228
|
+
'sl_trailing_min_threshold_crossed',
|
|
229
|
+
'sl_percent_trailing',
|
|
230
|
+
'loss_trailing'
|
|
231
|
+
]
|
|
232
|
+
|
|
233
|
+
ORDERHIST_CACHE_FILE_NAME = f"{TargetStrategy.__name__}_orderhist_cache_$GATEWAY_ID$.csv"
|
|
234
|
+
ORDERHIST_CACHE_COLUMNS = [ 'datetime', 'exchange', 'ticker', 'reason', 'side', 'avg_price', 'amount', 'pnl', 'pnl_bps', 'max_pain' ]
|
|
235
|
+
|
|
236
|
+
def log(message : str, log_level : LogLevel = LogLevel.INFO):
|
|
237
|
+
if log_level.value<LogLevel.WARNING.value:
|
|
238
|
+
logger.info(message)
|
|
239
|
+
|
|
240
|
+
elif log_level.value==LogLevel.WARNING.value:
|
|
241
|
+
logger.warning(message)
|
|
242
|
+
|
|
243
|
+
elif log_level.value==LogLevel.ERROR.value:
|
|
244
|
+
logger.error(message)
|
|
245
|
+
|
|
246
|
+
def parse_args():
|
|
247
|
+
parser = argparse.ArgumentParser()
|
|
248
|
+
|
|
249
|
+
parser.add_argument("--gateway_id", help="gateway_id: Where are you sending your order?", default=None)
|
|
250
|
+
|
|
251
|
+
parser.add_argument("--default_type", help="default_type: spot, linear, inverse, futures ...etc", default='linear')
|
|
252
|
+
parser.add_argument("--rate_limit_ms", help="rate_limit_ms: Check your exchange rules", default=100)
|
|
253
|
+
|
|
254
|
+
parser.add_argument("--trading_window_start", help="Start of trading window. Set as blank if trading not confined to particular trading window. Format: Fri_00:00", default='')
|
|
255
|
+
parser.add_argument("--trading_window_end", help="End of trading window.", default='')
|
|
256
|
+
|
|
257
|
+
parser.add_argument("--encrypt_decrypt_with_aws_kms", help="Y or N. If encrypt_decrypt_with_aws_kms=N, pass in apikey, secret and passphrase unencrypted (Not recommended, for testing only). If Y, they will be decrypted using AMS KMS key.", default='N')
|
|
258
|
+
parser.add_argument("--aws_kms_key_id", help="AWS KMS key ID", default=None)
|
|
259
|
+
parser.add_argument("--apikey", help="Exchange apikey", default=None)
|
|
260
|
+
parser.add_argument("--secret", help="Exchange secret", default=None)
|
|
261
|
+
parser.add_argument("--passphrase", help="Exchange passphrase", default=None)
|
|
262
|
+
parser.add_argument("--verbose", help="logging verbosity, Y or N (default).", default='N')
|
|
263
|
+
|
|
264
|
+
parser.add_argument("--ticker", help="Ticker you're trading. Example BTC/USDC:USDC", default=None)
|
|
265
|
+
parser.add_argument("--order_type", help="Order type: market or limit", default=None)
|
|
266
|
+
parser.add_argument("--amount_base_ccy", help="Order amount in base ccy (Not # contracts). Always positive, even for sell trades.", default=None)
|
|
267
|
+
parser.add_argument("--residual_pos_usdt_threshold", help="If pos_usdt<=residual_pos_usdt_threshold (in USD, default $100), PositionStatus will be marked to CLOSED.", default=100)
|
|
268
|
+
parser.add_argument("--leg_room_bps", help="Leg room, for Limit orders only. A more positive leg room is a more aggressive order to get filled. i.e. Buy at higher price, Sell at lower price.", default=5)
|
|
269
|
+
parser.add_argument("--slices", help="Algo can break down larger order into smaller slices. Default: 1", default=1)
|
|
270
|
+
parser.add_argument("--wait_fill_threshold_ms", help="Limit orders will be cancelled if not filled within this time. Remainder will be sent off as market order.", default=15000)
|
|
271
|
+
|
|
272
|
+
parser.add_argument("--tp_min_percent", help="For trailing stops. Min TP in percent, i.e. No TP until pnl at least this much.", default=None)
|
|
273
|
+
parser.add_argument("--tp_max_percent", help="For trailing stops. Max TP in percent, i.e. Price target", default=None)
|
|
274
|
+
parser.add_argument("--sl_percent_trailing", help="For trailing stops. trailing SL in percent, please refer to trading_util.calc_eff_trailing_sl for documentation.", default=None)
|
|
275
|
+
parser.add_argument("--default_effective_tp_trailing_percent", help="Default for sl_percent_trailing when pnl still below tp_min_percent. Default: float('inf'), meaing trailing stop mechanism will not be activated.", default=float('inf'))
|
|
276
|
+
parser.add_argument("--sl_adj_percent", help="Increment used in SL adj in percent.", default=0)
|
|
277
|
+
parser.add_argument("--sl_hard_percent", help="Hard stop in percent.", default=2)
|
|
278
|
+
parser.add_argument("--sl_num_intervals_delay", help="Number of intervals to wait before re-entry allowed after SL. Default 1", default=1)
|
|
279
|
+
parser.add_argument("--reversal_num_intervals", help="How many reversal candles to confirm reversal?", default=3)
|
|
280
|
+
parser.add_argument("--trailing_sl_min_percent_linear", help="This is threshold used for tp_algo to decide if use linear stops tightening, or non-linear. If tp_max_percent far (>200bps for example), there's more uncertainty if target can be reached: Go with linear. Default: 2% (200 bps)", default=2.0)
|
|
281
|
+
parser.add_argument("--non_linear_pow", help="For non-linear trailing stops tightening, have a look at call to 'calc_eff_trailing_sl'. Default: 5", default=5)
|
|
282
|
+
parser.add_argument("--recover_min_percent", help="This is minimum unreal pnl recovery when your trade is red before trailing stop mechanism will be activated: max_recovered_pnl_percent_notional>=recover_min_percent and abs(max_pain_percent_notional)>=recover_max_pain_percent. Default: float('inf'), meaing trailing stop won't be fired.", default=float('inf'))
|
|
283
|
+
parser.add_argument("--recover_max_pain_percent", help="This is minimum max_pain endured when your trade is red. For trailing stop mechanism will be activated: max_recovered_pnl_percent_notional>=recover_min_percent and abs(max_pain_percent_notional)>=recover_max_pain_percent. Default: float('inf'), meaing trailing stop mechanism will remain inactive.", default=float('inf'))
|
|
284
|
+
|
|
285
|
+
parser.add_argument("--economic_calendar_source", help="Source of economic calendar'. Default: None", default=None)
|
|
286
|
+
parser.add_argument("--num_intervals_current_ecoevents", help="Num intervals to block on incoming/outgoing economic events. For 15m bars for example, num_intervals_current_ecoevents=4*24 means 24 hours. Default: 0", default=0)
|
|
287
|
+
parser.add_argument("--block_entry_impacting_events", help="Block entries if any impacting economic events 'impacting_economic_calendars'. Default N", default='N')
|
|
288
|
+
|
|
289
|
+
parser.add_argument("--loop_freq_ms", help="Loop delays. Reduce this if you want to trade faster.", default=5000)
|
|
290
|
+
|
|
291
|
+
parser.add_argument("--slack_info_url", help="Slack webhook url for INFO", default=None)
|
|
292
|
+
parser.add_argument("--slack_critial_url", help="Slack webhook url for CRITICAL", default=None)
|
|
293
|
+
parser.add_argument("--slack_alert_url", help="Slack webhook url for ALERT", default=None)
|
|
294
|
+
|
|
295
|
+
args = parser.parse_args()
|
|
296
|
+
|
|
297
|
+
param['gateway_id'] = args.gateway_id
|
|
298
|
+
param['default_type'] = args.default_type
|
|
299
|
+
param['rate_limit_ms'] = int(args.rate_limit_ms)
|
|
300
|
+
|
|
301
|
+
param['trading_window_start'] = args.trading_window_start
|
|
302
|
+
param['trading_window_end'] = args.trading_window_end
|
|
303
|
+
|
|
304
|
+
if args.encrypt_decrypt_with_aws_kms:
|
|
305
|
+
if args.encrypt_decrypt_with_aws_kms=='Y':
|
|
306
|
+
param['encrypt_decrypt_with_aws_kms'] = True
|
|
307
|
+
else:
|
|
308
|
+
param['encrypt_decrypt_with_aws_kms'] = False
|
|
309
|
+
else:
|
|
310
|
+
param['encrypt_decrypt_with_aws_kms'] = False
|
|
311
|
+
|
|
312
|
+
param['aws_kms_key_id'] = args.aws_kms_key_id
|
|
313
|
+
param['apikey'] = args.apikey
|
|
314
|
+
param['secret'] = args.secret
|
|
315
|
+
param['passphrase'] = args.passphrase
|
|
316
|
+
if args.verbose:
|
|
317
|
+
if args.verbose=='Y':
|
|
318
|
+
param['verbose'] = True
|
|
319
|
+
else:
|
|
320
|
+
param['verbose'] = False
|
|
321
|
+
else:
|
|
322
|
+
param['verbose'] = False
|
|
323
|
+
|
|
324
|
+
param['ticker'] = args.ticker
|
|
325
|
+
param['order_type'] = args.order_type
|
|
326
|
+
param['amount_base_ccy'] = float(args.amount_base_ccy)
|
|
327
|
+
param['residual_pos_usdt_threshold'] = float(args.residual_pos_usdt_threshold)
|
|
328
|
+
param['leg_room_bps'] = int(args.leg_room_bps)
|
|
329
|
+
param['slices'] = int(args.slices)
|
|
330
|
+
param['wait_fill_threshold_ms'] = int(args.wait_fill_threshold_ms)
|
|
331
|
+
|
|
332
|
+
param['tp_min_percent'] = float(args.tp_min_percent)
|
|
333
|
+
param['tp_max_percent'] = float(args.tp_max_percent)
|
|
334
|
+
param['sl_percent_trailing'] = float(args.sl_percent_trailing)
|
|
335
|
+
param['default_effective_tp_trailing_percent'] = float(args.default_effective_tp_trailing_percent)
|
|
336
|
+
param['sl_adj_percent'] = float(args.sl_adj_percent)
|
|
337
|
+
param['sl_hard_percent'] = float(args.sl_hard_percent)
|
|
338
|
+
param['sl_num_intervals_delay'] = int(args.sl_num_intervals_delay)
|
|
339
|
+
param['reversal_num_intervals'] = int(args.reversal_num_intervals)
|
|
340
|
+
param['trailing_sl_min_percent_linear'] = float(args.trailing_sl_min_percent_linear)
|
|
341
|
+
param['non_linear_pow'] = float(args.non_linear_pow)
|
|
342
|
+
param['recover_min_percent'] = float(args.recover_min_percent)
|
|
343
|
+
param['recover_max_pain_percent'] = float(args.recover_max_pain_percent)
|
|
344
|
+
|
|
345
|
+
param['economic_calendar_source'] = args.economic_calendar_source
|
|
346
|
+
|
|
347
|
+
if args.block_entry_impacting_events:
|
|
348
|
+
if args.block_entry_impacting_events=='Y':
|
|
349
|
+
param['block_entry_impacting_events'] = True
|
|
350
|
+
else:
|
|
351
|
+
param['block_entry_impacting_events'] = False
|
|
352
|
+
else:
|
|
353
|
+
param['block_entry_impacting_events'] = False
|
|
354
|
+
|
|
355
|
+
param['loop_freq_ms'] = int(args.loop_freq_ms)
|
|
356
|
+
|
|
357
|
+
param['notification']['slack']['info']['webhook_url'] = args.slack_info_url
|
|
358
|
+
param['notification']['slack']['critical']['webhook_url'] = args.slack_critial_url
|
|
359
|
+
param['notification']['slack']['alert']['webhook_url'] = args.slack_alert_url
|
|
360
|
+
|
|
361
|
+
param['notification']['footer'] = f"From {param['current_filename']} {param['gateway_id']}"
|
|
362
|
+
|
|
363
|
+
def init_redis_client() -> StrictRedis:
|
|
364
|
+
redis_client : StrictRedis = StrictRedis(
|
|
365
|
+
host = param['mds']['redis']['host'],
|
|
366
|
+
port = param['mds']['redis']['port'],
|
|
367
|
+
db = 0,
|
|
368
|
+
ssl = False
|
|
369
|
+
)
|
|
370
|
+
try:
|
|
371
|
+
redis_client.keys()
|
|
372
|
+
except ConnectionError as redis_conn_error:
|
|
373
|
+
err_msg = f"Failed to connect to redis: {param['mds']['redis']['host']}, port: {param['mds']['redis']['port']}"
|
|
374
|
+
raise ConnectionError(err_msg)
|
|
375
|
+
|
|
376
|
+
return redis_client
|
|
377
|
+
|
|
378
|
+
def fetch_economic_events(redis_client, topic) -> List[Dict]:
|
|
379
|
+
restored = redis_client.get(topic)
|
|
380
|
+
if restored:
|
|
381
|
+
restored = json.loads(restored)
|
|
382
|
+
for economic_calendar in restored:
|
|
383
|
+
'''
|
|
384
|
+
Format:
|
|
385
|
+
'calendar_id': '1234567'
|
|
386
|
+
'category': 'Building Permits'
|
|
387
|
+
'region': 'united_states'
|
|
388
|
+
'event': 'Building Permits Prel'
|
|
389
|
+
'event_code': 'building_permits_prel'
|
|
390
|
+
'ccy': ''
|
|
391
|
+
'importance': '3'
|
|
392
|
+
'actual': 1.386
|
|
393
|
+
'forecast': 1.45
|
|
394
|
+
'previous': 1.44
|
|
395
|
+
'pos_neg': 'bearish'
|
|
396
|
+
'datetime': datetime.datetime(2024, 6, 20, 20, 30)
|
|
397
|
+
'calendar_item_timestamp_ms': 1718886600000
|
|
398
|
+
'calendar_item_timestamp_sec': 1718886600
|
|
399
|
+
'source': 'xxx'
|
|
400
|
+
'''
|
|
401
|
+
economic_calendar['datetime'] = arrow.get(economic_calendar['datetime']).datetime
|
|
402
|
+
economic_calendar['datetime'] = economic_calendar['datetime'].replace(tzinfo=None)
|
|
403
|
+
return restored
|
|
404
|
+
|
|
405
|
+
async def main(
|
|
406
|
+
order_notional_adj_func : Callable[..., Dict[str, float]],
|
|
407
|
+
allow_entry_initial_func : Callable[..., Dict[str, bool]],
|
|
408
|
+
allow_entry_final_func : Callable[..., Dict[str, Union[bool, float, None]]],
|
|
409
|
+
sl_adj_func : Callable[..., Dict[str, float]],
|
|
410
|
+
trailing_stop_threshold_eval_func : Callable[..., Dict[str, float]],
|
|
411
|
+
tp_eval_func : Callable[..., bool]
|
|
412
|
+
):
|
|
413
|
+
parse_args()
|
|
414
|
+
|
|
415
|
+
redis_client : StrictRedis = init_redis_client()
|
|
416
|
+
|
|
417
|
+
gateway_id : str = param['gateway_id']
|
|
418
|
+
|
|
419
|
+
fh = logging.FileHandler(f"strategy_executor_{param['gateway_id']}_{TargetStrategy.__name__}.log")
|
|
420
|
+
fh.setLevel(log_level)
|
|
421
|
+
fh.setFormatter(formatter)
|
|
422
|
+
logger.addHandler(fh)
|
|
423
|
+
|
|
424
|
+
exchange_name : str = gateway_id.split('_')[0]
|
|
425
|
+
ticker : str = param['ticker']
|
|
426
|
+
ordergateway_pending_orders_topic : str = 'ordergateway_pending_orders_$GATEWAY_ID$'
|
|
427
|
+
ordergateway_pending_orders_topic : str = ordergateway_pending_orders_topic.replace("$GATEWAY_ID$", gateway_id)
|
|
428
|
+
|
|
429
|
+
ordergateway_executions_topic : str = "ordergateway_executions_$GATEWAY_ID$"
|
|
430
|
+
ordergateway_executions_topic : str = ordergateway_executions_topic.replace("$GATEWAY_ID$", gateway_id)
|
|
431
|
+
|
|
432
|
+
hi_candles_w_ta_topic : str = param['mds']['topics']['hi_candles_w_ta_topic']
|
|
433
|
+
lo_candles_w_ta_topic : str = param['mds']['topics']['lo_candles_w_ta_topic']
|
|
434
|
+
orderbook_topic : str = param['mds']['topics']['orderbook_topic']
|
|
435
|
+
|
|
436
|
+
hi_candles_provider_topic : str = param['mds']['topics']['hi_candles_provider_topic']
|
|
437
|
+
lo_candles_provider_topic : str = param['mds']['topics']['lo_candles_provider_topic']
|
|
438
|
+
orderbooks_provider_topic : str = param['mds']['topics']['orderbooks_provider_topic']
|
|
439
|
+
|
|
440
|
+
# economic_calendar_source
|
|
441
|
+
full_economic_calendars_topic : str = param['mds']['topics']['full_economic_calendars_topic']
|
|
442
|
+
full_economic_calendars_topic = full_economic_calendars_topic.replace('$SOURCE$', param['economic_calendar_source']) if param['economic_calendar_source'] else None
|
|
443
|
+
|
|
444
|
+
log(f"hi_candles_w_ta_topic: {hi_candles_w_ta_topic}")
|
|
445
|
+
log(f"lo_candles_w_ta_topic: {lo_candles_w_ta_topic}")
|
|
446
|
+
log(f"hi_candles_provider_topic: {hi_candles_provider_topic}")
|
|
447
|
+
log(f"lo_candles_provider_topic: {lo_candles_provider_topic}")
|
|
448
|
+
log(f"orderbook_topic: {orderbook_topic}")
|
|
449
|
+
log(f"ordergateway_pending_orders_topic: {ordergateway_pending_orders_topic}")
|
|
450
|
+
log(f"ordergateway_executions_topic: {ordergateway_executions_topic}")
|
|
451
|
+
log(f"full_economic_calendars_topic: {full_economic_calendars_topic}")
|
|
452
|
+
|
|
453
|
+
# aliases
|
|
454
|
+
algo_param = param
|
|
455
|
+
strategic_specific_algo_param = TargetStrategy.get_strategy_algo_params()
|
|
456
|
+
for entry in strategic_specific_algo_param:
|
|
457
|
+
algo_param[entry['key']] = entry['val']
|
|
458
|
+
|
|
459
|
+
hi_candle_size : str = hi_candles_w_ta_topic.split('-')[-1]
|
|
460
|
+
lo_candle_size : str = lo_candles_w_ta_topic.split('-')[-1]
|
|
461
|
+
hi_interval = hi_candle_size[-1]
|
|
462
|
+
hi_num_intervals : int = int(hi_candle_size.replace(hi_interval,''))
|
|
463
|
+
hi_interval_ms : int = interval_to_ms(hi_interval) * hi_num_intervals
|
|
464
|
+
lo_interval = lo_candle_size[-1]
|
|
465
|
+
lo_num_intervals : int = int(lo_candle_size.replace(lo_interval,''))
|
|
466
|
+
lo_interval_ms : int = interval_to_ms(lo_interval) * lo_num_intervals
|
|
467
|
+
|
|
468
|
+
num_intervals_current_ecoevents_ms : int = lo_interval_ms * param['num_intervals_current_ecoevents']
|
|
469
|
+
|
|
470
|
+
strategy_indicators = TargetStrategy.get_strategy_indicators()
|
|
471
|
+
position_cache_columns = POSITION_CACHE_COLUMNS + strategy_indicators
|
|
472
|
+
pd_position_cache = pd.DataFrame(columns=position_cache_columns)
|
|
473
|
+
|
|
474
|
+
orderhist_cache = pd.DataFrame(columns=ORDERHIST_CACHE_COLUMNS)
|
|
475
|
+
|
|
476
|
+
notification_params : Dict[str, Any] = param['notification']
|
|
477
|
+
|
|
478
|
+
if not param['apikey']:
|
|
479
|
+
log("Loading credentials from .env")
|
|
480
|
+
|
|
481
|
+
load_dotenv()
|
|
482
|
+
|
|
483
|
+
encrypt_decrypt_with_aws_kms = os.getenv('ENCRYPT_DECRYPT_WITH_AWS_KMS')
|
|
484
|
+
encrypt_decrypt_with_aws_kms = True if encrypt_decrypt_with_aws_kms=='Y' else False
|
|
485
|
+
|
|
486
|
+
api_key : str = str(os.getenv('APIKEY'))
|
|
487
|
+
secret : str = str(os.getenv('SECRET'))
|
|
488
|
+
passphrase : str = str(os.getenv('PASSPHRASE'))
|
|
489
|
+
else:
|
|
490
|
+
log("Loading credentials from command line args")
|
|
491
|
+
|
|
492
|
+
encrypt_decrypt_with_aws_kms = param['encrypt_decrypt_with_aws_kms']
|
|
493
|
+
api_key : str = param['apikey']
|
|
494
|
+
secret : str = param['secret']
|
|
495
|
+
passphrase : str = param['passphrase']
|
|
496
|
+
|
|
497
|
+
if encrypt_decrypt_with_aws_kms:
|
|
498
|
+
aws_kms_key_id = str(os.getenv('AWS_KMS_KEY_ID'))
|
|
499
|
+
|
|
500
|
+
aws_kms = AwsKmsUtil(key_id=aws_kms_key_id, profile_name=None)
|
|
501
|
+
api_key = aws_kms.decrypt(api_key.encode())
|
|
502
|
+
secret = aws_kms.decrypt(secret.encode())
|
|
503
|
+
if passphrase:
|
|
504
|
+
passphrase = aws_kms.decrypt(passphrase.encode())
|
|
505
|
+
|
|
506
|
+
exchange : Union[AnyExchange, None] = await async_instantiate_exchange(
|
|
507
|
+
gateway_id=gateway_id,
|
|
508
|
+
api_key=api_key,
|
|
509
|
+
secret=secret,
|
|
510
|
+
passphrase=passphrase,
|
|
511
|
+
default_type=param['default_type'],
|
|
512
|
+
rate_limit_ms=param['rate_limit_ms'],
|
|
513
|
+
verbose=param['verbose']
|
|
514
|
+
)
|
|
515
|
+
if exchange:
|
|
516
|
+
markets = await exchange.load_markets()
|
|
517
|
+
market = markets[ticker]
|
|
518
|
+
multiplier = market['contractSize'] if 'contractSize' in market and market['contractSize'] else 1
|
|
519
|
+
|
|
520
|
+
balances = await exchange.fetch_balance()
|
|
521
|
+
log(f"Balances: {json.dumps(balances, indent=4)}")
|
|
522
|
+
dispatch_notification(title=f"{param['current_filename']} {param['gateway_id']} strategy {TargetStrategy.__name__} starting", message=balances['total'], footer=param['notification']['footer'], params=notification_params, log_level=LogLevel.CRITICAL, logger=logger)
|
|
523
|
+
|
|
524
|
+
# Lambdas preparation
|
|
525
|
+
order_notional_adj_func_sig = inspect.signature(order_notional_adj_func)
|
|
526
|
+
order_notional_adj_func_params = order_notional_adj_func_sig.parameters.keys()
|
|
527
|
+
allow_entry_initial_func_sig = inspect.signature(allow_entry_initial_func)
|
|
528
|
+
allow_entry_initial_func_params = allow_entry_initial_func_sig.parameters.keys()
|
|
529
|
+
allow_entry_final_func_sig = inspect.signature(allow_entry_final_func)
|
|
530
|
+
allow_entry_final_func_params = allow_entry_final_func_sig.parameters.keys()
|
|
531
|
+
sl_adj_func_sig = inspect.signature(sl_adj_func)
|
|
532
|
+
sl_adj_func_params = sl_adj_func_sig.parameters.keys()
|
|
533
|
+
trailing_stop_threshold_eval_func_sig = inspect.signature(trailing_stop_threshold_eval_func)
|
|
534
|
+
trailing_stop_threshold_eval_func_params = trailing_stop_threshold_eval_func_sig.parameters.keys()
|
|
535
|
+
tp_eval_func_sig = inspect.signature(tp_eval_func)
|
|
536
|
+
tp_eval_func_params = tp_eval_func_sig.parameters.keys()
|
|
537
|
+
|
|
538
|
+
# Trigger candles providers
|
|
539
|
+
def _trigger_producers(
|
|
540
|
+
redis_client : StrictRedis,
|
|
541
|
+
exchange_tickers : List,
|
|
542
|
+
candles_partition_assign_topic : str):
|
|
543
|
+
# https://redis.io/commands/publish/
|
|
544
|
+
redis_client.publish(channel=candles_partition_assign_topic, message=json.dumps(exchange_tickers).encode('utf-8'))
|
|
545
|
+
_trigger_producers(redis_client, [ f"{exchange_name}|{param['ticker']}" ], hi_candles_provider_topic)
|
|
546
|
+
_trigger_producers(redis_client, [ f"{exchange_name}|{param['ticker']}" ], lo_candles_provider_topic)
|
|
547
|
+
_trigger_producers(redis_client, [ f"{exchange_name}|{param['ticker']}" ], orderbooks_provider_topic)
|
|
548
|
+
|
|
549
|
+
# Load cached positions from disk, if any
|
|
550
|
+
if os.path.exists(POSITION_CACHE_FILE_NAME.replace("$GATEWAY_ID$", gateway_id)) and os.path.getsize(POSITION_CACHE_FILE_NAME.replace("$GATEWAY_ID$", gateway_id))>0:
|
|
551
|
+
pd_position_cache = pd.read_csv(POSITION_CACHE_FILE_NAME.replace("$GATEWAY_ID$", gateway_id))
|
|
552
|
+
pd_position_cache.drop(pd_position_cache.columns[pd_position_cache.columns.str.contains('unnamed',case = False)],axis = 1, inplace = True)
|
|
553
|
+
pd_position_cache.replace([np.nan], [None], inplace=True)
|
|
554
|
+
|
|
555
|
+
pd_position_cache = pd_position_cache[POSITION_CACHE_COLUMNS]
|
|
556
|
+
|
|
557
|
+
if os.path.exists(ORDERHIST_CACHE_FILE_NAME.replace("$GATEWAY_ID$", gateway_id)) and os.path.getsize(ORDERHIST_CACHE_FILE_NAME.replace("$GATEWAY_ID$", gateway_id))>0:
|
|
558
|
+
orderhist_cache = pd.read_csv(ORDERHIST_CACHE_FILE_NAME.replace("$GATEWAY_ID$", gateway_id))
|
|
559
|
+
orderhist_cache.drop(orderhist_cache.columns[orderhist_cache.columns.str.contains('unnamed',case = False)],axis = 1, inplace = True)
|
|
560
|
+
orderhist_cache.replace([np.nan], [None], inplace=True)
|
|
561
|
+
|
|
562
|
+
if 'datetime' in orderhist_cache.columns:
|
|
563
|
+
orderhist_cache['datetime'] = pd.to_datetime(orderhist_cache['datetime'])
|
|
564
|
+
|
|
565
|
+
block_entries : bool = False
|
|
566
|
+
hi_row, hi_row_tm1 = None, None
|
|
567
|
+
lo_row, lo_row_tm1 = None, None
|
|
568
|
+
effective_tp_trailing_percent : float = param['default_effective_tp_trailing_percent']
|
|
569
|
+
this_ticker_open_trades : List[Dict] = []
|
|
570
|
+
|
|
571
|
+
reversal : bool = False
|
|
572
|
+
tp : bool = False
|
|
573
|
+
sl : bool = False
|
|
574
|
+
tp_min_percent : float = param['tp_min_percent'] # adjusted by trailing_stop_threshold_eval_func
|
|
575
|
+
tp_max_percent : float = param['tp_max_percent']
|
|
576
|
+
executed_position = None
|
|
577
|
+
position_break : bool = False
|
|
578
|
+
while (not tp and not sl and not position_break):
|
|
579
|
+
try:
|
|
580
|
+
dt_now = datetime.now()
|
|
581
|
+
block_entries = False
|
|
582
|
+
|
|
583
|
+
dt_targettz = datetime.fromtimestamp(dt_now.timestamp(), tz=ZoneInfo(param['rolldate_tz']))
|
|
584
|
+
today_dayofweek = dt_targettz.weekday()
|
|
585
|
+
|
|
586
|
+
delta_hour = int(
|
|
587
|
+
(dt_targettz.replace(tzinfo=None) - dt_now).total_seconds()/3600
|
|
588
|
+
)
|
|
589
|
+
|
|
590
|
+
log(f"rolldate_tz: {param['rolldate_tz']}, dt_now (local): {dt_now}, dt_targettz: {dt_targettz}, delta_hour: {delta_hour}")
|
|
591
|
+
|
|
592
|
+
if param['trading_window_start'] and param['trading_window_end']:
|
|
593
|
+
trading_window : Dict[str, str] = {
|
|
594
|
+
'start' : param['trading_window_start'],
|
|
595
|
+
'end' : param['trading_window_end']
|
|
596
|
+
}
|
|
597
|
+
parsed_trading_window = parse_trading_window(dt_targettz, trading_window)
|
|
598
|
+
if not parsed_trading_window['in_window']:
|
|
599
|
+
block_entries = True
|
|
600
|
+
|
|
601
|
+
log(f"trading_window start: {param['trading_window_start']}, end: {param['trading_window_end']}, in_window: {parsed_trading_window['in_window']}")
|
|
602
|
+
else:
|
|
603
|
+
log(f"No trading window specified")
|
|
604
|
+
|
|
605
|
+
if full_economic_calendars_topic:
|
|
606
|
+
full_economic_calendars = fetch_economic_events(redis_client, full_economic_calendars_topic)
|
|
607
|
+
|
|
608
|
+
impacting_economic_calendars = None
|
|
609
|
+
if full_economic_calendars:
|
|
610
|
+
impacting_economic_calendars = [ x for x in full_economic_calendars
|
|
611
|
+
if x['event_code'] in param['mapped_event_codes']
|
|
612
|
+
and x['region'] in param['mapped_regions']
|
|
613
|
+
]
|
|
614
|
+
if impacting_economic_calendars:
|
|
615
|
+
impacting_economic_calendars = [ x for x in impacting_economic_calendars
|
|
616
|
+
if(
|
|
617
|
+
(x['calendar_item_timestamp_ms'] - datetime.now().timestamp()*1000)>0 # Incoming events
|
|
618
|
+
and (x['calendar_item_timestamp_ms'] - datetime.now().timestamp()*1000) < num_intervals_current_ecoevents_ms
|
|
619
|
+
) or (
|
|
620
|
+
(x['calendar_item_timestamp_ms'] - datetime.now().timestamp()*1000)<0 # Passed events
|
|
621
|
+
and (datetime.now().timestamp()*1000 - x['calendar_item_timestamp_ms']) < num_intervals_current_ecoevents_ms/3
|
|
622
|
+
)
|
|
623
|
+
]
|
|
624
|
+
s_impacting_economic_calendars = " ".join([ x['event_code'] if x['event_code']!='manual_event' else x['event'] for x in impacting_economic_calendars ])
|
|
625
|
+
|
|
626
|
+
log(f"full_economic_calendars #rows: {len(full_economic_calendars) if full_economic_calendars else 0}")
|
|
627
|
+
log(f"impacting_economic_calendars #rows: {len(impacting_economic_calendars) if impacting_economic_calendars else 0} {s_impacting_economic_calendars}. block_entries: {block_entries}")
|
|
628
|
+
|
|
629
|
+
if param['block_entry_impacting_events'] and impacting_economic_calendars:
|
|
630
|
+
block_entries = True
|
|
631
|
+
|
|
632
|
+
log(f"block_entries: {block_entries}")
|
|
633
|
+
|
|
634
|
+
position_cache_row = pd_position_cache.loc[(pd_position_cache.exchange==exchange_name) & (pd_position_cache.ticker==ticker)]
|
|
635
|
+
if position_cache_row.shape[0]==0:
|
|
636
|
+
position_cache_row = {
|
|
637
|
+
'exchange': exchange_name,
|
|
638
|
+
'ticker' : ticker,
|
|
639
|
+
|
|
640
|
+
'status' : PositionStatus.UNDEFINED.name,
|
|
641
|
+
|
|
642
|
+
'pos' : None,
|
|
643
|
+
'pos_usdt' : None,
|
|
644
|
+
'multiplier' : multiplier,
|
|
645
|
+
'created' : None,
|
|
646
|
+
'closed' : None,
|
|
647
|
+
|
|
648
|
+
'pos_entries' : [],
|
|
649
|
+
|
|
650
|
+
'spread_bps' : None,
|
|
651
|
+
'entry_px' : None,
|
|
652
|
+
'close_px' : None,
|
|
653
|
+
'last_interval_px' : None,
|
|
654
|
+
|
|
655
|
+
'ob_mid' : None,
|
|
656
|
+
'ob_best_bid' : None,
|
|
657
|
+
'ob_best_ask' : None,
|
|
658
|
+
|
|
659
|
+
'unreal_live' : 0,
|
|
660
|
+
'max_unreal_live' : 0,
|
|
661
|
+
'max_pain' : 0,
|
|
662
|
+
'max_recovered_pnl' : 0,
|
|
663
|
+
'pnl_live_bps' : 0,
|
|
664
|
+
'pnl_open_bps' : 0,
|
|
665
|
+
'max_unreal_live_bps' : 0,
|
|
666
|
+
'max_unreal_open_bps' : 0,
|
|
667
|
+
|
|
668
|
+
'tp_max_target' : None,
|
|
669
|
+
'tp_min_target' : None,
|
|
670
|
+
|
|
671
|
+
'running_sl_percent_hard' : param['sl_hard_percent'],
|
|
672
|
+
'sl_trailing_min_threshold_crossed' : False,
|
|
673
|
+
'sl_percent_trailing' : param['sl_percent_trailing'],
|
|
674
|
+
'loss_trailing' : 0
|
|
675
|
+
}
|
|
676
|
+
position_cache_row.update({ind: None for ind in strategy_indicators})
|
|
677
|
+
pd_position_cache = pd.concat([pd_position_cache, pd.DataFrame([position_cache_row])], axis=0, ignore_index=True)
|
|
678
|
+
position_cache_row = pd_position_cache.loc[(pd_position_cache.exchange==exchange_name) & (pd_position_cache.ticker==ticker)]
|
|
679
|
+
|
|
680
|
+
position_cache_row = position_cache_row.iloc[0]
|
|
681
|
+
|
|
682
|
+
# Note: arrow.get will populate tzinfo
|
|
683
|
+
pos = position_cache_row['pos'] if position_cache_row['pos'] else 0
|
|
684
|
+
pos_usdt = position_cache_row['pos_usdt'] if position_cache_row['pos_usdt'] else 0
|
|
685
|
+
pos_status = position_cache_row['status']
|
|
686
|
+
if (pos==0 or pos_usdt<=param['residual_pos_usdt_threshold']) and pos_status==PositionStatus.OPEN.name:
|
|
687
|
+
pos_status = PositionStatus.CLOSED.name
|
|
688
|
+
pd_position_cache.loc[position_cache_row.name, 'status'] = pos_status
|
|
689
|
+
if pos_status!=PositionStatus.OPEN.name and (pos and pos!=0):
|
|
690
|
+
pos_status = PositionStatus.OPEN.name
|
|
691
|
+
pd_position_cache.loc[position_cache_row.name, 'status'] = pos_status
|
|
692
|
+
|
|
693
|
+
pos_created = position_cache_row['created']
|
|
694
|
+
pos_created = arrow.get(pos_created).datetime if pos_created and isinstance(pos_created, str) else pos_created
|
|
695
|
+
total_sec_since_pos_created = INVALID
|
|
696
|
+
if pos_created:
|
|
697
|
+
pos_created = pos_created.replace(tzinfo=None)
|
|
698
|
+
total_sec_since_pos_created = (dt_now - pos_created).total_seconds()
|
|
699
|
+
pos_closed = position_cache_row['closed']
|
|
700
|
+
pos_closed = arrow.get(pos_closed).datetime if pos_closed and isinstance(pos_closed, str) else pos_closed
|
|
701
|
+
if pos_closed:
|
|
702
|
+
pos_closed = pos_closed.replace(tzinfo=None)
|
|
703
|
+
pos_side = OrderSide.UNDEFINED
|
|
704
|
+
if pos_status!=PositionStatus.UNDEFINED.name:
|
|
705
|
+
pos_side = OrderSide.BUY if pos and pos>0 else OrderSide.SELL
|
|
706
|
+
|
|
707
|
+
pos_entries = position_cache_row['pos_entries']
|
|
708
|
+
if isinstance(pos_entries, str):
|
|
709
|
+
datetime_strings = re.findall(r'datetime\.datetime\(([^)]+)\)', pos_entries)
|
|
710
|
+
|
|
711
|
+
pos_entries = []
|
|
712
|
+
for dt_str in datetime_strings:
|
|
713
|
+
dt_parts = [int(part.strip()) for part in dt_str.split(',')]
|
|
714
|
+
if len(dt_parts) == 7:
|
|
715
|
+
pos_entries.append(datetime(*dt_parts))
|
|
716
|
+
elif len(dt_parts) == 6:
|
|
717
|
+
pos_entries.append(datetime(*dt_parts, microsecond=0))
|
|
718
|
+
num_pos_entries = len(pos_entries) if pos_entries else 0
|
|
719
|
+
|
|
720
|
+
unreal_live = position_cache_row['unreal_live']
|
|
721
|
+
max_unreal_live = position_cache_row['max_unreal_live']
|
|
722
|
+
max_pain = position_cache_row['max_pain']
|
|
723
|
+
max_recovered_pnl = position_cache_row['max_recovered_pnl']
|
|
724
|
+
pnl_live_bps = position_cache_row['pnl_live_bps']
|
|
725
|
+
pnl_open_bps = position_cache_row['pnl_open_bps']
|
|
726
|
+
max_unreal_live_bps = position_cache_row['max_unreal_live_bps']
|
|
727
|
+
max_unreal_open_bps = position_cache_row['max_unreal_open_bps']
|
|
728
|
+
|
|
729
|
+
tp_max_target = position_cache_row['tp_max_target']
|
|
730
|
+
tp_min_target = position_cache_row['tp_min_target']
|
|
731
|
+
|
|
732
|
+
running_sl_percent_hard = position_cache_row['running_sl_percent_hard']
|
|
733
|
+
sl_trailing_min_threshold_crossed = position_cache_row['sl_trailing_min_threshold_crossed']
|
|
734
|
+
sl_percent_trailing = position_cache_row['sl_percent_trailing']
|
|
735
|
+
loss_trailing = position_cache_row['loss_trailing']
|
|
736
|
+
|
|
737
|
+
max_unreal_live = position_cache_row['max_unreal_live'] if not position_cache_row['max_unreal_live'] and not pd.isna(position_cache_row['max_unreal_live']) else 0
|
|
738
|
+
max_unreal_live_bps = position_cache_row['max_unreal_live_bps'] if not position_cache_row['max_unreal_live_bps'] and not pd.isna(position_cache_row['max_unreal_live_bps']) else 0
|
|
739
|
+
max_unreal_open_bps = position_cache_row['max_unreal_open_bps'] if not position_cache_row['max_unreal_open_bps'] and not pd.isna(position_cache_row['max_unreal_open_bps']) else 0
|
|
740
|
+
max_pain = position_cache_row['max_pain'] if not position_cache_row['max_pain'] and not pd.isna(position_cache_row['max_pain']) else 0
|
|
741
|
+
max_recovered_pnl = position_cache_row['max_recovered_pnl'] if not position_cache_row['max_recovered_pnl'] and not pd.isna(position_cache_row['max_recovered_pnl']) else 0
|
|
742
|
+
|
|
743
|
+
pnl_percent_notional = pnl_open_bps/100
|
|
744
|
+
max_pain_percent_notional = max_pain / pos_usdt * 100 if pos_usdt!=0 else 0
|
|
745
|
+
max_recovered_pnl_percent_notional = max_recovered_pnl / pos_usdt * 100 if pos_usdt!=0 else 0
|
|
746
|
+
|
|
747
|
+
'''
|
|
748
|
+
'fetch_position' is for perpetual.
|
|
749
|
+
If you long, you'd see side = 'long'
|
|
750
|
+
If you short, you'd see side = 'short'
|
|
751
|
+
'contracts' and 'notional' is always positive number.
|
|
752
|
+
|
|
753
|
+
Example for a short,
|
|
754
|
+
'id': None
|
|
755
|
+
'symbol': 'BTC/USDT:USDT'
|
|
756
|
+
'timestamp': ...
|
|
757
|
+
'datetime': '...'
|
|
758
|
+
'lastUpdateTimestamp': ... (13 digits integer, in ms)
|
|
759
|
+
'initialMargin': 91.77863881
|
|
760
|
+
'initialMarginPercentage': 0.1005108176234939
|
|
761
|
+
'maintenanceMargin': 5.11374881
|
|
762
|
+
'maintenanceMarginPercentage': 0.005600290881174695
|
|
763
|
+
'entryPrice': 95312.2
|
|
764
|
+
'notional': 913.122
|
|
765
|
+
'leverage': 10.0
|
|
766
|
+
'unrealizedPnl': 0.86
|
|
767
|
+
'realizedPnl': None
|
|
768
|
+
'contracts': 0.01
|
|
769
|
+
'contractSize': 1.0
|
|
770
|
+
'marginRatio': None
|
|
771
|
+
'liquidationPrice': None
|
|
772
|
+
'markPrice': 91226.2
|
|
773
|
+
'lastPrice': None
|
|
774
|
+
'collateral': 0.0
|
|
775
|
+
'marginMode': None
|
|
776
|
+
'side': 'short'
|
|
777
|
+
'percentage': None
|
|
778
|
+
'stopLossPrice': None
|
|
779
|
+
'takeProfitPrice': None
|
|
780
|
+
'hedged': False
|
|
781
|
+
|
|
782
|
+
For spots/margin trading, you should use 'fetch_balance' instsead. If you short you'd see:
|
|
783
|
+
BTC: { free: -5.2, total: -5.2 })
|
|
784
|
+
'''
|
|
785
|
+
position_from_exchange = await exchange.fetch_position(param['ticker'])
|
|
786
|
+
|
|
787
|
+
if exchange.options['defaultType']!='spot':
|
|
788
|
+
if executed_position and position_from_exchange:
|
|
789
|
+
position_from_exchange_num_contracts = position_from_exchange['contracts']
|
|
790
|
+
if position_from_exchange and position_from_exchange['side']=='short':
|
|
791
|
+
position_from_exchange_num_contracts = position_from_exchange_num_contracts *-1 if position_from_exchange_num_contracts>0 else position_from_exchange_num_contracts
|
|
792
|
+
|
|
793
|
+
position_from_exchange_base_ccy = position_from_exchange_num_contracts * multiplier
|
|
794
|
+
|
|
795
|
+
if position_from_exchange_base_ccy!=executed_position['position']['amount_base_ccy']:
|
|
796
|
+
position_break = True
|
|
797
|
+
|
|
798
|
+
err_msg = f"{param['ticker']}: Position break! expected: {executed_position['position']['amount_base_ccy']}, actual: {position_from_exchange_base_ccy}"
|
|
799
|
+
log(err_msg)
|
|
800
|
+
dispatch_notification(title=f"{param['current_filename']} {param['gateway_id']} Position break! {param['ticker']}", message=err_msg, footer=param['notification']['footer'], params=notification_params, log_level=LogLevel.CRITICAL, logger=logger)
|
|
801
|
+
|
|
802
|
+
if position_break:
|
|
803
|
+
log(f"Position break! Exiting execution. Did you manually close the trade?")
|
|
804
|
+
break
|
|
805
|
+
|
|
806
|
+
else:
|
|
807
|
+
|
|
808
|
+
hi_candles_valid, lo_candles_valid, orderbook_valid = False, False, False
|
|
809
|
+
trailing_candles = []
|
|
810
|
+
|
|
811
|
+
keys = [item.decode('utf-8') for item in redis_client.keys()]
|
|
812
|
+
if hi_candles_w_ta_topic in keys:
|
|
813
|
+
message = redis_client.get(hi_candles_w_ta_topic)
|
|
814
|
+
if message:
|
|
815
|
+
message = message.decode('utf-8')
|
|
816
|
+
hi_candles_w_ta = json.loads(message) if message else None
|
|
817
|
+
pd_hi_candles_w_ta = pd.read_json(StringIO(hi_candles_w_ta))
|
|
818
|
+
pd_hi_candles_w_ta['timestamp_ms'] = pd_hi_candles_w_ta['timestamp_ms'].astype('int64') // 1_000_000
|
|
819
|
+
hi_row = pd_hi_candles_w_ta.iloc[-1]
|
|
820
|
+
hi_row_tm1 = pd_hi_candles_w_ta.iloc[-2]
|
|
821
|
+
candles_age = dt_now.timestamp() *1000 - hi_row['timestamp_ms']
|
|
822
|
+
if candles_age < hi_interval_ms:
|
|
823
|
+
hi_candles_valid = True
|
|
824
|
+
else:
|
|
825
|
+
hi_candles_valid = False
|
|
826
|
+
err_msg = {
|
|
827
|
+
'current_ts_ms' : dt_now.timestamp(),
|
|
828
|
+
'hi_row_timestamp_ms' : hi_row['timestamp_ms'],
|
|
829
|
+
'candles_age' : candles_age,
|
|
830
|
+
'hi_interval_ms' : hi_interval_ms
|
|
831
|
+
}
|
|
832
|
+
log(err_msg, LogLevel.CRITICAL)
|
|
833
|
+
dispatch_notification(title=f"{param['current_filename']} {param['gateway_id']} Invalid hi_candles", message=err_msg, footer=param['notification']['footer'], params=notification_params, log_level=LogLevel.CRITICAL, logger=logger)
|
|
834
|
+
else:
|
|
835
|
+
hi_candles_valid = False
|
|
836
|
+
err_msg = f"hi candles missing, topic: {hi_candles_w_ta_topic}"
|
|
837
|
+
log(err_msg, LogLevel.CRITICAL)
|
|
838
|
+
dispatch_notification(title=f"{param['current_filename']} {param['gateway_id']} Invalid hi_candles", message=err_msg, footer=param['notification']['footer'], params=notification_params, log_level=LogLevel.CRITICAL, logger=logger)
|
|
839
|
+
|
|
840
|
+
if lo_candles_w_ta_topic in keys:
|
|
841
|
+
message = redis_client.get(lo_candles_w_ta_topic)
|
|
842
|
+
if message:
|
|
843
|
+
message = message.decode('utf-8')
|
|
844
|
+
lo_candles_w_ta = json.loads(message) if message else None
|
|
845
|
+
pd_lo_candles_w_ta = pd.read_json(StringIO(lo_candles_w_ta))
|
|
846
|
+
pd_lo_candles_w_ta['timestamp_ms'] = pd_lo_candles_w_ta['timestamp_ms'].astype('int64') // 1_000_000
|
|
847
|
+
lo_row = pd_lo_candles_w_ta.iloc[-1]
|
|
848
|
+
lo_row_tm1 = pd_lo_candles_w_ta.iloc[-2]
|
|
849
|
+
candles_age = dt_now.timestamp() *1000 - lo_row['timestamp_ms']
|
|
850
|
+
if candles_age < lo_interval_ms:
|
|
851
|
+
lo_candles_valid = True
|
|
852
|
+
|
|
853
|
+
trailing_candles = pd_lo_candles_w_ta \
|
|
854
|
+
.tail(param['reversal_num_intervals']) \
|
|
855
|
+
.values.tolist()
|
|
856
|
+
|
|
857
|
+
trailing_candles = [dict(zip(pd_lo_candles_w_ta.columns, row)) for row in trailing_candles]
|
|
858
|
+
|
|
859
|
+
else:
|
|
860
|
+
lo_candles_valid = False
|
|
861
|
+
err_msg = {
|
|
862
|
+
'current_ts_ms' : dt_now.timestamp(),
|
|
863
|
+
'lo_row_timestamp_ms' : lo_row['timestamp_ms'],
|
|
864
|
+
'candles_age' : candles_age,
|
|
865
|
+
'lo_interval_ms' : lo_interval_ms
|
|
866
|
+
}
|
|
867
|
+
log(err_msg, LogLevel.CRITICAL)
|
|
868
|
+
dispatch_notification(title=f"{param['current_filename']} {param['gateway_id']} Invalid lo_candles", message=err_msg, footer=param['notification']['footer'], params=notification_params, log_level=LogLevel.CRITICAL, logger=logger)
|
|
869
|
+
else:
|
|
870
|
+
lo_candles_valid = False
|
|
871
|
+
err_msg = f"lo candles missing, topic: {lo_candles_w_ta_topic}"
|
|
872
|
+
log(err_msg, LogLevel.CRITICAL)
|
|
873
|
+
dispatch_notification(title=f"{param['current_filename']} {param['gateway_id']} Invalid hi_candles", message=err_msg, footer=param['notification']['footer'], params=notification_params, log_level=LogLevel.CRITICAL, logger=logger)
|
|
874
|
+
|
|
875
|
+
if orderbook_topic in keys:
|
|
876
|
+
message = redis_client.get(orderbook_topic)
|
|
877
|
+
if message:
|
|
878
|
+
message = message.decode('utf-8')
|
|
879
|
+
ob = json.loads(message) if message else None
|
|
880
|
+
orderbook_valid = ob['is_valid']
|
|
881
|
+
|
|
882
|
+
else:
|
|
883
|
+
orderbook_valid = False
|
|
884
|
+
|
|
885
|
+
if not orderbook_valid:
|
|
886
|
+
ob = await exchange.fetch_order_book(symbol=param['ticker'], limit=10)
|
|
887
|
+
err_msg = f"orderbook missing, topic: {orderbook_topic}, fetch from REST instead"
|
|
888
|
+
log(err_msg, LogLevel.WARNING)
|
|
889
|
+
|
|
890
|
+
if hi_candles_valid and lo_candles_valid: # On turn of interval, candles_provider may need a little time to publish latest candles
|
|
891
|
+
|
|
892
|
+
# Strategies uses different indicators, thus: TargetStrategy.get_strategy_indicators()
|
|
893
|
+
for indicator in strategy_indicators:
|
|
894
|
+
indicator_source : str = indicator.split(":")[0]
|
|
895
|
+
indicator_name = indicator.split(":")[-1]
|
|
896
|
+
if indicator_source=="lo_row":
|
|
897
|
+
indicator_value = lo_row[indicator_name]
|
|
898
|
+
elif indicator_source=="lo_row_tm1":
|
|
899
|
+
indicator_value = lo_row_tm1[indicator_name]
|
|
900
|
+
elif indicator_source=="hi_row":
|
|
901
|
+
indicator_value = hi_row[indicator_name]
|
|
902
|
+
elif indicator_source=="hi_row_tm1":
|
|
903
|
+
indicator_value = hi_row_tm1[indicator_name]
|
|
904
|
+
pd_position_cache.loc[position_cache_row.name, indicator] = indicator_value
|
|
905
|
+
|
|
906
|
+
best_ask = min([x[0] for x in ob['asks']])
|
|
907
|
+
best_bid = max([x[0] for x in ob['bids']])
|
|
908
|
+
mid = (best_ask+best_bid)/2
|
|
909
|
+
spread_bps = (best_ask/best_bid - 1) * 10000
|
|
910
|
+
|
|
911
|
+
last_candles=trailing_candles # alias
|
|
912
|
+
|
|
913
|
+
if pos_status!=PositionStatus.UNDEFINED.name:
|
|
914
|
+
pos_usdt = mid * pos
|
|
915
|
+
pd_position_cache.loc[position_cache_row.name, 'pos_usdt'] = pos_usdt
|
|
916
|
+
|
|
917
|
+
if pos_side == OrderSide.BUY:
|
|
918
|
+
unreal_live = (mid - pos_entry_px) * param['amount_base_ccy']
|
|
919
|
+
unrealized_pnl_optimistic = (trailing_candles[-1][2] - pos_entry_px) * param['amount_base_ccy'] # trailing_candles[-1][2]: high
|
|
920
|
+
unrealized_pnl_pessimistic = (trailing_candles[-1][3] - pos_entry_px) * param['amount_base_ccy'] # trailing_candles[-1][3]: low
|
|
921
|
+
unrealized_pnl_open = unreal_live
|
|
922
|
+
if total_sec_since_pos_created > (lo_interval_ms/1000):
|
|
923
|
+
'''
|
|
924
|
+
"unrealized_pnl_open": To align with backtests, motivation is to avoid spikes and trigger trailing stops too early.
|
|
925
|
+
But we need be careful with tall candles immediately upon entries.
|
|
926
|
+
trailing_candles[-1] is latest candle
|
|
927
|
+
trailing_candles[-1][1] is 'open' from latest candle
|
|
928
|
+
Example long BTC, a mean reversion trade
|
|
929
|
+
pos_entry_px $97,000
|
|
930
|
+
open $99,000 (This is trailing_candles[-1][1], so it's big red candle)
|
|
931
|
+
mid $97,200 (Seconds after entry)
|
|
932
|
+
|
|
933
|
+
unreal_live $200 per BTC
|
|
934
|
+
unrealized_pnl_open $2000 per BTC (This is very misleading! This would cause algo to TP prematurely!)
|
|
935
|
+
Thus for new entries,
|
|
936
|
+
unrealized_pnl_open = unreal_live
|
|
937
|
+
'''
|
|
938
|
+
unrealized_pnl_open = (trailing_candles[-1][1] - pos_entry_px) * param['amount_base_ccy']
|
|
939
|
+
elif pos_side == OrderSide.SELL:
|
|
940
|
+
unreal_live = (pos_entry_px - mid) * param['amount_base_ccy']
|
|
941
|
+
unrealized_pnl_optimistic = (trailing_candles[-1][3] - pos_entry_px) * param['amount_base_ccy'] # trailing_candles[-1][3]: low
|
|
942
|
+
unrealized_pnl_pessimistic = (trailing_candles[-1][2] - pos_entry_px) * param['amount_base_ccy'] # trailing_candles[-1][2]: high
|
|
943
|
+
unrealized_pnl_open = unreal_live
|
|
944
|
+
if total_sec_since_pos_created > lo_interval_ms/1000:
|
|
945
|
+
unrealized_pnl_open = (pos_entry_px - trailing_candles[-1][1]) * param['amount_base_ccy']
|
|
946
|
+
|
|
947
|
+
kwargs = {k: v for k, v in locals().items() if k in trailing_stop_threshold_eval_func_params}
|
|
948
|
+
trailing_stop_threshold_eval_func_result = trailing_stop_threshold_eval_func(**kwargs)
|
|
949
|
+
tp_min_percent = trailing_stop_threshold_eval_func_result['tp_min_percent']
|
|
950
|
+
tp_max_percent = trailing_stop_threshold_eval_func_result['tp_max_percent']
|
|
951
|
+
|
|
952
|
+
pnl_live_bps = unreal_live / abs(pos_usdt) * 10000 if pos_usdt else 0
|
|
953
|
+
pnl_open_bps = unrealized_pnl_open / abs(pos_usdt) * 10000 if pos_usdt else 0
|
|
954
|
+
pnl_percent_notional = pnl_open_bps/100
|
|
955
|
+
|
|
956
|
+
if unreal_live>max_unreal_live:
|
|
957
|
+
max_unreal_live = unreal_live
|
|
958
|
+
|
|
959
|
+
if pnl_live_bps>max_unreal_live_bps:
|
|
960
|
+
max_unreal_live_bps = pnl_live_bps
|
|
961
|
+
|
|
962
|
+
if pnl_open_bps>max_unreal_open_bps:
|
|
963
|
+
max_unreal_open_bps = pnl_open_bps
|
|
964
|
+
|
|
965
|
+
if unrealized_pnl_pessimistic < max_pain:
|
|
966
|
+
max_pain = unrealized_pnl_pessimistic
|
|
967
|
+
|
|
968
|
+
if unrealized_pnl_optimistic < 0 and unrealized_pnl_optimistic>max_pain:
|
|
969
|
+
recovered_pnl = unrealized_pnl_optimistic - max_pain
|
|
970
|
+
if recovered_pnl > max_recovered_pnl:
|
|
971
|
+
max_recovered_pnl = recovered_pnl
|
|
972
|
+
|
|
973
|
+
max_pain_percent_notional = max_pain / pos_usdt * 100
|
|
974
|
+
max_recovered_pnl_percent_notional = max_recovered_pnl / pos_usdt * 100
|
|
975
|
+
|
|
976
|
+
loss_trailing = (1 - pnl_live_bps/max_unreal_live_bps) * 100 if pnl_live_bps>0 else 0
|
|
977
|
+
|
|
978
|
+
pd_position_cache.loc[position_cache_row.name, 'unreal_live'] = unreal_live
|
|
979
|
+
pd_position_cache.loc[position_cache_row.name, 'max_unreal_live'] = max_unreal_live
|
|
980
|
+
pd_position_cache.loc[position_cache_row.name, 'max_pain'] = max_pain
|
|
981
|
+
pd_position_cache.loc[position_cache_row.name, 'max_recovered_pnl'] = max_recovered_pnl
|
|
982
|
+
pd_position_cache.loc[position_cache_row.name, 'pnl_live_bps'] = pnl_live_bps
|
|
983
|
+
pd_position_cache.loc[position_cache_row.name, 'pnl_open_bps'] = pnl_open_bps
|
|
984
|
+
pd_position_cache.loc[position_cache_row.name, 'max_unreal_live_bps'] = max_unreal_live_bps
|
|
985
|
+
pd_position_cache.loc[position_cache_row.name, 'max_unreal_open_bps'] = max_unreal_open_bps
|
|
986
|
+
|
|
987
|
+
pd_position_cache.loc[position_cache_row.name, 'spread_bps'] = spread_bps
|
|
988
|
+
pd_position_cache.loc[position_cache_row.name, 'ob_mid'] = mid
|
|
989
|
+
pd_position_cache.loc[position_cache_row.name, 'ob_best_bid'] = best_bid
|
|
990
|
+
pd_position_cache.loc[position_cache_row.name, 'ob_best_ask'] = best_ask
|
|
991
|
+
|
|
992
|
+
kwargs = {k: v for k, v in locals().items() if k in allow_entry_initial_func_params}
|
|
993
|
+
allow_entry_func_initial_result = allow_entry_initial_func(**kwargs)
|
|
994
|
+
allow_entry_long = allow_entry_func_initial_result['long']
|
|
995
|
+
allow_entry_short = allow_entry_func_initial_result['short']
|
|
996
|
+
|
|
997
|
+
allow_entry = allow_entry_long or allow_entry_short
|
|
998
|
+
allow_entry = allow_entry and pos_status!=PositionStatus.OPEN.name
|
|
999
|
+
if allow_entry and not block_entries:
|
|
1000
|
+
kwargs = {k: v for k, v in locals().items() if k in allow_entry_final_func_params}
|
|
1001
|
+
allow_entry_func_final_result = allow_entry_final_func(**kwargs)
|
|
1002
|
+
allow_entry_final_long = allow_entry_func_final_result['long']
|
|
1003
|
+
allow_entry_final_short = allow_entry_func_final_result['short']
|
|
1004
|
+
target_price_long = allow_entry_func_final_result['target_price_long']
|
|
1005
|
+
target_price_short = allow_entry_func_final_result['target_price_short']
|
|
1006
|
+
|
|
1007
|
+
if allow_entry_final_long or allow_entry_final_short:
|
|
1008
|
+
if allow_entry_final_long:
|
|
1009
|
+
side = 'buy'
|
|
1010
|
+
pnl_potential_bps = (target_price_long/mid - 1) *10000 if target_price_long else None
|
|
1011
|
+
elif allow_entry_final_short:
|
|
1012
|
+
side = 'sell'
|
|
1013
|
+
pnl_potential_bps = (mid/target_price_short - 1) *10000 if target_price_short else None
|
|
1014
|
+
else:
|
|
1015
|
+
raise ValueError("Either allow_long or allow_short!")
|
|
1016
|
+
|
|
1017
|
+
# tp_min_percent adj: Strategies where target_price not based on tp_max_percent, but variable
|
|
1018
|
+
if pnl_potential_bps<tp_max_percent:
|
|
1019
|
+
tp_minmax_ratio = tp_min_percent/tp_max_percent
|
|
1020
|
+
tp_max_percent = pnl_potential_bps
|
|
1021
|
+
tp_min_percent = tp_minmax_ratio * tp_max_percent
|
|
1022
|
+
|
|
1023
|
+
kwargs = {k: v for k, v in locals().items() if k in order_notional_adj_func_params}
|
|
1024
|
+
order_notional_adj_func_result = order_notional_adj_func(**kwargs)
|
|
1025
|
+
target_order_notional = order_notional_adj_func_result['target_order_notional']
|
|
1026
|
+
|
|
1027
|
+
entry_positions : List[DivisiblePosition] = [
|
|
1028
|
+
DivisiblePosition(
|
|
1029
|
+
ticker = param['ticker'],
|
|
1030
|
+
side = side,
|
|
1031
|
+
amount = target_order_notional,
|
|
1032
|
+
leg_room_bps = param['leg_room_bps'],
|
|
1033
|
+
order_type = param['order_type'],
|
|
1034
|
+
slices = param['slices'],
|
|
1035
|
+
wait_fill_threshold_ms = param['wait_fill_threshold_ms']
|
|
1036
|
+
)
|
|
1037
|
+
]
|
|
1038
|
+
log(f"dispatching {side} orders to {gateway_id}")
|
|
1039
|
+
executed_positions : Union[Dict[JSON_SERIALIZABLE_TYPES, JSON_SERIALIZABLE_TYPES], None] = execute_positions(
|
|
1040
|
+
redis_client=redis_client,
|
|
1041
|
+
positions=entry_positions,
|
|
1042
|
+
ordergateway_pending_orders_topic=ordergateway_pending_orders_topic,
|
|
1043
|
+
ordergateway_executions_topic=ordergateway_executions_topic
|
|
1044
|
+
)
|
|
1045
|
+
for executed_position in executed_positions:
|
|
1046
|
+
if not executed_position['done']:
|
|
1047
|
+
err_msg = executed_position['execution_err']
|
|
1048
|
+
log(err_msg, log_level=LogLevel.ERROR)
|
|
1049
|
+
dispatch_notification(title=f"singlelegta error from order gateway {gateway_id}!!", message=err_msg, log_level=logging.ERROR)
|
|
1050
|
+
raise ValueError(err_msg)
|
|
1051
|
+
executed_position = executed_positions[0] # We sent only one DivisiblePosition.
|
|
1052
|
+
|
|
1053
|
+
new_pos_from_exchange =executed_position['filled_amount']
|
|
1054
|
+
amount_filled_usdt = mid * new_pos_from_exchange
|
|
1055
|
+
pos_entry_px = executed_position['average_cost']
|
|
1056
|
+
new_pos_usdt_from_exchange = new_pos_from_exchange * executed_position['average_cost']
|
|
1057
|
+
fees = executed_position['fees']
|
|
1058
|
+
|
|
1059
|
+
if side=='buy':
|
|
1060
|
+
tp_max_price = mid * (1 + pnl_potential_bps/10000)
|
|
1061
|
+
tp_min_price = mid * (1 + tp_min_percent/10000)
|
|
1062
|
+
sl_price = mid * (1 - param['sl_hard_percent']/100)
|
|
1063
|
+
|
|
1064
|
+
elif side=='sell':
|
|
1065
|
+
tp_max_price = mid * (1 - pnl_potential_bps/10000)
|
|
1066
|
+
tp_min_price = mid * (1 - tp_min_percent/10000)
|
|
1067
|
+
sl_price = mid * (1 + param['sl_hard_percent']/100)
|
|
1068
|
+
|
|
1069
|
+
executed_position['position'] = {
|
|
1070
|
+
'status' : 'open',
|
|
1071
|
+
'pos_entry_px' : pos_entry_px,
|
|
1072
|
+
'mid' : mid,
|
|
1073
|
+
'amount_base_ccy' : executed_position['filled_amount'],
|
|
1074
|
+
'tp_min_price' : tp_min_price,
|
|
1075
|
+
'tp_max_price' : tp_max_price,
|
|
1076
|
+
'sl_price' : sl_price,
|
|
1077
|
+
'multiplier' : multiplier
|
|
1078
|
+
}
|
|
1079
|
+
|
|
1080
|
+
pd_position_cache.loc[position_cache_row.name, 'pos'] = pos + new_pos_from_exchange
|
|
1081
|
+
pd_position_cache.loc[position_cache_row.name, 'pos_usdt'] = pos_usdt + new_pos_usdt_from_exchange
|
|
1082
|
+
pd_position_cache.loc[position_cache_row.name, 'status'] = PositionStatus.OPEN.name
|
|
1083
|
+
pos_created = datetime.fromtimestamp(time.time())
|
|
1084
|
+
pd_position_cache.loc[position_cache_row.name, 'created'] = pos_created
|
|
1085
|
+
pd_position_cache.loc[position_cache_row.name, 'closed'] = None
|
|
1086
|
+
pd_position_cache.loc[position_cache_row.name, 'entry_px'] = pos_entry_px
|
|
1087
|
+
pd_position_cache.loc[position_cache_row.name, 'close_px'] = None
|
|
1088
|
+
pd_position_cache.loc[position_cache_row.name, 'unreal_live'] = None
|
|
1089
|
+
pd_position_cache.loc[position_cache_row.name, 'max_unreal_live'] = 0
|
|
1090
|
+
pd_position_cache.loc[position_cache_row.name, 'max_pain'] = 0
|
|
1091
|
+
pd_position_cache.loc[position_cache_row.name, 'max_recovered_pnl'] = 0
|
|
1092
|
+
pd_position_cache.loc[position_cache_row.name, 'pnl_live_bps'] = None
|
|
1093
|
+
pd_position_cache.loc[position_cache_row.name, 'pnl_open_bps'] = None
|
|
1094
|
+
pd_position_cache.loc[position_cache_row.name, 'max_unreal_live_bps'] = 0
|
|
1095
|
+
pd_position_cache.loc[position_cache_row.name, 'max_unreal_open_bps'] = 0
|
|
1096
|
+
pd_position_cache.loc[position_cache_row.name, 'tp_max_target'] = tp_max_price
|
|
1097
|
+
pd_position_cache.loc[position_cache_row.name, 'tp_min_target'] = tp_min_price
|
|
1098
|
+
pd_position_cache.loc[position_cache_row.name, 'running_sl_percent_hard'] = param['sl_hard_percent']
|
|
1099
|
+
pd_position_cache.loc[position_cache_row.name, 'sl_trailing_min_threshold_crossed'] = False
|
|
1100
|
+
pd_position_cache.loc[position_cache_row.name, 'sl_percent_trailing'] = float('inf')
|
|
1101
|
+
pd_position_cache.loc[position_cache_row.name, 'loss_trailing'] = 0
|
|
1102
|
+
|
|
1103
|
+
pos_entries.append(pos_created)
|
|
1104
|
+
pd_position_cache.at[position_cache_row.name, 'pos_entries'] = pos_entries
|
|
1105
|
+
|
|
1106
|
+
# This is for tp_eval_func
|
|
1107
|
+
this_ticker_open_trades.append(
|
|
1108
|
+
{
|
|
1109
|
+
'ticker' : param['ticker'],
|
|
1110
|
+
'side' : side,
|
|
1111
|
+
'amount' : target_order_notional,
|
|
1112
|
+
'tp_max_price' : tp_max_price,
|
|
1113
|
+
'target_price' : tp_max_price # This is the only field needed by backtest_core generic_tp_eval
|
|
1114
|
+
}
|
|
1115
|
+
)
|
|
1116
|
+
|
|
1117
|
+
orderhist_cache_row = {
|
|
1118
|
+
'datetime' : dt_now,
|
|
1119
|
+
'exchange' : exchange_name,
|
|
1120
|
+
'ticker' : ticker,
|
|
1121
|
+
'reason' : 'entry',
|
|
1122
|
+
'side' : side,
|
|
1123
|
+
'avg_price' : new_pos_usdt_from_exchange/new_pos_from_exchange,
|
|
1124
|
+
'amount': abs(new_pos_usdt_from_exchange),
|
|
1125
|
+
'pnl' : 0,
|
|
1126
|
+
'pnl_bps' : 0,
|
|
1127
|
+
'max_pain' : 0
|
|
1128
|
+
}
|
|
1129
|
+
orderhist_cache = pd.concat([orderhist_cache, pd.DataFrame([orderhist_cache_row])], axis=0, ignore_index=True)
|
|
1130
|
+
|
|
1131
|
+
dispatch_notification(title=f"{param['current_filename']} {gateway_id} Entry succeeded. {param['ticker']} {side} {param['amount_base_ccy']} (USD amount: {amount_filled_usdt}) @ {pos_entry_px}", message=executed_position['position'], footer=param['notification']['footer'], params=notification_params, log_level=LogLevel.CRITICAL, logger=logger)
|
|
1132
|
+
|
|
1133
|
+
'''
|
|
1134
|
+
Have a look at this for a visual explaination how "Gradually tightened stops" works:
|
|
1135
|
+
https://github.com/r0bbar/siglab/blob/master/siglab_py/tests/manual/trading_util_tests.ipynb
|
|
1136
|
+
'''
|
|
1137
|
+
if (
|
|
1138
|
+
(pnl_percent_notional>0 and pnl_percent_notional>=tp_min_percent) # pnl_percent_notional is evaluated using pnl_open_bps to avoid spikes
|
|
1139
|
+
or (
|
|
1140
|
+
pnl_percent_notional<0
|
|
1141
|
+
and max_recovered_pnl_percent_notional>=param['recover_min_percent']
|
|
1142
|
+
and abs(max_pain_percent_notional)>=param['recover_max_pain_percent']
|
|
1143
|
+
) # Taking 'abs': Trailing stop can fire if trade moves in either direction - if your trade is losing trade.
|
|
1144
|
+
):
|
|
1145
|
+
if not sl_trailing_min_threshold_crossed:
|
|
1146
|
+
sl_trailing_min_threshold_crossed = True
|
|
1147
|
+
pd_position_cache.loc[position_cache_row.name, 'sl_trailing_min_threshold_crossed'] = sl_trailing_min_threshold_crossed
|
|
1148
|
+
|
|
1149
|
+
msg = {
|
|
1150
|
+
'side' : pos_side.name,
|
|
1151
|
+
'mid' : mid,
|
|
1152
|
+
'pos_entry_px' : pos_entry_px,
|
|
1153
|
+
'pnl_open_bps' : pnl_open_bps,
|
|
1154
|
+
'tp_min_percent' : tp_min_percent
|
|
1155
|
+
}
|
|
1156
|
+
log(msg, LogLevel.CRITICAL)
|
|
1157
|
+
dispatch_notification(title=f"{param['current_filename']} {param['gateway_id']} sl_trailing_min_threshold_crossed: True!", message=msg, footer=param['notification']['footer'], params=notification_params, log_level=LogLevel.CRITICAL, logger=logger)
|
|
1158
|
+
|
|
1159
|
+
|
|
1160
|
+
_effective_tp_trailing_percent = calc_eff_trailing_sl(
|
|
1161
|
+
tp_min_percent = tp_min_percent,
|
|
1162
|
+
tp_max_percent = tp_max_percent,
|
|
1163
|
+
sl_percent_trailing = tp_max_percent,
|
|
1164
|
+
pnl_percent_notional = max_unreal_open_bps/100, # Note: Use [max]_unrealized_pnl_percent, not unrealized_pnl_percent!
|
|
1165
|
+
default_effective_tp_trailing_percent = param['default_effective_tp_trailing_percent'],
|
|
1166
|
+
linear=True if tp_max_percent >= param['trailing_sl_min_percent_linear'] else False, # If tp_max_percent far (>100bps for example), there's more uncertainty if target can be reached: Go with linear.
|
|
1167
|
+
pow=param['non_linear_pow']
|
|
1168
|
+
)
|
|
1169
|
+
|
|
1170
|
+
# Once pnl pass tp_min_percent, trailing stops will be activated. Even if pnl fall back below tp_min_percent.
|
|
1171
|
+
effective_tp_trailing_percent = min(effective_tp_trailing_percent, _effective_tp_trailing_percent)
|
|
1172
|
+
|
|
1173
|
+
pd_position_cache.loc[position_cache_row.name, 'effective_tp_trailing_percent'] = effective_tp_trailing_percent
|
|
1174
|
+
|
|
1175
|
+
|
|
1176
|
+
# STEP 2. Unwind position
|
|
1177
|
+
if pos!=0:
|
|
1178
|
+
tp = False
|
|
1179
|
+
sl = False
|
|
1180
|
+
if unreal_live>0:
|
|
1181
|
+
kwargs = {k: v for k, v in locals().items() if k in tp_eval_func_params}
|
|
1182
|
+
tp_final = tp_eval_func(**kwargs)
|
|
1183
|
+
|
|
1184
|
+
if tp_final:
|
|
1185
|
+
tp = True
|
|
1186
|
+
elif loss_trailing>=effective_tp_trailing_percent:
|
|
1187
|
+
tp = True
|
|
1188
|
+
|
|
1189
|
+
else:
|
|
1190
|
+
kwargs = {k: v for k, v in locals().items() if k in sl_adj_func_params}
|
|
1191
|
+
sl_adj_func_result = sl_adj_func(**kwargs)
|
|
1192
|
+
running_sl_percent_hard = sl_adj_func_result['running_sl_percent_hard']
|
|
1193
|
+
|
|
1194
|
+
if abs(pnl_live_bps/100)>=running_sl_percent_hard:
|
|
1195
|
+
sl = True
|
|
1196
|
+
|
|
1197
|
+
if tp or sl:
|
|
1198
|
+
exit_positions : List[DivisiblePosition] = [
|
|
1199
|
+
DivisiblePosition(
|
|
1200
|
+
ticker = param['ticker'],
|
|
1201
|
+
side = 'sell' if pos_side==OrderSide.BUY else 'buy',
|
|
1202
|
+
amount = param['amount_base_ccy'],
|
|
1203
|
+
leg_room_bps = param['leg_room_bps'],
|
|
1204
|
+
order_type = param['order_type'],
|
|
1205
|
+
slices = param['slices'],
|
|
1206
|
+
wait_fill_threshold_ms = param['wait_fill_threshold_ms'],
|
|
1207
|
+
|
|
1208
|
+
reduce_only=True
|
|
1209
|
+
)
|
|
1210
|
+
]
|
|
1211
|
+
log(f"Closing position. {ticker}, pos: {pos}, pos_usdt: {pos_usdt}")
|
|
1212
|
+
executed_positions : Union[Dict[JSON_SERIALIZABLE_TYPES, JSON_SERIALIZABLE_TYPES], None] = execute_positions(
|
|
1213
|
+
redis_client=redis_client,
|
|
1214
|
+
positions=exit_positions,
|
|
1215
|
+
ordergateway_pending_orders_topic=ordergateway_pending_orders_topic,
|
|
1216
|
+
ordergateway_executions_topic=ordergateway_executions_topic
|
|
1217
|
+
)
|
|
1218
|
+
if executed_positions:
|
|
1219
|
+
executed_position_close = executed_positions[0] # We sent only one DivisiblePosition.
|
|
1220
|
+
if executed_position_close['done']:
|
|
1221
|
+
if pos_side==OrderSide.BUY:
|
|
1222
|
+
closed_pnl = (executed_position_close['average_cost'] - pos_entry_px) * param['amount_base_ccy']
|
|
1223
|
+
else:
|
|
1224
|
+
closed_pnl = (pos_entry_px - executed_position_close['average_cost']) * param['amount_base_ccy']
|
|
1225
|
+
|
|
1226
|
+
new_pos_from_exchange = abs(pos) + executed_position_close['filled_amount']
|
|
1227
|
+
new_pos_usdt_from_exchange = new_pos_from_exchange * executed_position_close['average_cost']
|
|
1228
|
+
fees = executed_position_close['fees']
|
|
1229
|
+
|
|
1230
|
+
executed_position_close['position'] = {
|
|
1231
|
+
'status' : 'TP' if tp else 'SL',
|
|
1232
|
+
'pnl_live_bps' : pnl_live_bps,
|
|
1233
|
+
'pos_entry_px' : pos_entry_px,
|
|
1234
|
+
'mid' : mid,
|
|
1235
|
+
'amount_base_ccy' : executed_position_close['filled_amount'],
|
|
1236
|
+
'closed_pnl' : closed_pnl,
|
|
1237
|
+
}
|
|
1238
|
+
|
|
1239
|
+
new_status = PositionStatus.SL.name if closed_pnl<=0 else PositionStatus.CLOSED.name
|
|
1240
|
+
pd_position_cache.loc[position_cache_row.name, 'pos'] = new_pos_from_exchange
|
|
1241
|
+
pd_position_cache.loc[position_cache_row.name, 'pos_usdt'] = new_pos_usdt_from_exchange
|
|
1242
|
+
pd_position_cache.loc[position_cache_row.name, 'status'] = new_status
|
|
1243
|
+
pd_position_cache.loc[position_cache_row.name, 'closed'] = dt_now
|
|
1244
|
+
pd_position_cache.loc[position_cache_row.name, 'close_px'] = mid # mid is approx of actual fill price!
|
|
1245
|
+
pd_position_cache.loc[position_cache_row.name, 'unreal_live'] = None
|
|
1246
|
+
pd_position_cache.loc[position_cache_row.name, 'max_unreal_live'] = 0
|
|
1247
|
+
pd_position_cache.loc[position_cache_row.name, 'max_pain'] = 0
|
|
1248
|
+
pd_position_cache.loc[position_cache_row.name, 'max_recovered_pnl'] = 0
|
|
1249
|
+
pd_position_cache.loc[position_cache_row.name, 'pnl_live_bps'] = None
|
|
1250
|
+
pd_position_cache.loc[position_cache_row.name, 'pnl_open_bps'] = None
|
|
1251
|
+
pd_position_cache.loc[position_cache_row.name, 'max_unreal_live_bps'] = 0
|
|
1252
|
+
pd_position_cache.loc[position_cache_row.name, 'max_unreal_open_bps'] = 0
|
|
1253
|
+
|
|
1254
|
+
pd_position_cache.at[position_cache_row.name, 'pos_entries'] = []
|
|
1255
|
+
pd_position_cache.loc[position_cache_row.name, 'tp_max_target'] = None
|
|
1256
|
+
pd_position_cache.loc[position_cache_row.name, 'tp_min_target'] = None
|
|
1257
|
+
pd_position_cache.loc[position_cache_row.name, 'running_sl_percent_hard'] = param['sl_hard_percent']
|
|
1258
|
+
pd_position_cache.loc[position_cache_row.name, 'sl_trailing_min_threshold_crossed'] = False
|
|
1259
|
+
pd_position_cache.loc[position_cache_row.name, 'sl_percent_trailing'] = param['sl_percent_trailing']
|
|
1260
|
+
pd_position_cache.loc[position_cache_row.name, 'loss_trailing'] = 0
|
|
1261
|
+
|
|
1262
|
+
|
|
1263
|
+
# This is for tp_eval_func
|
|
1264
|
+
this_ticker_open_trades.clear()
|
|
1265
|
+
|
|
1266
|
+
orderhist_cache_row = {
|
|
1267
|
+
'datetime' : dt_now,
|
|
1268
|
+
'exchange' : exchange_name,
|
|
1269
|
+
'ticker' : ticker,
|
|
1270
|
+
'reason' : new_status,
|
|
1271
|
+
'side' : 'sell' if pos_side==OrderSide.BUY else 'buy',
|
|
1272
|
+
'avg_price' : mid, # mid is actually not avg_price!
|
|
1273
|
+
'amount': abs(new_pos_usdt_from_exchange),
|
|
1274
|
+
'unreal_live' : unreal_live,
|
|
1275
|
+
'pnl_live_bps' : pnl_live_bps,
|
|
1276
|
+
'max_pain' : max_pain
|
|
1277
|
+
}
|
|
1278
|
+
orderhist_cache = pd.concat([orderhist_cache, pd.DataFrame([orderhist_cache_row])], axis=0, ignore_index=True)
|
|
1279
|
+
|
|
1280
|
+
dispatch_notification(title=f"{param['current_filename']} {param['gateway_id']} {'TP' if tp else 'SL'} succeeded. closed_pnl: {closed_pnl}", message=executed_position_close, footer=param['notification']['footer'], params=notification_params, log_level=LogLevel.CRITICAL, logger=logger)
|
|
1281
|
+
|
|
1282
|
+
else:
|
|
1283
|
+
dispatch_notification(title=f"{param['current_filename']} {param['gateway_id']} Exit execution failed. {param['ticker']}", message=executed_position_close, footer=param['notification']['footer'], params=notification_params, log_level=LogLevel.CRITICAL, logger=logger)
|
|
1284
|
+
|
|
1285
|
+
log(f"[{gateway_id}]", log_level=LogLevel.INFO)
|
|
1286
|
+
log(f"{tabulate(pd_position_cache, headers='keys', tablefmt='psql')}", log_level=LogLevel.INFO)
|
|
1287
|
+
|
|
1288
|
+
pd_position_cache.to_csv(POSITION_CACHE_FILE_NAME.replace("$GATEWAY_ID$", gateway_id))
|
|
1289
|
+
orderhist_cache.to_csv(ORDERHIST_CACHE_FILE_NAME.replace("$GATEWAY_ID$", gateway_id))
|
|
1290
|
+
|
|
1291
|
+
except Exception as loop_err:
|
|
1292
|
+
err_msg = f"Error: {loop_err} {str(sys.exc_info()[0])} {str(sys.exc_info()[1])} {traceback.format_exc()}"
|
|
1293
|
+
log(err_msg, log_level=LogLevel.ERROR)
|
|
1294
|
+
dispatch_notification(title=f"{param['current_filename']} {param['gateway_id']} error. {param['ticker']}", message=err_msg, footer=param['notification']['footer'], params=notification_params, log_level=LogLevel.ERROR, logger=logger)
|
|
1295
|
+
|
|
1296
|
+
finally:
|
|
1297
|
+
time.sleep(int(param['loop_freq_ms']/1000))
|
|
1298
|
+
|
|
1299
|
+
asyncio.run(
|
|
1300
|
+
main(
|
|
1301
|
+
order_notional_adj_func=TargetStrategy.order_notional_adj,
|
|
1302
|
+
allow_entry_initial_func=TargetStrategy.allow_entry_initial,
|
|
1303
|
+
allow_entry_final_func=TargetStrategy.allow_entry_final,
|
|
1304
|
+
sl_adj_func=TargetStrategy.sl_adj,
|
|
1305
|
+
trailing_stop_threshold_eval_func=TargetStrategy.trailing_stop_threshold_eval,
|
|
1306
|
+
tp_eval_func=TargetStrategy.tp_eval
|
|
1307
|
+
)
|
|
1308
|
+
)
|