siglab-py 0.1.26__py3-none-any.whl → 0.1.28__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of siglab-py might be problematic. Click here for more details.

@@ -26,7 +26,7 @@ from siglab_py.util.analytic_util import compute_candles_stats
26
26
  '''
27
27
  Usage:
28
28
  set PYTHONPATH=%PYTHONPATH%;D:\dev\siglab\siglab_py
29
- python ccxt_candles_ta_to_csv.py --exchange_name bybit --symbol BTC/USDT:USDT --end_date "2025-03-11 0:0:0" --start_date "2024-03-11 0:0:0" --default_type linear --compute_ta Y --pypy_compatible N
29
+ python ccxt_candles_ta_to_csv.py --exchange_name bybit --symbol BTC/USDT:USDT --end_date "2025-03-11 0:0:0" --start_date "2021-03-11 0:0:0" --default_type linear --compute_ta Y --pypy_compatible N
30
30
 
31
31
  (Remember: python -mpip install siglab_py)
32
32
 
@@ -35,6 +35,17 @@ This script is pypy compatible. Set "pypy_compatible" to True, in which case "co
35
35
 
36
36
  (Remember: pypy -mpip install siglab_py)
37
37
 
38
+ Other arguments:
39
+ candle_size: default 1h (Hourly candles). You can specify 1d, 1m ...etc
40
+ ma_long_intervals (default 24), ma_short_intervals (default 8):
41
+ analytic_util.compute_candles_stats employ sliding windows to calculate things like std (Standard Deviation), EMA/SMAs, and actually most other technical indicators.
42
+ compute_candles_stats calculate certain things, for example EMA, in two levels: 'long' vs 'short'
43
+ 'long' refers to 'higher timeframe' - this uses a bigger sliding window specified by 'ma_long_intervals'
44
+ 'short' refers to 'lower timeframes' - this uses a smaller sliding window specified by 'ma_short_intervals'
45
+
46
+ compute_ta: Whether you wish to compute technical indicators? Y or N (Default)
47
+ pypy_compatible: Some technical indicators requires python libraries that's not pypy compatible, such as statsmodels.api (slopes and divergence calc) and scipy.stats.linregress. Set to Y, then analytic_util.compute_candles_stats will skip calculations which requires these libraries.
48
+
38
49
  If debugging from VSCode, launch.json:
39
50
 
40
51
  {
@@ -17,7 +17,7 @@ from siglab_py.util.analytic_util import compute_candles_stats
17
17
  '''
18
18
  Usage:
19
19
  set PYTHONPATH=%PYTHONPATH%;D:\dev\siglab\siglab_py
20
- python futu_candles_ta_to_csv.py --symbol HK.00700 --end_date "2025-03-11 0:0:0" --start_date "2024-03-11 0:0:0" --market HK --trdmarket HK --security_firm FUTUSECURITIES --security_type STOCK --compute_ta Y --pypy_compatible N
20
+ python futu_candles_ta_to_csv.py --symbol HK.00700 --end_date "2025-03-11 0:0:0" --start_date "2021-03-11 0:0:0" --market HK --trdmarket HK --security_firm FUTUSECURITIES --security_type STOCK --compute_ta Y --pypy_compatible N
21
21
 
22
22
  python futu_candles_ta_to_csv.py --symbol AAPL --end_date "2025-03-11 0:0:0" --start_date "2024-03-11 0:0:0" --market US --trdmarket US --security_firm FUTUSECURITIES --security_type STOCK --compute_ta Y --pypy_compatible N
23
23
 
@@ -28,6 +28,17 @@ This script is pypy compatible. Set "pypy_compatible" to True, in which case "co
28
28
 
29
29
  (Remember: pypy -mpip install siglab_py)
30
30
 
31
+ Other arguments:
32
+ candle_size: default 1h (Hourly candles). You can specify 1d, 1m ...etc
33
+ ma_long_intervals (default 24), ma_short_intervals (default 8):
34
+ analytic_util.compute_candles_stats employ sliding windows to calculate things like std (Standard Deviation), EMA/SMAs, and actually most other technical indicators.
35
+ compute_candles_stats calculate certain things, for example EMA, in two levels: 'long' vs 'short'
36
+ 'long' refers to 'higher timeframe' - this uses a bigger sliding window specified by 'ma_long_intervals'
37
+ 'short' refers to 'lower timeframes' - this uses a smaller sliding window specified by 'ma_short_intervals'
38
+
39
+ compute_ta: Whether you wish to compute technical indicators? Y or N (Default)
40
+ pypy_compatible: Some technical indicators requires python libraries that's not pypy compatible, such as statsmodels.api (slopes and divergence calc) and scipy.stats.linregress. Set to Y, then analytic_util.compute_candles_stats will skip calculations which requires these libraries.
41
+
31
42
  If debugging from VSCode, launch.json:
32
43
 
33
44
  {
@@ -41,5 +41,5 @@ class AnalyticUtilTests(unittest.TestCase):
41
41
  pypy_compat=True
42
42
  )
43
43
 
44
- expected_columns : List[str] = ['exchange', 'symbol', 'timestamp_ms', 'open', 'high', 'low', 'close', 'volume', 'datetime', 'datetime_utc', 'year', 'month', 'day', 'hour', 'minute', 'dayofweek', 'pct_chg_on_close', 'candle_height', 'is_green', 'pct_change_close', 'sma_short_periods', 'sma_long_periods', 'ema_short_periods', 'ema_long_periods', 'ema_close', 'std', 'candle_height_percent', 'chop_against_ema', 'ema_volume_short_periods', 'ema_volume_long_periods', 'max_short_periods', 'max_long_periods', 'idmax_short_periods', 'idmax_long_periods', 'min_short_periods', 'min_long_periods', 'idmin_short_periods', 'idmin_long_periods', 'h_l', 'h_pc', 'l_pc', 'tr', 'atr', 'hurst_exp', 'boillenger_upper', 'boillenger_lower', 'boillenger_channel_height', 'boillenger_upper_agg', 'boillenger_lower_agg', 'boillenger_channel_height_agg', 'aggressive_up', 'aggressive_up_index', 'aggressive_up_candle_height', 'aggressive_up_candle_high', 'aggressive_up_candle_low', 'aggressive_down', 'aggressive_down_index', 'aggressive_down_candle_height', 'aggressive_down_candle_high', 'aggressive_down_candle_low', 'fvg_low', 'fvg_high', 'fvg_gap', 'fvg_mitigated', 'close_delta', 'close_delta_percent', 'up', 'down', 'rsi', 'ema_rsi', 'typical_price', 'money_flow', 'money_flow_positive', 'money_flow_negative', 'positive_flow_sum', 'negative_flow_sum', 'money_flow_ratio', 'mfi', 'macd', 'signal', 'macd_minus_signal', 'fib_618_short_periods', 'fib_618_long_periods', 'gap_close_vs_ema', 'close_above_or_below_ema', 'close_vs_ema_inflection']
44
+ expected_columns : List[str] = ['exchange', 'symbol', 'timestamp_ms', 'open', 'high', 'low', 'close', 'volume', 'datetime', 'datetime_utc', 'year', 'month', 'day', 'hour', 'minute', 'dayofweek', 'pct_chg_on_close', 'candle_height', 'candle_height_percent', 'candle_height_percent_rounded', 'is_green', 'pct_change_close', 'sma_short_periods', 'sma_long_periods', 'ema_short_periods', 'ema_long_periods', 'ema_close', 'std', 'std_percent', 'candle_height_percent', 'chop_against_ema', 'ema_volume_short_periods', 'ema_volume_long_periods', 'max_short_periods', 'max_long_periods', 'idmax_short_periods', 'idmax_long_periods', 'min_short_periods', 'min_long_periods', 'idmin_short_periods', 'idmin_long_periods', 'h_l', 'h_pc', 'l_pc', 'tr', 'atr', 'hurst_exp', 'boillenger_upper', 'boillenger_lower', 'boillenger_channel_height', 'boillenger_upper_agg', 'boillenger_lower_agg', 'boillenger_channel_height_agg', 'aggressive_up', 'aggressive_up_index', 'aggressive_up_candle_height', 'aggressive_up_candle_high', 'aggressive_up_candle_low', 'aggressive_down', 'aggressive_down_index', 'aggressive_down_candle_height', 'aggressive_down_candle_high', 'aggressive_down_candle_low', 'fvg_low', 'fvg_high', 'fvg_gap', 'fvg_mitigated', 'close_delta', 'close_delta_percent', 'up', 'down', 'rsi', 'ema_rsi', 'typical_price', 'money_flow', 'money_flow_positive', 'money_flow_negative', 'positive_flow_sum', 'negative_flow_sum', 'money_flow_ratio', 'mfi', 'macd', 'signal', 'macd_minus_signal', 'fib_618_short_periods', 'fib_618_long_periods', 'gap_close_vs_ema', 'close_above_or_below_ema', 'close_vs_ema_inflection']
45
45
  assert(pd_candles.columns.to_list()==expected_columns)
@@ -94,8 +94,10 @@ def compute_candles_stats(
94
94
  pd_candles['ema_close'] = pd_candles['ema_long_periods'] # Alias, shorter name
95
95
  pd_candles['std'] = pd_candles['close'].rolling(window=sliding_window_how_many_candles).std()
96
96
 
97
+ pd_candles['std_percent'] = pd_candles['std'] / pd_candles['ema_close'] * 100
97
98
  pd_candles['candle_height_percent'] = pd_candles['candle_height'] / pd_candles['ema_close'] * 100
98
-
99
+ pd_candles['candle_height_percent_rounded'] = pd_candles['candle_height_percent'].round().astype(int)
100
+
99
101
  pd_candles['chop_against_ema'] = (
100
102
  (pd_candles['is_green'] & (pd_candles['close'] > pd_candles['ema_close'])) | # Case 1: Green candle and close > EMA
101
103
  (~pd_candles['is_green'] & (pd_candles['close'] < pd_candles['ema_close'])) # Case 2: Red candle and close < EMA
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: siglab-py
3
- Version: 0.1.26
3
+ Version: 0.1.28
4
4
  Summary: Market data fetches, TA calculations and generic order gateway.
5
5
  Author: r0bbarh00d
6
6
  Author-email: r0bbarh00d <r0bbarh00d@gmail.com>
@@ -7,9 +7,9 @@ siglab_py/market_data_providers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm
7
7
  siglab_py/market_data_providers/aggregated_orderbook_provider.py,sha256=FZRobEBNRzcNGlOG3u38OVhmOZYlkNm8dVvR-S7Ii2g,23342
8
8
  siglab_py/market_data_providers/candles_provider.py,sha256=fqHJjlECsBiBlpgyywrc4gTgxiROPNzZM8KxQBB5cOg,14139
9
9
  siglab_py/market_data_providers/candles_ta_provider.py,sha256=uiAhbEZZdTF-YulBHpSLwabos5LHCKU91NTiTmpUc0w,12001
10
- siglab_py/market_data_providers/ccxt_candles_ta_to_csv.py,sha256=gwuMhzHAPigU_ifGSNrgWlyNfnMuYKoDj3UrnyE_z6s,10083
10
+ siglab_py/market_data_providers/ccxt_candles_ta_to_csv.py,sha256=8-cKcZXFBHLX_-KmPXBKv1QNqJYUdDp6iqa1miVlpF8,11139
11
11
  siglab_py/market_data_providers/deribit_options_expiry_provider.py,sha256=e9Ee8TmC8pXaid8-jouSLKIpuW6_JBBgwRTieI665yQ,8684
12
- siglab_py/market_data_providers/futu_candles_ta_to_csv.py,sha256=6aQfZ_wx7lXo6mfw_Hrsh6OXCscptjZlkdFq-DMEWj0,9170
12
+ siglab_py/market_data_providers/futu_candles_ta_to_csv.py,sha256=S4GXaJ7AveEh-Cm9-VhENBdlj_1CfyBTrQO7acTqfUE,10226
13
13
  siglab_py/market_data_providers/orderbooks_provider.py,sha256=olt-3LIkoyzQWfNNQRhJtKibLbkTutt_q_rCCTM7i1g,16216
14
14
  siglab_py/market_data_providers/test_provider.py,sha256=wBLCgcWjs7FGZJXWsNyn30lkOLa_cgpuvqRakMC0wbA,2221
15
15
  siglab_py/ordergateway/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -21,14 +21,14 @@ siglab_py/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
21
21
  siglab_py/tests/integration/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
22
22
  siglab_py/tests/integration/market_data_util_tests.py,sha256=X0CiSMDfsafKcmjVKknA03vUUbMV0fAZweb3D01ikYI,7174
23
23
  siglab_py/tests/unit/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
24
- siglab_py/tests/unit/analytic_util_tests.py,sha256=MngApZxdVw06RS1MkPIABbqCexFgysvgL5zDT3cuoMg,3006
24
+ siglab_py/tests/unit/analytic_util_tests.py,sha256=u_buJqkvgLtrnauY2TAakNYvbSzLt_P41TMf9CjDZEg,3079
25
25
  siglab_py/tests/unit/market_data_util_tests.py,sha256=A1y83itISmMJdn6wLpfwcr4tGola8wTf1D1xbelMvgw,2026
26
26
  siglab_py/util/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
27
- siglab_py/util/analytic_util.py,sha256=R-1KMmJmeiiSQ-R9Z1scR92hUQaqv1vAQyA7KQ7Sd4c,43856
27
+ siglab_py/util/analytic_util.py,sha256=K5YYfvNR5xHjIPUEDJ9c9L9yzolOI2KEYCh6GngtSdk,44042
28
28
  siglab_py/util/aws_util.py,sha256=KGmjHrr1rpnnxr33nXHNzTul4tvyyxl9p6gpwNv0Ygc,2557
29
29
  siglab_py/util/market_data_util.py,sha256=qRKsFKZMYsaC18ImSWug6dRAOo2_GS1NZM-j0EYMViE,19319
30
30
  siglab_py/util/retry_util.py,sha256=mxYuRFZRZoaQQjENcwPmxhxixtd1TFvbxIdPx4RwfRc,743
31
- siglab_py-0.1.26.dist-info/METADATA,sha256=Ek5o1XC8czL8Xt-ZpqaLthFfc6xCh2zU8U_qp7sUhi4,980
32
- siglab_py-0.1.26.dist-info/WHEEL,sha256=yQN5g4mg4AybRjkgi-9yy4iQEFibGQmlz78Pik5Or-A,92
33
- siglab_py-0.1.26.dist-info/top_level.txt,sha256=AbD4VR9OqmMOGlMJLkAVPGQMtUPIQv0t1BF5xmcLJSk,10
34
- siglab_py-0.1.26.dist-info/RECORD,,
31
+ siglab_py-0.1.28.dist-info/METADATA,sha256=XJXGwxTeP6GI6pNwFI8cxH-xEgPzFMncFAyUKR9hrX8,980
32
+ siglab_py-0.1.28.dist-info/WHEEL,sha256=yQN5g4mg4AybRjkgi-9yy4iQEFibGQmlz78Pik5Or-A,92
33
+ siglab_py-0.1.28.dist-info/top_level.txt,sha256=AbD4VR9OqmMOGlMJLkAVPGQMtUPIQv0t1BF5xmcLJSk,10
34
+ siglab_py-0.1.28.dist-info/RECORD,,