sigdetect 0.5.1__py3-none-any.whl → 0.5.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sigdetect/cropping.py +237 -2
- sigdetect/wet_detection.py +48 -14
- {sigdetect-0.5.1.dist-info → sigdetect-0.5.2.dist-info}/METADATA +1 -1
- {sigdetect-0.5.1.dist-info → sigdetect-0.5.2.dist-info}/RECORD +7 -7
- {sigdetect-0.5.1.dist-info → sigdetect-0.5.2.dist-info}/WHEEL +0 -0
- {sigdetect-0.5.1.dist-info → sigdetect-0.5.2.dist-info}/entry_points.txt +0 -0
- {sigdetect-0.5.1.dist-info → sigdetect-0.5.2.dist-info}/top_level.txt +0 -0
sigdetect/cropping.py
CHANGED
|
@@ -9,6 +9,8 @@ from dataclasses import dataclass
|
|
|
9
9
|
from pathlib import Path
|
|
10
10
|
from typing import Literal, overload
|
|
11
11
|
|
|
12
|
+
from PIL import Image
|
|
13
|
+
|
|
12
14
|
from .detector.file_result_model import FileResult
|
|
13
15
|
from .detector.signature_model import Signature
|
|
14
16
|
|
|
@@ -53,6 +55,7 @@ def crop_signatures(
|
|
|
53
55
|
return_bytes: Literal[False] = False,
|
|
54
56
|
save_files: bool = True,
|
|
55
57
|
docx: bool = False,
|
|
58
|
+
trim: bool = True,
|
|
56
59
|
) -> list[Path]: ...
|
|
57
60
|
|
|
58
61
|
|
|
@@ -67,6 +70,7 @@ def crop_signatures(
|
|
|
67
70
|
return_bytes: Literal[True],
|
|
68
71
|
save_files: bool = True,
|
|
69
72
|
docx: bool = False,
|
|
73
|
+
trim: bool = True,
|
|
70
74
|
) -> list[SignatureCrop]: ...
|
|
71
75
|
|
|
72
76
|
|
|
@@ -80,6 +84,7 @@ def crop_signatures(
|
|
|
80
84
|
return_bytes: bool = False,
|
|
81
85
|
save_files: bool = True,
|
|
82
86
|
docx: bool = False,
|
|
87
|
+
trim: bool = True,
|
|
83
88
|
) -> list[Path] | list[SignatureCrop]:
|
|
84
89
|
"""Render each signature bounding box to a PNG image and optionally wrap it in DOCX.
|
|
85
90
|
|
|
@@ -87,6 +92,7 @@ def crop_signatures(
|
|
|
87
92
|
the files to ``output_dir``. Set ``save_files=False`` to skip writing PNGs to disk.
|
|
88
93
|
When ``docx=True``, DOCX files are written instead of PNGs. When ``return_bytes`` is True
|
|
89
94
|
and ``docx=True``, ``SignatureCrop.docx_bytes`` will contain the DOCX payload.
|
|
95
|
+
When ``trim`` is enabled, the crop is tightened around the detected ink where possible.
|
|
90
96
|
"""
|
|
91
97
|
|
|
92
98
|
if fitz is None: # pragma: no cover - exercised when dependency absent
|
|
@@ -145,10 +151,12 @@ def crop_signatures(
|
|
|
145
151
|
try:
|
|
146
152
|
image_bytes: bytes | None = None
|
|
147
153
|
pixmap = page.get_pixmap(matrix=matrix, clip=clip, alpha=False)
|
|
154
|
+
raw_bytes = pixmap.tobytes("png")
|
|
155
|
+
final_bytes = _trim_signature_image_bytes(raw_bytes) if trim else raw_bytes
|
|
148
156
|
if save_files and not docx_enabled:
|
|
149
|
-
|
|
157
|
+
png_destination.write_bytes(final_bytes)
|
|
150
158
|
if return_bytes or docx_enabled:
|
|
151
|
-
image_bytes =
|
|
159
|
+
image_bytes = final_bytes
|
|
152
160
|
except Exception as exc: # pragma: no cover - defensive
|
|
153
161
|
if logger:
|
|
154
162
|
logger.warning(
|
|
@@ -221,6 +229,233 @@ def _build_docx_bytes(image_bytes: bytes) -> bytes:
|
|
|
221
229
|
return buffer.getvalue()
|
|
222
230
|
|
|
223
231
|
|
|
232
|
+
def _trim_signature_image_bytes(
|
|
233
|
+
image_bytes: bytes,
|
|
234
|
+
*,
|
|
235
|
+
pad_px: int = 4,
|
|
236
|
+
gap_px: int = 4,
|
|
237
|
+
min_density_ratio: float = 0.004,
|
|
238
|
+
) -> bytes:
|
|
239
|
+
image = Image.open(io.BytesIO(image_bytes))
|
|
240
|
+
gray = image.convert("L")
|
|
241
|
+
width, height = gray.size
|
|
242
|
+
|
|
243
|
+
histogram = gray.histogram()
|
|
244
|
+
total_pixels = width * height
|
|
245
|
+
cutoff = int(total_pixels * 0.995)
|
|
246
|
+
cumulative = 0
|
|
247
|
+
white_level = 255
|
|
248
|
+
for idx, count in enumerate(histogram):
|
|
249
|
+
cumulative += count
|
|
250
|
+
if cumulative >= cutoff:
|
|
251
|
+
white_level = idx
|
|
252
|
+
break
|
|
253
|
+
|
|
254
|
+
if white_level < 200:
|
|
255
|
+
return image_bytes
|
|
256
|
+
|
|
257
|
+
thresholds = [min(254, max(200, white_level - delta)) for delta in (6, 4, 2, 1, 0)]
|
|
258
|
+
min_density = max(2, int(width * min_density_ratio))
|
|
259
|
+
pixels = gray.load()
|
|
260
|
+
|
|
261
|
+
row_densities: dict[int, list[int]] = {}
|
|
262
|
+
for threshold in thresholds:
|
|
263
|
+
row_density = []
|
|
264
|
+
for y in range(height):
|
|
265
|
+
dark = sum(1 for x in range(width) if pixels[x, y] < threshold)
|
|
266
|
+
row_density.append(dark)
|
|
267
|
+
row_densities[threshold] = row_density
|
|
268
|
+
|
|
269
|
+
line_bounds = _detect_horizontal_rule_cutoff(row_densities[thresholds[-1]], width)
|
|
270
|
+
scan_limit = None
|
|
271
|
+
descender_limit = height - 1
|
|
272
|
+
if line_bounds is not None:
|
|
273
|
+
line_start, line_end = line_bounds
|
|
274
|
+
scan_limit = max(0, line_start - 1)
|
|
275
|
+
descender_limit = min(height - 1, line_end + max(2, int(height * 0.02)))
|
|
276
|
+
|
|
277
|
+
min_band_height = max(4, int(height * 0.02))
|
|
278
|
+
best = None
|
|
279
|
+
best_small = None
|
|
280
|
+
best_small_threshold = None
|
|
281
|
+
best_threshold = None
|
|
282
|
+
line_threshold = int(width * 0.6)
|
|
283
|
+
for threshold in thresholds:
|
|
284
|
+
row_density = row_densities[threshold]
|
|
285
|
+
segments: list[tuple[int, int]] = []
|
|
286
|
+
start: int | None = None
|
|
287
|
+
for y, dark in enumerate(row_density):
|
|
288
|
+
if scan_limit is not None and y > scan_limit:
|
|
289
|
+
if start is not None:
|
|
290
|
+
segments.append((start, y - 1))
|
|
291
|
+
start = None
|
|
292
|
+
break
|
|
293
|
+
if dark >= min_density:
|
|
294
|
+
if start is None:
|
|
295
|
+
start = y
|
|
296
|
+
else:
|
|
297
|
+
if start is not None:
|
|
298
|
+
segments.append((start, y - 1))
|
|
299
|
+
start = None
|
|
300
|
+
if start is not None:
|
|
301
|
+
segments.append((start, height - 1))
|
|
302
|
+
|
|
303
|
+
if not segments:
|
|
304
|
+
continue
|
|
305
|
+
|
|
306
|
+
merged: list[list[int]] = []
|
|
307
|
+
for seg in segments:
|
|
308
|
+
if not merged:
|
|
309
|
+
merged.append([seg[0], seg[1]])
|
|
310
|
+
continue
|
|
311
|
+
if seg[0] - merged[-1][1] <= gap_px:
|
|
312
|
+
merged[-1][1] = seg[1]
|
|
313
|
+
else:
|
|
314
|
+
merged.append([seg[0], seg[1]])
|
|
315
|
+
|
|
316
|
+
candidates = []
|
|
317
|
+
for y0, y1 in merged:
|
|
318
|
+
min_x, max_x = width, -1
|
|
319
|
+
total_dark = 0
|
|
320
|
+
for y in range(y0, y1 + 1):
|
|
321
|
+
for x in range(width):
|
|
322
|
+
if pixels[x, y] < threshold:
|
|
323
|
+
total_dark += 1
|
|
324
|
+
if x < min_x:
|
|
325
|
+
min_x = x
|
|
326
|
+
if x > max_x:
|
|
327
|
+
max_x = x
|
|
328
|
+
if max_x < 0:
|
|
329
|
+
continue
|
|
330
|
+
band_height = y1 - y0 + 1
|
|
331
|
+
band_width = max_x - min_x + 1
|
|
332
|
+
score = total_dark * (band_height**1.3)
|
|
333
|
+
if line_bounds is not None:
|
|
334
|
+
distance = max(0, line_bounds[0] - y1)
|
|
335
|
+
proximity = 1.0 / (1.0 + (distance / 20.0))
|
|
336
|
+
score *= 1.0 + 0.5 * proximity
|
|
337
|
+
candidates.append(
|
|
338
|
+
{
|
|
339
|
+
"y0": y0,
|
|
340
|
+
"y1": y1,
|
|
341
|
+
"min_x": min_x,
|
|
342
|
+
"max_x": max_x,
|
|
343
|
+
"total": total_dark,
|
|
344
|
+
"height": band_height,
|
|
345
|
+
"width": band_width,
|
|
346
|
+
"score": score,
|
|
347
|
+
}
|
|
348
|
+
)
|
|
349
|
+
|
|
350
|
+
if not candidates:
|
|
351
|
+
continue
|
|
352
|
+
|
|
353
|
+
candidates.sort(key=lambda item: item["score"], reverse=True)
|
|
354
|
+
top_candidate = candidates[0]
|
|
355
|
+
if top_candidate["height"] >= min_band_height:
|
|
356
|
+
if best is None or top_candidate["score"] > best["score"]:
|
|
357
|
+
best = top_candidate
|
|
358
|
+
best_threshold = threshold
|
|
359
|
+
else:
|
|
360
|
+
if best_small is None or top_candidate["score"] > best_small["score"]:
|
|
361
|
+
best_small = top_candidate
|
|
362
|
+
best_small_threshold = threshold
|
|
363
|
+
|
|
364
|
+
if best is None:
|
|
365
|
+
best = best_small
|
|
366
|
+
best_threshold = best_small_threshold
|
|
367
|
+
|
|
368
|
+
if best is None:
|
|
369
|
+
return image_bytes
|
|
370
|
+
|
|
371
|
+
expansion_density = row_densities.get(best_threshold, row_densities[thresholds[-1]])
|
|
372
|
+
expand_threshold = max(1, int(min_density * 0.4))
|
|
373
|
+
y0 = best["y0"]
|
|
374
|
+
y1 = best["y1"]
|
|
375
|
+
|
|
376
|
+
while y0 > 0 and expansion_density[y0 - 1] >= expand_threshold:
|
|
377
|
+
y0 -= 1
|
|
378
|
+
while y1 < descender_limit and expansion_density[y1 + 1] >= expand_threshold:
|
|
379
|
+
y1 += 1
|
|
380
|
+
|
|
381
|
+
min_x, max_x = width, -1
|
|
382
|
+
for y in range(y0, y1 + 1):
|
|
383
|
+
if expansion_density[y] >= line_threshold:
|
|
384
|
+
continue
|
|
385
|
+
for x in range(width):
|
|
386
|
+
if pixels[x, y] < thresholds[-1]:
|
|
387
|
+
if x < min_x:
|
|
388
|
+
min_x = x
|
|
389
|
+
if x > max_x:
|
|
390
|
+
max_x = x
|
|
391
|
+
if max_x >= 0:
|
|
392
|
+
best = {
|
|
393
|
+
"y0": y0,
|
|
394
|
+
"y1": y1,
|
|
395
|
+
"min_x": min_x,
|
|
396
|
+
"max_x": max_x,
|
|
397
|
+
}
|
|
398
|
+
|
|
399
|
+
x0 = max(0, best["min_x"] - pad_px)
|
|
400
|
+
x1 = min(width - 1, best["max_x"] + pad_px)
|
|
401
|
+
y0 = max(0, best["y0"] - pad_px)
|
|
402
|
+
y1 = min(height - 1, best["y1"] + pad_px)
|
|
403
|
+
|
|
404
|
+
if x1 <= x0 or y1 <= y0:
|
|
405
|
+
return image_bytes
|
|
406
|
+
if (x1 - x0) < max(10, int(width * 0.2)) or (y1 - y0) < max(6, int(height * 0.08)):
|
|
407
|
+
return image_bytes
|
|
408
|
+
|
|
409
|
+
cropped = image.crop((x0, y0, x1 + 1, y1 + 1))
|
|
410
|
+
buffer = io.BytesIO()
|
|
411
|
+
cropped.save(buffer, format="PNG")
|
|
412
|
+
return buffer.getvalue()
|
|
413
|
+
|
|
414
|
+
|
|
415
|
+
def _detect_horizontal_rule_cutoff(
|
|
416
|
+
row_density: list[int],
|
|
417
|
+
width: int,
|
|
418
|
+
) -> tuple[int, int] | None:
|
|
419
|
+
if not row_density:
|
|
420
|
+
return None
|
|
421
|
+
line_threshold = int(width * 0.6)
|
|
422
|
+
max_thickness = 4
|
|
423
|
+
segments: list[tuple[int, int]] = []
|
|
424
|
+
start = None
|
|
425
|
+
for y, density in enumerate(row_density):
|
|
426
|
+
if density >= line_threshold:
|
|
427
|
+
if start is None:
|
|
428
|
+
start = y
|
|
429
|
+
else:
|
|
430
|
+
if start is not None:
|
|
431
|
+
segments.append((start, y - 1))
|
|
432
|
+
start = None
|
|
433
|
+
if start is not None:
|
|
434
|
+
segments.append((start, len(row_density) - 1))
|
|
435
|
+
|
|
436
|
+
if not segments:
|
|
437
|
+
return None
|
|
438
|
+
|
|
439
|
+
total_dark = sum(row_density)
|
|
440
|
+
if total_dark <= 0:
|
|
441
|
+
return None
|
|
442
|
+
|
|
443
|
+
for y0, y1 in segments:
|
|
444
|
+
thickness = y1 - y0 + 1
|
|
445
|
+
if thickness > max_thickness:
|
|
446
|
+
continue
|
|
447
|
+
above_dark = sum(row_density[:y0])
|
|
448
|
+
below_dark = sum(row_density[y1 + 1 :])
|
|
449
|
+
if above_dark < 40:
|
|
450
|
+
continue
|
|
451
|
+
midpoint_ratio = ((y0 + y1) / 2.0) / max(1, len(row_density))
|
|
452
|
+
if midpoint_ratio >= 0.35:
|
|
453
|
+
return (y0, y1)
|
|
454
|
+
if above_dark >= max(40, int(below_dark * 0.3)):
|
|
455
|
+
return (y0, y1)
|
|
456
|
+
return None
|
|
457
|
+
|
|
458
|
+
|
|
224
459
|
def _to_clip_rect(page, bbox: tuple[float, float, float, float]):
|
|
225
460
|
width = float(page.rect.width)
|
|
226
461
|
height = float(page.rect.height)
|
sigdetect/wet_detection.py
CHANGED
|
@@ -94,6 +94,17 @@ def apply_wet_detection(
|
|
|
94
94
|
original_mixed = file_result.MixedContent
|
|
95
95
|
try:
|
|
96
96
|
added = _detect(pdf_path, configuration, file_result, logger=logger)
|
|
97
|
+
if added and configuration.Profile == "hipaa":
|
|
98
|
+
updated = False
|
|
99
|
+
for signature in file_result.Signatures:
|
|
100
|
+
if signature.RenderType == "wet" and (signature.Role or "unknown") == "unknown":
|
|
101
|
+
signature.Role = "patient"
|
|
102
|
+
signature.Scores = {"patient": int(signature.Score or 0)}
|
|
103
|
+
signature.Evidence = list(signature.Evidence or [])
|
|
104
|
+
signature.Evidence.append("role_default:patient")
|
|
105
|
+
updated = True
|
|
106
|
+
if updated:
|
|
107
|
+
_refresh_metadata(file_result)
|
|
97
108
|
if not added:
|
|
98
109
|
_mark_manual_review(file_result, "NoHighConfidenceWetSignature")
|
|
99
110
|
return added
|
|
@@ -136,6 +147,18 @@ def _detect(
|
|
|
136
147
|
scale=configuration.WetOcrDpi / 72.0,
|
|
137
148
|
)
|
|
138
149
|
)
|
|
150
|
+
if not candidates:
|
|
151
|
+
candidates = list(
|
|
152
|
+
_build_candidates(
|
|
153
|
+
ocr_lines,
|
|
154
|
+
image=image,
|
|
155
|
+
page_rect=page.rect,
|
|
156
|
+
pix_width=pixmap.width,
|
|
157
|
+
pix_height=pixmap.height,
|
|
158
|
+
scale=configuration.WetOcrDpi / 72.0,
|
|
159
|
+
min_y_ratio=0.2,
|
|
160
|
+
)
|
|
161
|
+
)
|
|
139
162
|
candidates.extend(_image_candidates(page))
|
|
140
163
|
candidates = _filter_candidates_for_page(candidates)
|
|
141
164
|
accepted = [
|
|
@@ -247,6 +270,7 @@ def _build_candidates(
|
|
|
247
270
|
pix_width: int,
|
|
248
271
|
pix_height: int,
|
|
249
272
|
scale: float,
|
|
273
|
+
min_y_ratio: float = 0.4,
|
|
250
274
|
) -> Iterable[WetCandidate]:
|
|
251
275
|
for line in lines:
|
|
252
276
|
normalized = line.text.lower()
|
|
@@ -255,7 +279,7 @@ def _build_candidates(
|
|
|
255
279
|
if len(normalized) > 80:
|
|
256
280
|
# Ignore long paragraph-like OCR lines
|
|
257
281
|
continue
|
|
258
|
-
if (line.bottom / pix_height) <
|
|
282
|
+
if (line.bottom / pix_height) < min_y_ratio:
|
|
259
283
|
# Ignore lines in the upper section of the page
|
|
260
284
|
continue
|
|
261
285
|
role = _infer_role(normalized)
|
|
@@ -338,28 +362,33 @@ def _expand_bbox(
|
|
|
338
362
|
) -> tuple[float, float, float, float]:
|
|
339
363
|
x0 = line.left / scale
|
|
340
364
|
x1 = line.right / scale
|
|
341
|
-
|
|
365
|
+
y_top = (pix_height - line.top) / scale
|
|
366
|
+
y_bottom = (pix_height - line.bottom) / scale
|
|
342
367
|
|
|
343
368
|
pad_x = max(14.0, (x1 - x0) * 0.25)
|
|
344
369
|
left = max(page_rect.x0, x0 - pad_x)
|
|
345
370
|
right = min(page_rect.x1, x1 + pad_x)
|
|
346
371
|
|
|
347
372
|
gap = 14.0
|
|
348
|
-
|
|
349
|
-
|
|
350
|
-
|
|
351
|
-
|
|
352
|
-
|
|
353
|
-
bottom = min(page_rect.y1, top + signature_height)
|
|
373
|
+
line_height = max(1.0, (line.bottom - line.top) / scale)
|
|
374
|
+
signature_height = max(70.0, line_height * 6.0)
|
|
375
|
+
upper = min(page_rect.y1, y_bottom - gap)
|
|
376
|
+
upper = max(page_rect.y0, upper)
|
|
377
|
+
lower = max(page_rect.y0, upper - signature_height)
|
|
354
378
|
|
|
355
379
|
if stroke_y is not None:
|
|
356
|
-
# Anchor to the detected stroke
|
|
380
|
+
# Anchor to the detected stroke (signature line) beneath the label.
|
|
357
381
|
sy = (pix_height - stroke_y) / scale
|
|
358
|
-
|
|
359
|
-
|
|
360
|
-
|
|
382
|
+
field_lower = min(page_rect.y1, max(page_rect.y0, sy + 2.0))
|
|
383
|
+
field_upper = min(page_rect.y1, y_bottom - gap)
|
|
384
|
+
if field_upper > field_lower + 6.0:
|
|
385
|
+
lower = field_lower
|
|
386
|
+
upper = field_upper
|
|
387
|
+
else:
|
|
388
|
+
upper = min(page_rect.y1, field_lower + signature_height)
|
|
389
|
+
lower = max(page_rect.y0, upper - signature_height)
|
|
361
390
|
|
|
362
|
-
return (float(left), float(
|
|
391
|
+
return (float(left), float(lower), float(right), float(upper))
|
|
363
392
|
|
|
364
393
|
|
|
365
394
|
def _stroke_under_line(image: Image.Image, line: OcrLine) -> tuple[bool, float | None]:
|
|
@@ -513,14 +542,19 @@ def _signature_rank(signature: Signature) -> tuple[int, int, int]:
|
|
|
513
542
|
|
|
514
543
|
def _dedupe_wet_signatures(signatures: Sequence[Signature]) -> list[Signature]:
|
|
515
544
|
best_by_role: dict[str, Signature] = {}
|
|
545
|
+
best_unknown: Signature | None = None
|
|
516
546
|
for signature in signatures:
|
|
517
547
|
role = (signature.Role or "unknown").strip().lower()
|
|
518
548
|
if role == "unknown":
|
|
549
|
+
if best_unknown is None or _signature_rank(signature) > _signature_rank(best_unknown):
|
|
550
|
+
best_unknown = signature
|
|
519
551
|
continue
|
|
520
552
|
existing = best_by_role.get(role)
|
|
521
553
|
if existing is None or _signature_rank(signature) > _signature_rank(existing):
|
|
522
554
|
best_by_role[role] = signature
|
|
523
|
-
|
|
555
|
+
if best_by_role:
|
|
556
|
+
return sorted(best_by_role.values(), key=lambda sig: (int(sig.Page or 0), sig.Role or ""))
|
|
557
|
+
return [best_unknown] if best_unknown is not None else []
|
|
524
558
|
|
|
525
559
|
|
|
526
560
|
def _mark_manual_review(file_result: FileResult, reason: str) -> None:
|
|
@@ -2,11 +2,11 @@ sigdetect/__init__.py,sha256=YvnTwlC1jfq83EhQS_1JjiiHK7_wJCCU1JvHv5E1qWY,573
|
|
|
2
2
|
sigdetect/api.py,sha256=hDfa6z4SoHth1Dw9HDfSPiytMQrqu_oyBZlXBwSh9g4,11010
|
|
3
3
|
sigdetect/cli.py,sha256=X5GqZ-PK67vz4OHN5r7h-V0hO886ZblUiUdKDuFowtU,10930
|
|
4
4
|
sigdetect/config.py,sha256=3SP1rkcWBGXloCDFomBJRMRKZOvXuHQbhIBqpVrzYmY,8365
|
|
5
|
-
sigdetect/cropping.py,sha256=
|
|
5
|
+
sigdetect/cropping.py,sha256=IyiBfIEHBLvOv8t_d-O51BfpljTFpE-dG_RxDxJAzAo,16339
|
|
6
6
|
sigdetect/eda.py,sha256=S92G1Gjmepri__D0n_V6foq0lQgH-RXI9anW8A58jfw,4681
|
|
7
7
|
sigdetect/logging_setup.py,sha256=LMF8ao_a-JwH0S522T6aYTFX3e8Ajjv_5ODS2YiBcHA,6404
|
|
8
8
|
sigdetect/utils.py,sha256=T9rubLf5T9JmjOHYMOba1j34fhOJaWocAXccnGTxRUE,5198
|
|
9
|
-
sigdetect/wet_detection.py,sha256=
|
|
9
|
+
sigdetect/wet_detection.py,sha256=ofKijykm4fKrvFaVkEkPPKL9iKeRNvlAiKkD2vHxD8k,20025
|
|
10
10
|
sigdetect/data/role_rules.retainer.yml,sha256=IFdwKnDBXR2cTkdfrsZ6ku6CXD8S_dg5A3vKRKLW5h8,2532
|
|
11
11
|
sigdetect/data/role_rules.yml,sha256=HuLKsZR_A6sD9XvY4NHiY_VG3dS5ERNCBF9-Mxawomw,2751
|
|
12
12
|
sigdetect/data/vendor_patterns.yml,sha256=NRbZNQxcx_GuL6n1jAphBn6MM6ChCpeWGCsjbRx-PEo,384
|
|
@@ -17,8 +17,8 @@ sigdetect/detector/file_result_model.py,sha256=j2gTc9Sw3fJOHlexYsR_m5DiwHA8DzIzA
|
|
|
17
17
|
sigdetect/detector/pymupdf_engine.py,sha256=N6oxvUa-48VvvhjbMk0R0kfScsggNKS7u5FLSeBRfWw,17358
|
|
18
18
|
sigdetect/detector/pypdf2_engine.py,sha256=kB8cIp_gMvCla0LIBi9sd19g0361Oc9TjCW_ZViUBJQ,47410
|
|
19
19
|
sigdetect/detector/signature_model.py,sha256=T2Hmfkfz_hZsDzwOhepxfNmkedxQp3_XHdrP8yGKoCk,1322
|
|
20
|
-
sigdetect-0.5.
|
|
21
|
-
sigdetect-0.5.
|
|
22
|
-
sigdetect-0.5.
|
|
23
|
-
sigdetect-0.5.
|
|
24
|
-
sigdetect-0.5.
|
|
20
|
+
sigdetect-0.5.2.dist-info/METADATA,sha256=jLin7USVPqeA5tS7KCuPRRt1PLwdt-oJWhWuKSQa6hE,14131
|
|
21
|
+
sigdetect-0.5.2.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
|
|
22
|
+
sigdetect-0.5.2.dist-info/entry_points.txt,sha256=iqtfKjBU44-omM7Sh-idGz2ahw19oAvpvSyKZVArG3o,48
|
|
23
|
+
sigdetect-0.5.2.dist-info/top_level.txt,sha256=PKlfwUobkRC0viwiSXmhtw83G26FSNpimWYC1Uy00FY,10
|
|
24
|
+
sigdetect-0.5.2.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|