sibi-dst 2025.8.6__py3-none-any.whl → 2025.8.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,232 @@
1
+ from __future__ import annotations
2
+
3
+ import asyncio
4
+
5
+ import pandas as pd
6
+ import dask.dataframe as dd
7
+ from typing import Iterable, Optional, List, Tuple, Union
8
+ import fsspec
9
+
10
+ DNFFilter = List[List[Tuple[str, str, Union[str, int]]]]
11
+
12
+
13
+ class HiveDatePartitionedStore:
14
+ """
15
+ Dask-only Parquet store with Hive-style yyyy=…/mm=…/dd=… partitions.
16
+
17
+ - `write(...)` safely "overwrites" S3 prefixes via per-object deletes (no bulk DeleteObjects).
18
+ - `read_range(...)` builds DNF filters and auto-matches partition types (string vs int).
19
+ """
20
+
21
+ def __init__(
22
+ self,
23
+ path: str,
24
+ *,
25
+ filesystem=None, # fsspec filesystem or None to infer from path
26
+ date_col: str = "tracking_dt",
27
+ compression: str = "zstd",
28
+ partition_values_as_strings: bool = True, # keep mm=07, dd=01 folder names
29
+ logger=None,
30
+ ) -> None:
31
+ self.path = path
32
+ self.fs = filesystem or fsspec.open(path).fs
33
+ self.date_col = date_col
34
+ self.compression = compression
35
+ self.partition_values_as_strings = partition_values_as_strings
36
+ self.log = logger
37
+
38
+ # ----------------- public API -----------------
39
+
40
+ def write(
41
+ self,
42
+ df: dd.DataFrame,
43
+ *,
44
+ repartition: Optional[int] = None,
45
+ overwrite: bool = False,
46
+ ) -> None:
47
+ """Write Dask DataFrame to Hive-style yyyy/mm/dd partitions."""
48
+ self._require_col(df, self.date_col)
49
+ ser = dd.to_datetime(df[self.date_col], errors="coerce")
50
+
51
+ if self.partition_values_as_strings:
52
+ parts = {
53
+ "yyyy": ser.dt.strftime("%Y"),
54
+ "mm": ser.dt.strftime("%m"),
55
+ "dd": ser.dt.strftime("%d"),
56
+ }
57
+ else:
58
+ parts = {
59
+ "yyyy": ser.dt.year.astype("int32"),
60
+ "mm": ser.dt.month.astype("int8"),
61
+ "dd": ser.dt.day.astype("int8"),
62
+ }
63
+
64
+ df = df.assign(**{self.date_col: ser}, **parts)
65
+
66
+ if repartition:
67
+ df = df.repartition(npartitions=repartition)
68
+
69
+ if overwrite:
70
+ self._safe_rm_prefix(self.path)
71
+
72
+ if self.log:
73
+ self.log.info(f"Writing parquet to {self.path} (hive yyyy/mm/dd)…")
74
+
75
+ df.to_parquet(
76
+ self.path,
77
+ engine="pyarrow",
78
+ write_index=False,
79
+ filesystem=self.fs,
80
+ partition_on=["yyyy", "mm", "dd"],
81
+ compression=self.compression,
82
+ overwrite=False, # we pre-cleaned if overwrite=True
83
+ )
84
+
85
+ def read_range(
86
+ self,
87
+ start: Union[str, pd.Timestamp],
88
+ end: Union[str, pd.Timestamp],
89
+ *,
90
+ columns: Optional[Iterable[str]] = None,
91
+ ) -> dd.DataFrame:
92
+ """
93
+ Read a date window with partition pruning. Tries string filters first,
94
+ falls back to integer filters if Arrow infers partition types as ints.
95
+ """
96
+ str_filters = self._dnf_filters_for_range_str(start, end)
97
+ try:
98
+ return dd.read_parquet(
99
+ self.path,
100
+ engine="pyarrow",
101
+ filesystem=self.fs,
102
+ columns=list(columns) if columns else None,
103
+ filters=str_filters,
104
+ )
105
+ except Exception:
106
+ int_filters = self._dnf_filters_for_range_int(start, end)
107
+ return dd.read_parquet(
108
+ self.path,
109
+ engine="pyarrow",
110
+ filesystem=self.fs,
111
+ columns=list(columns) if columns else None,
112
+ filters=int_filters,
113
+ )
114
+
115
+ # Convenience: full month / single day
116
+ def read_month(self, year: int, month: int, *, columns=None) -> dd.DataFrame:
117
+ start = pd.Timestamp(year=year, month=month, day=1)
118
+ end = (start + pd.offsets.MonthEnd(0))
119
+ return self.read_range(start, end, columns=columns)
120
+
121
+ def read_day(self, year: int, month: int, day: int, *, columns=None) -> dd.DataFrame:
122
+ ts = pd.Timestamp(year=year, month=month, day=day)
123
+ return self.read_range(ts, ts, columns=columns)
124
+
125
+ # ----------------- internals -----------------
126
+
127
+ @staticmethod
128
+ def _pad2(n: int) -> str:
129
+ return f"{n:02d}"
130
+
131
+ def _safe_rm_prefix(self, path: str) -> None:
132
+ """Per-object delete to avoid S3 bulk DeleteObjects (and Content-MD5 issues)."""
133
+ if not self.fs.exists(path):
134
+ return
135
+ if self.log:
136
+ self.log.info(f"Cleaning prefix (safe delete): {path}")
137
+ for k in self.fs.find(path):
138
+ try:
139
+ (self.fs.rm_file(k) if hasattr(self.fs, "rm_file") else self.fs.rm(k, recursive=False))
140
+ except Exception as e:
141
+ if self.log:
142
+ self.log.warning(f"Could not delete {k}: {e}")
143
+
144
+ @staticmethod
145
+ def _require_col(df: dd.DataFrame, col: str) -> None:
146
+ if col not in df.columns:
147
+ raise KeyError(f"'{col}' not in DataFrame")
148
+
149
+ # ---- DNF builders (string vs int) ----
150
+ def _dnf_filters_for_range_str(self, start, end) -> DNFFilter:
151
+ s, e = pd.Timestamp(start), pd.Timestamp(end)
152
+ if s > e:
153
+ raise ValueError("start > end")
154
+ sY, sM, sD = s.year, s.month, s.day
155
+ eY, eM, eD = e.year, e.month, e.day
156
+ p2 = self._pad2
157
+ if sY == eY and sM == eM:
158
+ return [[("yyyy","==",str(sY)),("mm","==",p2(sM)),("dd",">=",p2(sD)),("dd","<=",p2(eD))]]
159
+ clauses: DNFFilter = [
160
+ [("yyyy","==",str(sY)),("mm","==",p2(sM)),("dd",">=",p2(sD))],
161
+ [("yyyy","==",str(eY)),("mm","==",p2(eM)),("dd","<=",p2(eD))]
162
+ ]
163
+ if sY == eY:
164
+ for m in range(sM+1, eM):
165
+ clauses.append([("yyyy","==",str(sY)),("mm","==",p2(m))])
166
+ return clauses
167
+ for m in range(sM+1, 13):
168
+ clauses.append([("yyyy","==",str(sY)),("mm","==",p2(m))])
169
+ for y in range(sY+1, eY):
170
+ clauses.append([("yyyy","==",str(y))])
171
+ for m in range(1, eM):
172
+ clauses.append([("yyyy","==",str(eY)),("mm","==",p2(m))])
173
+ return clauses
174
+
175
+ @staticmethod
176
+ def _dnf_filters_for_range_int(start, end) -> DNFFilter:
177
+ s, e = pd.Timestamp(start), pd.Timestamp(end)
178
+ if s > e:
179
+ raise ValueError("start > end")
180
+ sY, sM, sD = s.year, s.month, s.day
181
+ eY, eM, eD = e.year, e.month, e.day
182
+ if sY == eY and sM == eM:
183
+ return [[("yyyy","==",sY),("mm","==",sM),("dd",">=",sD),("dd","<=",eD)]]
184
+ clauses: DNFFilter = [
185
+ [("yyyy","==",sY),("mm","==",sM),("dd",">=",sD)],
186
+ [("yyyy","==",eY),("mm","==",eM),("dd","<=",eD)],
187
+ ]
188
+ if sY == eY:
189
+ for m in range(sM+1, eM):
190
+ clauses.append([("yyyy","==",sY),("mm","==",m)])
191
+ return clauses
192
+ for m in range(sM+1, 13):
193
+ clauses.append([("yyyy","==",sY),("mm","==",m)])
194
+ for y in range(sY+1, eY):
195
+ clauses.append([("yyyy","==",y)])
196
+ for m in range(1, eM):
197
+ clauses.append([("yyyy","==",eY),("mm","==",m)])
198
+ return clauses
199
+
200
+ async def write_async(
201
+ self,
202
+ df: dd.DataFrame,
203
+ *,
204
+ repartition: int | None = None,
205
+ overwrite: bool = False,
206
+ timeout: float | None = None,
207
+ ) -> None:
208
+ async def _run():
209
+ return await asyncio.to_thread(self.write, df, repartition=repartition, overwrite=overwrite)
210
+
211
+ return await (asyncio.wait_for(_run(), timeout) if timeout else _run())
212
+
213
+ async def read_range_async(
214
+ self,
215
+ start, end, *, columns: Iterable[str] | None = None, timeout: float | None = None
216
+ ) -> dd.DataFrame:
217
+ async def _run():
218
+ return await asyncio.to_thread(self.read_range, start, end, columns=columns)
219
+
220
+ return await (asyncio.wait_for(_run(), timeout) if timeout else _run())
221
+
222
+ async def read_month_async(self, year: int, month: int, *, columns=None, timeout: float | None = None):
223
+ async def _run():
224
+ return await asyncio.to_thread(self.read_month, year, month, columns=columns)
225
+
226
+ return await (asyncio.wait_for(_run(), timeout) if timeout else _run())
227
+
228
+ async def read_day_async(self, year: int, month: int, day: int, *, columns=None, timeout: float | None = None):
229
+ async def _run():
230
+ return await asyncio.to_thread(self.read_day, year, month, day, columns=columns)
231
+
232
+ return await (asyncio.wait_for(_run(), timeout) if timeout else _run())