sibi-dst 0.3.64__py3-none-any.whl → 2025.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,450 +0,0 @@
1
- import itertools
2
-
3
- import dask.dataframe as dd
4
- import django
5
- import pandas as pd
6
- from django.core.cache import cache
7
- from django.core.exceptions import FieldDoesNotExist
8
- from django.db import models
9
- from django.db.models import Field
10
- from django.utils.encoding import force_str as force_text
11
-
12
-
13
- class ReadFrameDask:
14
- """
15
- Handles Django ORM QuerySet to Dask DataFrame conversion with support for field
16
- type inference, chunked data retrieval, and verbose updates.
17
-
18
- This class provides methods to efficiently convert a Django QuerySet into a
19
- Dask DataFrame while preserving field types and incorporating additional
20
- capabilities such as replacing fields with verbose choices or related object
21
- information. The class design leverages static and class methods to maintain
22
- flexibility and reusability for handling Django model fields and their data
23
- types.
24
-
25
- :ivar qs: The Django QuerySet to be converted into a Dask DataFrame.
26
- :type qs: django.db.models.query.QuerySet
27
- :ivar coerce_float: Whether to attempt to coerce numeric values to floats.
28
- :type coerce_float: bool
29
- :ivar chunk_size: The number of records to fetch and process per chunk from
30
- the QuerySet.
31
- :type chunk_size: int
32
- :ivar verbose: If True, provides verbose updates during DataFrame creation
33
- by replacing fields with readable representations (e.g., verbose names).
34
- :type verbose: bool
35
- """
36
- FieldDoesNotExist = (
37
- django.core.exceptions.FieldDoesNotExist
38
- if django.VERSION < (1, 8)
39
- else django.core.exceptions.FieldDoesNotExist
40
- )
41
-
42
- def __init__(
43
- self,
44
- qs,
45
- **kwargs,
46
- ):
47
- """
48
- An initialization method for a class that sets class attributes based on provided
49
- arguments or default values using the keyword arguments. The method allows
50
- customization of behaviors like coercing data types, handling chunked operations,
51
- and verbosity level during execution.
52
-
53
- :param qs: A data source or query set for processing; its type is dependent
54
- on the expected data being handled.
55
- :param kwargs: Additional keyword arguments that may include:
56
- - coerce_float: A boolean indicating whether floats should be coerced
57
- during handling. Default is False.
58
- - chunk_size: An integer value representing the size of chunks for
59
- data processing. Default is 1000.
60
- - verbose: A boolean to specify if verbose logging or output
61
- should occur during execution. Default is True.
62
- """
63
- self.qs = qs
64
- self.coerce_float = kwargs.setdefault("coerce_float", False)
65
- self.chunk_size = kwargs.setdefault("chunk_size", 1000)
66
- self.verbose = kwargs.setdefault("verbose", True)
67
-
68
- @staticmethod
69
- def replace_from_choices(choices):
70
- """
71
- Provides a method to replace elements in a list of values based on a mapping of choices.
72
-
73
- This static method generates a closure function that replaces items in a list by
74
- looking up their corresponding values in a provided dictionary of choices. If an
75
- item cannot be found in the dictionary, it is left unchanged.
76
-
77
- :param choices:
78
- Dictionary where keys are original values and values are their replacements.
79
- :return:
80
- A function that takes a list of values and replaces elements using the
81
- provided choices dictionary.
82
- """
83
- def inner(values):
84
- return [choices.get(v, v) for v in values]
85
-
86
- return inner
87
-
88
- @staticmethod
89
- def get_model_name(model):
90
- """
91
- Retrieves the model name from a given Django model instance.
92
-
93
- This method accesses the `_meta.model_name` attribute of the provided
94
- model object to extract and return the model's name.
95
-
96
- :param model: A Django model instance from which the model name is
97
- derived.
98
- :type model: object
99
- :return: The name of the model as a string.
100
- :rtype: str
101
- """
102
- return model._meta.model_name
103
-
104
- @staticmethod
105
- def get_related_model(field):
106
- """
107
- Retrieve the related model from the provided field.
108
-
109
- This function determines the related model associated with the given field.
110
- It checks various attributes commonly used to indicate relations in models and
111
- retrieves the related model if present.
112
-
113
- :param field: The field from which the related model is to be extracted.
114
- It must be an object that potentially contains attributes like
115
- `related_model` or `rel`.
116
- :return: The related model associated with the provided field, or None if
117
- no such model is found.
118
- """
119
- model = None
120
- if hasattr(field, "related_model") and field.related_model:
121
- model = field.related_model
122
- elif hasattr(field, "rel") and field.rel:
123
- model = field.rel.to
124
- return model
125
-
126
- @classmethod
127
- def get_base_cache_key(cls, model):
128
- """
129
- Generates a base cache key for caching purposes.
130
-
131
- This method constructs a base cache key that can be used in conjunction with
132
- Django models to uniquely identify cache entries. The key is formatted to
133
- include the app label and model name, ensuring that cache entries are
134
- namespaced accordingly.
135
-
136
- :param model: A Django model instance for which the base cache key is generated.
137
- :type model: Model
138
- :return: The string template for the base cache key, where `%s` can be replaced
139
- with specific identifiers to create unique keys.
140
- :rtype: str
141
- """
142
- return (
143
- f"dask_{model._meta.app_label}_{cls.get_model_name(model)}_%s_rendering"
144
- )
145
-
146
- @classmethod
147
- def replace_pk(cls, model):
148
- """
149
- Generates a function that replaces primary keys in a pandas Series with their
150
- corresponding cached values or database-retrieved representations.
151
-
152
- The function uses a cache mechanism to retrieve pre-stored values for primary
153
- keys in the series. If some primary keys are not found in the cache, it queries
154
- the database for their representations, updates the cache, and replaces the
155
- primary keys in the series accordingly.
156
-
157
- :param model: The Django model class associated with the primary keys to be
158
- processed.
159
- :type model: Type[Model]
160
-
161
- :return: A function that takes a pandas Series of primary keys as input and
162
- returns a Series with replaced values based on cache or database retrieval.
163
- :rtype: callable
164
- """
165
- base_cache_key = cls.get_base_cache_key(model)
166
-
167
- def get_cache_key_from_pk(pk):
168
- return None if pk is None else base_cache_key % str(pk)
169
-
170
- def inner(pk_series):
171
- pk_series = pk_series.astype(object).where(pk_series.notnull(), None)
172
- cache_keys = pk_series.apply(get_cache_key_from_pk, convert_dtype=False)
173
- unique_cache_keys = list(filter(None, cache_keys.unique()))
174
- if not unique_cache_keys:
175
- return pk_series
176
-
177
- out_dict = cache.get_many(unique_cache_keys)
178
- if len(out_dict) < len(unique_cache_keys):
179
- out_dict = dict(
180
- [
181
- (base_cache_key % obj.pk, force_text(obj))
182
- for obj in model.objects.filter(
183
- pk__in=list(filter(None, pk_series.unique()))
184
- )
185
- ]
186
- )
187
- cache.set_many(out_dict)
188
- return list(map(out_dict.get, cache_keys))
189
-
190
- return inner
191
-
192
- @classmethod
193
- def build_update_functions(cls, fieldnames, fields):
194
- """
195
- This method is responsible for building update functions based on the provided
196
- fieldnames and fields. It performs validation for the field type, checks for
197
- specific conditions such as `choices` or `ForeignKey` field types, and generates
198
- a generator of update functions for the given fieldnames and fields.
199
-
200
- :param fieldnames: A list of field names to be processed.
201
- :type fieldnames: list[str]
202
- :param fields: A list of field objects corresponding to the fieldnames.
203
- :type fields: list[Field]
204
- :return: A generator yielding tuples where the first element is a fieldname,
205
- and the second element is the corresponding update function or None.
206
- :rtype: generator[tuple[str, Callable | None]]
207
- """
208
- for fieldname, field in zip(fieldnames, fields):
209
- if not isinstance(field, Field):
210
- yield fieldname, None
211
- else:
212
- if field.choices:
213
- choices = dict([(k, force_text(v)) for k, v in field.flatchoices])
214
- yield fieldname, cls.replace_from_choices(choices)
215
- elif field.get_internal_type() == "ForeignKey":
216
- yield fieldname, cls.replace_pk(cls.get_related_model(field))
217
-
218
- @classmethod
219
- def update_with_verbose(cls, df, fieldnames, fields):
220
- """
221
- Updates the provided dataframe by applying transformation functions to specified fields.
222
- The method iterates over the provided field names and their corresponding functions, applying
223
- each transformation function to its related column in the dataframe.
224
-
225
- :param df: The input dataframe to be updated.
226
- :param fieldnames: A list of field names in the dataframe that need to be updated.
227
- :param fields: A list of transformation functions or mappings corresponding to the field names.
228
- :return: The dataframe with updated fields.
229
- """
230
- for fieldname, function in cls.build_update_functions(fieldnames, fields):
231
- if function is not None:
232
- df[fieldname] = df[fieldname].map_partitions(lambda x: function(x))
233
-
234
- @classmethod
235
- def to_fields(cls, qs, fieldnames):
236
- """
237
- Converts field names from a queryset into corresponding field objects, resolving relationships
238
- and related objects if necessary. This method is typically used to yield fully-resolved field
239
- objects for further interaction.
240
-
241
- :param qs: A QuerySet object from which the fields are resolved. This object provides access
242
- to the model and its metadata from which the fields are retrieved.
243
- :type qs: QuerySet
244
-
245
- :param fieldnames: A list of field name strings. These can include nested fields separated by
246
- double underscores (__) to denote relationships or subfields.
247
- :type fieldnames: List[str]
248
-
249
- :return: A generator that yields resolved field objects corresponding to the provided field names.
250
- :rtype: Generator[Field, None, None]
251
- """
252
- for fieldname in fieldnames:
253
- model = qs.model
254
- for fieldname_part in fieldname.split("__"):
255
- try:
256
- field = model._meta.get_field(fieldname_part)
257
- except cls.FieldDoesNotExist:
258
- try:
259
- rels = model._meta.get_all_related_objects_with_model()
260
- except AttributeError:
261
- field = fieldname
262
- else:
263
- for relobj, _ in rels:
264
- if relobj.get_accessor_name() == fieldname_part:
265
- field = relobj.field
266
- model = field.model
267
- break
268
- else:
269
- model = cls.get_related_model(field)
270
- yield field
271
-
272
- @staticmethod
273
- def is_values_queryset(qs):
274
- """
275
- Determines whether the provided queryset is a values queryset.
276
-
277
- This method checks if the `_iterable_class` attribute of the queryset corresponds
278
- to `django.db.models.query.ValuesIterable`. If an exception occurs during the check,
279
- the method returns `False`.
280
-
281
- :param qs: The queryset to be checked.
282
- :type qs: django.db.models.query.QuerySet
283
- :return: A boolean indicating whether the queryset is a values queryset.
284
- :rtype: bool
285
- """
286
- try:
287
- return qs._iterable_class == django.db.models.query.ValuesIterable
288
- except:
289
- return False
290
-
291
- @staticmethod
292
- def object_to_dict(obj, fields=None):
293
- """
294
- Converts an object to a dictionary representation.
295
-
296
- This static method transforms an object's attributes into a dictionary.
297
- If no specific fields are provided, all attribute key-value pairs are
298
- included. The "_state" attribute, if present, is safely removed in this
299
- case. When specific fields are supplied, only those fields are included
300
- in the resulting dictionary.
301
-
302
- :param obj: The object to be serialized into a dictionary. This object
303
- must have the `__dict__` attribute available.
304
- :param fields: A list of strings representing the attribute names to
305
- include in the dictionary. If None or not provided, all attributes
306
- are included except for "_state".
307
- :return: A dictionary representation of the object's attributes. If the
308
- provided object is None, an empty dictionary is returned.
309
- :rtype: dict
310
- """
311
- if obj is None:
312
- return {} # Return an empty dictionary if obj is None
313
- if not fields:
314
- obj.__dict__.pop("_state", None) # Remove _state safely
315
- return obj.__dict__
316
- return {field: obj.__dict__.get(field) for field in fields if field is not None}
317
-
318
- @staticmethod
319
- def infer_dtypes_from_django(qs):
320
- """
321
- Infer dtypes from a Django QuerySet model and annotated fields.
322
-
323
- This method infers the appropriate data types (dtypes) for a given
324
- Django QuerySet (`qs`) based on the fields defined in its model and
325
- any annotated fields included in the QuerySet. The function maps
326
- Django model field types to corresponding dtypes compatible with
327
- Dask or Pandas dataframes.
328
-
329
- - Fields in the model are identified through their metadata.
330
- - Reverse relationships and non-concrete fields are ignored.
331
- - Annotated fields are processed separately and default to object
332
- dtype if their type cannot be determined.
333
-
334
- :param qs: Django QuerySet whose model is used to infer dtypes.
335
- :type qs: QuerySet
336
- :return: A mapping of field names to inferred dtypes.
337
- :rtype: dict
338
- """
339
- django_to_dask_dtype = {
340
- 'AutoField': 'Int64', # Use nullable integer
341
- 'BigAutoField': 'Int64',
342
- 'BigIntegerField': 'Int64',
343
- 'BooleanField': 'bool',
344
- 'CharField': 'object',
345
- 'DateField': 'datetime64[ns]',
346
- 'DateTimeField': 'datetime64[ns]',
347
- 'DecimalField': 'float64',
348
- 'FloatField': 'float64',
349
- 'IntegerField': 'Int64', # Use nullable integer
350
- 'PositiveIntegerField': 'Int64',
351
- 'SmallIntegerField': 'Int64',
352
- 'TextField': 'object',
353
- 'TimeField': 'object',
354
- 'UUIDField': 'object',
355
- 'ForeignKey': 'Int64', # Use nullable integer for FK fields
356
- }
357
-
358
- dtypes = {}
359
- # Handle model fields
360
- for field in qs.model._meta.get_fields():
361
- # Skip reverse relationships and non-concrete fields
362
- if not getattr(field, 'concrete', False):
363
- continue
364
-
365
- # Check for AutoField or BigAutoField explicitly
366
- if isinstance(field, (models.AutoField, models.BigAutoField)):
367
- dtypes[field.name] = 'Int64' # Nullable integer for autoincremented fields
368
- else:
369
- # Use field type to infer dtype
370
- field_type = field.get_internal_type()
371
- dtypes[field.name] = django_to_dask_dtype.get(field_type, 'object')
372
-
373
- # Handle annotated fields
374
- for annotation_name, annotation in qs.query.annotation_select.items():
375
- if hasattr(annotation, 'output_field'):
376
- field_type = annotation.output_field.get_internal_type()
377
- dtype = django_to_dask_dtype.get(field_type, 'object')
378
- else:
379
- dtype = 'object' # Default to object for untyped annotations
380
- dtypes[annotation_name] = dtype
381
-
382
- return dtypes
383
-
384
- def read_frame(self, fillna_value=None):
385
- """
386
- Reads a Django QuerySet and returns a dask DataFrame by iterating over the QuerySet in chunks. It
387
- handles data type inference, missing values, timezone awareness, and creates partitions to form a
388
- single dask DataFrame efficiently.
389
-
390
- This method includes functionality for managing missing values, inferring data types from Django fields,
391
- and handling timezone-aware datetime objects. It processes data in chunks to optimize memory usage and
392
- supports converting chunks into pandas DataFrames before combining them into a unified dask DataFrame.
393
-
394
- :param fillna_value: The value to fill NaN values in the DataFrame. If None, NaNs are not filled.
395
- :type fillna_value: Any
396
- :return: A dask DataFrame constructed from the QuerySet after processing and combining all
397
- its partitions.
398
- :rtype: dask.dataframe.DataFrame
399
- """
400
- qs = self.qs
401
- coerce_float = self.coerce_float
402
- verbose = self.verbose
403
- chunk_size = self.chunk_size
404
-
405
- fields = qs.model._meta.fields
406
- fieldnames = [f.name for f in fields]
407
- fieldnames += list(qs.query.annotation_select.keys())
408
- fieldnames = tuple(fieldnames)
409
- # Infer dtypes from Django fields
410
- dtypes = self.infer_dtypes_from_django(qs)
411
- if fieldnames:
412
- dtypes = {field: dtype for field, dtype in dtypes.items() if field in fieldnames}
413
-
414
- # Create partitions for Dask by iterating through chunks
415
- partitions = []
416
- iterator = iter(qs.iterator(chunk_size=chunk_size))
417
-
418
- while True:
419
- chunk = list(itertools.islice(iterator, chunk_size))
420
- if not chunk:
421
- break
422
-
423
- # Convert chunk to DataFrame with inferred dtypes
424
- df = pd.DataFrame.from_records(
425
- [self.object_to_dict(obj, fieldnames) for obj in chunk],
426
- columns=fieldnames,
427
- coerce_float=coerce_float,
428
- )
429
- # Handle NaN values before casting, if specified
430
- if fillna_value is not None:
431
- df = df.fillna(fillna_value)
432
-
433
- # Convert timezone-aware columns to timezone-naive if needed
434
- for col in df.columns:
435
- if isinstance(df[col].dtype, pd.DatetimeTZDtype):
436
- df[col] = df[col].dt.tz_localize(None)
437
-
438
- # Convert to the appropriate data types
439
- df = df.astype(dtypes)
440
- partitions.append(dd.from_pandas(df, npartitions=1))
441
-
442
- # Concatenate partitions into a single Dask DataFrame
443
- # Ensure all partitions have the same columns
444
-
445
- dask_df = dd.concat(partitions, axis=0, ignore_index=True)
446
-
447
- if verbose:
448
- self.update_with_verbose(dask_df, fieldnames, fields)
449
-
450
- return dask_df
@@ -1,227 +0,0 @@
1
- import warnings
2
-
3
- import dask.dataframe as dd
4
- import pandas as pd
5
- from django.db.models import Q
6
-
7
- from sibi_dst.df_helper.backends.django import ReadFrameDask
8
- from sibi_dst.df_helper.core import django_field_conversion_map_dask
9
- from sibi_dst.utils import Logger
10
-
11
-
12
- class DjangoLoadFromDb:
13
- """
14
- Handles loading data from a Django database into a Dask DataFrame, with support for filtering
15
- and column type conversion.
16
-
17
- This class is designed to interface with Django ORM models, allowing data querying and mapping
18
- Django model fields to Dask DataFrame columns. It accommodates filtering logic provided via
19
- parameters and ensures that excessive data is not accidentally loaded when no filters are applied.
20
-
21
- :ivar connection_config: Configuration for the database connection, including the Django model
22
- and connection details.
23
- :type connection_config: Any
24
- :ivar query_config: Configuration for the query, including the number of records to retrieve.
25
- :type query_config: Any
26
- :ivar params_config: Configuration for query parameters, including filters and DataFrame options.
27
- :type params_config: Any
28
- :ivar logger: Logger instance used for debugging and reporting runtime information.
29
- :type logger: Logger
30
- :ivar debug: Indicates whether debug mode is active for verbose logging.
31
- :type debug: bool
32
- :ivar df: Dask DataFrame to hold the loaded query results.
33
- :type df: dd.DataFrame
34
- """
35
- df: dd.DataFrame
36
-
37
- def __init__(self, db_connection, db_query, db_params, logger, **kwargs):
38
- """
39
- This class initializes and configures a database connection along with the
40
- specified query and parameters. It ensures the required model is defined
41
- and sets up logging. Additional configurations can be provided via keyword
42
- arguments.
43
-
44
- :param db_connection: The configuration object representing the database
45
- connection details.
46
- :type db_connection: Any
47
- :param db_query: The configuration or object for defining the database
48
- query.
49
- :type db_query: Any
50
- :param db_params: The configuration or object for defining parameters
51
- to be passed to the query.
52
- :type db_params: Any
53
- :param logger: An instance of a logging class used to log debug or
54
- error messages, defaults to the class's default logger if not
55
- specified.
56
- :type logger: Any, optional
57
- :param kwargs: Additional keyword arguments for custom configurations
58
- like `debug`. These can include optional parameters to be parsed by
59
- `params_config`.
60
- :type kwargs: dict
61
- :raises ValueError: If no model is specified in the given database
62
- connection configuration.
63
- """
64
- self.connection_config = db_connection
65
- self.debug = kwargs.pop('debug', False)
66
- self.logger = logger or Logger.default_logger(logger_name=self.__class__.__name__)
67
- self.logger.set_level(Logger.DEBUG if self.debug else Logger.INFO)
68
- if self.connection_config.model is None:
69
- if self.debug:
70
- self.logger.debug('Model must be specified')
71
-
72
- raise ValueError('Model must be specified')
73
-
74
- self.query_config = db_query
75
- self.params_config = db_params
76
- self.params_config.parse_params(kwargs)
77
-
78
- def build_and_load(self):
79
- """
80
- Builds and loads data into a DataFrame by invoking the `_build_and_load` method.
81
- This is a utility method designed to perform specific operations for constructing
82
- and preparing the data. The loaded data will then be assigned to the instance
83
- attribute `df`.
84
-
85
- :param self: Reference to the current instance of the class.
86
- :type self: object
87
-
88
- :return: DataFrame containing the built and loaded data.
89
- """
90
- self.df = self._build_and_load()
91
- # self.df = self._convert_columns(self.df)
92
- return self.df
93
-
94
- def _build_and_load(self) -> dd.DataFrame:
95
- """
96
- Builds and loads a Dask DataFrame based on the provided query and configuration. This method queries the data
97
- model using the specified connection, applies filters if provided, and converts the query result into a
98
- Dask DataFrame. If filters are not provided, only the first `n_records` entries are processed to avoid
99
- unintentionally loading the entire table.
100
-
101
- :raises Exception: If an error occurs while loading the query, it logs the error and initializes an
102
- empty Dask DataFrame.
103
-
104
- :return: A Dask DataFrame containing the queried data. If no filters or valid results are provided,
105
- an empty Dask DataFrame is returned.
106
- :rtype: dd.DataFrame
107
- """
108
- query = self.connection_config.model.objects.using(self.connection_config.connection_name)
109
- if not self.params_config.filters:
110
- # IMPORTANT: if no filters are provided show only the first n_records
111
- # this is to prevent loading the entire table by mistake
112
- n_records = self.query_config.n_records if self.query_config.n_records else 100
113
- queryset = query.all()[:n_records]
114
- else:
115
- q_objects = self.__build_query_objects(self.params_config.filters, self.query_config.use_exclude)
116
- queryset = query.filter(q_objects)
117
- if queryset is not None:
118
- try:
119
- self.df = ReadFrameDask(queryset, **self.params_config.df_params).read_frame()
120
- except Exception as e:
121
- self.logger.debug(f'Error loading query: {str(queryset.query)}, error message: {e}')
122
- self.df = dd.from_pandas(pd.DataFrame(), npartitions=1)
123
- else:
124
- self.df = dd.from_pandas(pd.DataFrame(), npartitions=1)
125
-
126
- return self.df
127
-
128
- @staticmethod
129
- def __build_query_objects(filters: dict, use_exclude: bool):
130
- """
131
- Constructs and returns a composite Q object based on the provided `filters` dictionary.
132
- The function determines whether to include or exclude the filter conditions in the final
133
- query based on the `use_exclude` parameter. If `use_exclude` is False, the filters are
134
- directly added to the composite Q object. If `use_exclude` is True, the negation of
135
- the filters is added instead.
136
-
137
- :param filters: A dictionary containing filter conditions where keys represent field names
138
- and values represent the conditions to be applied.
139
- :type filters: dict
140
- :param use_exclude: A boolean flag determining whether to exclude (`True`) or include
141
- (`False`) the provided filter conditions.
142
- :type use_exclude: bool
143
- :return: A composite Q object that aggregates the filters based on the given conditions.
144
- :rtype: Q
145
- """
146
- q_objects = Q()
147
- for key, value in filters.items():
148
- if not use_exclude:
149
- q_objects.add(Q(**{key: value}), Q.AND)
150
- else:
151
- q_objects.add(~Q(**{key: value}), Q.AND)
152
- return q_objects
153
-
154
- def _convert_columns(self, df: dd.DataFrame) -> dd.DataFrame:
155
- """
156
- [DEPRECATED] Convert the data types of columns in a Dask DataFrame based on the field type in the Django model.
157
-
158
- This function is deprecated and will be removed in a future release. The method converts the data
159
- types of columns in a Dask DataFrame to match their corresponding field types defined in a Django model.
160
- It emits warnings and logs deprecation notes. The conversions are applied lazily and partition-wise
161
- to support distributed computation.
162
-
163
- :param df: Dask DataFrame whose columns' data types are to be converted.
164
- :type df: dd.DataFrame
165
- :return: Dask DataFrame with converted column data types.
166
- :rtype: dd.DataFrame
167
- """
168
- """
169
- [DEPRECATED] Convert the data types of columns in a Dask DataFrame based on the field type in the Django model.
170
-
171
- :param df: Dask DataFrame whose columns' data types are to be converted.
172
- :return: Dask DataFrame with converted column data types.
173
- """
174
- # Emit deprecation warning
175
- warnings.warn(
176
- "_convert_columns is deprecated and will be removed in a future release. "
177
- "Consider using <new_method_name> instead.",
178
- DeprecationWarning,
179
- stacklevel=2,
180
- )
181
-
182
- # Log deprecation message if debug mode is enabled
183
- if self.debug:
184
- self.logger.warning(
185
- "[DEPRECATION NOTICE] The `_convert_columns` method is deprecated and will be removed in a future release. "
186
- "Consider using <new_method_name> instead."
187
- )
188
-
189
- self.logger.debug(f'Converting columns: {list(df.columns)}')
190
-
191
- # Get field information from the Django model
192
- model_fields = self.connection_config.model._meta.get_fields()
193
- field_type_map = {field.name: type(field).__name__ for field in model_fields}
194
- # Simplified loop to apply conversions partition-wise
195
- for field_name, field_type in field_type_map.items():
196
- if field_name not in df.columns:
197
- self.logger.debug(f"Column '{field_name}' not found in DataFrame columns.")
198
- continue
199
-
200
- conversion_func = django_field_conversion_map_dask.get(field_type)
201
- if not conversion_func:
202
- message = f"Field type '{field_type}' not found in conversion_map."
203
- self.logger.debug(message)
204
- continue
205
-
206
- def apply_conversion(partition):
207
- """
208
- Apply the conversion function to a single partition for the given column.
209
- """
210
- try:
211
- if field_name in partition.columns:
212
- partition[field_name] = conversion_func(partition[field_name])
213
- except Exception as e:
214
- self.logger.debug(f"Error converting column '{field_name}' in partition: {str(e)}")
215
- return partition
216
-
217
- try:
218
- # Apply conversion lazily to each partition
219
- df = df.map_partitions(
220
- apply_conversion,
221
- meta=df,
222
- )
223
- self.logger.debug(f"Successfully queued conversion for column '{field_name}' to type '{field_type}'.")
224
- except Exception as e:
225
- self.logger.debug(f"Failed to queue conversion for column '{field_name}': {str(e)}")
226
-
227
- return df