sibi-dst 0.3.39__py3-none-any.whl → 0.3.42__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,73 +1,25 @@
1
1
  import datetime
2
- from concurrent.futures import ThreadPoolExecutor
3
- from typing import Type, Any, Dict, Optional, Union
2
+ import logging
3
+ from concurrent.futures import ThreadPoolExecutor, as_completed
4
+ from typing import Type, Any, Dict, Optional, Union, List, Tuple
4
5
  from threading import Lock
5
6
  import fsspec
6
7
  import pandas as pd
7
8
  from IPython.display import display
8
9
  from tqdm import tqdm
9
10
 
10
- from sibi_dst.utils import Logger, DateUtils
11
+ from sibi_dst.utils import Logger, FileAgeChecker
11
12
  from sibi_dst.utils import ParquetSaver
12
13
 
13
14
 
14
15
  class DataWrapper:
15
- """
16
- Utility class for handling file-based operations, including processing and saving data
17
- in Parquet format, while managing a hierarchy of conditions such as overwrite, history
18
- threshold, and missing file detection.
19
-
20
- This class aims to simplify the process of managing large datasets stored in a filesystem.
21
- It allows for controlled updates to data files based on parameters set by the user, with
22
- support for different filesystem types and options.
23
-
24
- It also provides features like logging actions, managing processing threads, generating
25
- update plans, checking file age, and dynamically creating date ranges for data operations.
26
-
27
- The design supports flexible integration with user-defined classes (dataclasses) to define
28
- custom loading and processing behavior.
29
-
30
- :ivar dataclass: The user-defined class for data processing.
31
- :type dataclass: Type
32
- :ivar date_field: The name of the date field in the user-defined class.
33
- :type date_field: str
34
- :ivar data_path: Base path for the dataset storage.
35
- :type data_path: str
36
- :ivar parquet_filename: File name for the Parquet file.
37
- :type parquet_filename: str
38
- :ivar start_date: Start date for processing.
39
- :type start_date: datetime.date
40
- :ivar end_date: End date for processing.
41
- :type end_date: datetime.date
42
- :ivar fs: File system object for managing files.
43
- :type fs: Optional[fsspec.AbstractFileSystem]
44
- :ivar filesystem_type: Type of the filesystem (e.g., "file", "s3").
45
- :type filesystem_type: str
46
- :ivar filesystem_options: Additional options for initializing the filesystem.
47
- :type filesystem_options: Optional[Dict]
48
- :ivar verbose: Flag to enable verbose logging.
49
- :type verbose: bool
50
- :ivar class_params: Parameters to initialize the dataclass.
51
- :type class_params: Optional[Dict]
52
- :ivar load_params: Additional parameters for loading functions.
53
- :type load_params: Optional[Dict]
54
- :ivar reverse_order: Flag to reverse the order of date range generation.
55
- :type reverse_order: bool
56
- :ivar overwrite: Whether to overwrite all files during processing.
57
- :type overwrite: bool
58
- :ivar ignore_missing: Whether to ignore missing files.
59
- :type ignore_missing: bool
60
- :ivar logger: Logger instance for logging information.
61
- :type logger: Optional[Logger]
62
- :ivar max_age_minutes: Maximum file age threshold in minutes.
63
- :type max_age_minutes: int
64
- :ivar history_days_threshold: Number of days for the history threshold.
65
- :type history_days_threshold: int
66
- :ivar show_progress: Flag to enable progress display.
67
- :type show_progress: bool
68
- :ivar timeout: Timeout in seconds for processing tasks with threads.
69
- :type timeout: Optional[int]
70
- """
16
+ DEFAULT_PRIORITY_MAP = {
17
+ "overwrite": 1,
18
+ "missing_in_history": 2,
19
+ "existing_but_stale": 3,
20
+ "missing_outside_history": 4,
21
+ "file_is_recent": 0
22
+ }
71
23
  DEFAULT_MAX_AGE_MINUTES = 1440
72
24
  DEFAULT_HISTORY_DAYS_THRESHOLD = 30
73
25
 
@@ -81,6 +33,7 @@ class DataWrapper:
81
33
  fs: Optional[fsspec.AbstractFileSystem] = None,
82
34
  filesystem_type: str = "file",
83
35
  filesystem_options: Optional[Dict] = None,
36
+ debug: bool = False,
84
37
  verbose: bool = False,
85
38
  class_params: Optional[Dict] = None,
86
39
  load_params: Optional[Dict] = None,
@@ -91,14 +44,17 @@ class DataWrapper:
91
44
  max_age_minutes: int = DEFAULT_MAX_AGE_MINUTES,
92
45
  history_days_threshold: int = DEFAULT_HISTORY_DAYS_THRESHOLD,
93
46
  show_progress: bool = False,
94
- timeout: float = 300):
47
+ timeout: float = 60,
48
+ reference_date: datetime.date = None,
49
+ custom_priority_map: Dict[str, int] = None):
95
50
  self.dataclass = dataclass
96
51
  self.date_field = date_field
97
- self.data_path = self.ensure_forward_slash(data_path)
52
+ self.data_path = self._ensure_forward_slash(data_path)
98
53
  self.parquet_filename = parquet_filename
99
54
  self.filesystem_type = filesystem_type
100
55
  self.filesystem_options = filesystem_options or {}
101
- self.fs = fs
56
+ self.fs = fs or self._init_filesystem()
57
+ self.debug = debug
102
58
  self.verbose = verbose
103
59
  self.class_params = class_params or {}
104
60
  self.load_params = load_params or {}
@@ -106,23 +62,26 @@ class DataWrapper:
106
62
  self.overwrite = overwrite
107
63
  self.ignore_missing = ignore_missing
108
64
  self.logger = logger or Logger.default_logger(logger_name=self.dataclass.__name__)
65
+ self.logger.set_level(logging.DEBUG if debug else logging.INFO)
109
66
  self.max_age_minutes = max_age_minutes
110
67
  self.history_days_threshold = history_days_threshold
111
68
  self.show_progress = show_progress
112
69
  self.timeout = timeout
70
+ self.reference_date = reference_date or datetime.date.today()
71
+ self.priority_map = custom_priority_map or self.DEFAULT_PRIORITY_MAP
113
72
 
114
- self.start_date = self.convert_to_date(start_date)
115
- self.end_date = self.convert_to_date(end_date)
73
+ self.start_date = self._convert_to_date(start_date)
74
+ self.end_date = self._convert_to_date(end_date)
116
75
  self._lock = Lock()
117
76
  self.processed_dates = []
118
- self.date_utils = DateUtils(logger=self.logger)
119
- if self.fs is None:
120
- with self._lock:
121
- if self.fs is None:
122
- self.fs = fsspec.filesystem(self.filesystem_type, **self.filesystem_options)
77
+ self.age_checker = FileAgeChecker(logger=self.logger)
78
+
79
+ def _init_filesystem(self) -> fsspec.AbstractFileSystem:
80
+ with self._lock:
81
+ return fsspec.filesystem(self.filesystem_type, **self.filesystem_options)
123
82
 
124
83
  @staticmethod
125
- def convert_to_date(date: Union[datetime.date, str]) -> datetime.date:
84
+ def _convert_to_date(date: Union[datetime.date, str]) -> datetime.date:
126
85
  if isinstance(date, datetime.date):
127
86
  return date
128
87
  try:
@@ -131,235 +90,576 @@ class DataWrapper:
131
90
  raise ValueError(f"Error converting {date} to datetime: {e}")
132
91
 
133
92
  @staticmethod
134
- def ensure_forward_slash(path: str) -> str:
135
- return path if path.endswith('/') else path + '/'
93
+ def _ensure_forward_slash(path: str) -> str:
94
+ return path.rstrip('/') + '/'
95
+
96
+ def generate_date_range(self) -> List[datetime.date]:
97
+ """Generate ordered date range with future date handling"""
98
+ date_range = pd.date_range(
99
+ start=self.start_date,
100
+ end=self.end_date,
101
+ freq='D'
102
+ ).date.tolist()
136
103
 
137
- def generate_date_range(self):
138
- """Generate a range of dates between start_date and end_date."""
139
- date_range = pd.date_range(self.start_date, self.end_date, freq='D')
140
104
  if self.reverse_order:
141
- date_range = date_range[::-1]
142
- for date in date_range:
143
- yield date.date()
105
+ date_range.reverse()
106
+
107
+ return [
108
+ d for d in date_range
109
+ if d <= self.reference_date or self.overwrite
110
+ ]
144
111
 
145
112
  def process(self, max_retries: int = 3):
146
- """
147
- Processes update tasks by generating an update plan, filtering required updates, and distributing
148
- the workload across threads based on priority levels.
149
-
150
- This method operates by assessing required updates through generated conditions,
151
- grouping them by priority levels, and processing them in parallel threads.
152
- Each thread handles the updates for a specific priority level, ensuring a streamlined approach
153
- to handling the updates efficiently.
154
-
155
- :param max_retries: Maximum number of retries for a task after a timeout. Defaults to 3.
156
- :raises TimeoutError: If a thread processing a priority level exceeds the allowed timeout duration.
157
- :return: None
158
- """
159
- update_plan_table = self.generate_update_plan_with_conditions()
160
-
161
- # Display the update plan table to the user if requested
162
- if self.show_progress:
163
- display(update_plan_table)
113
+ """Process updates with priority-based execution and retries"""
114
+ update_plan = self.generate_update_plan()
164
115
 
165
- # Filter out rows that do not require updates (priority 0 means skip)
166
- with self._lock:
167
- update_plan_table = update_plan_table[
168
- (update_plan_table["update_required"] == True) & (update_plan_table["update_priority"] != 0)
169
- ]
116
+ if update_plan.empty:
117
+ self.logger.info("No updates required")
118
+ return
119
+ # Filter for required updates first
120
+ update_plan = update_plan[update_plan["update_required"] == True]
170
121
 
171
- # Group by priority
172
- with self._lock:
173
- priorities = sorted(update_plan_table["update_priority"].unique())
174
-
175
- # We will process each priority level in its own thread.
176
- # Each thread will handle all dates associated with that priority.
177
- def process_priority(priority):
178
- # Extract dates for the current priority
179
- dates_to_process = update_plan_table[
180
- update_plan_table["update_priority"] == priority
181
- ]["date"].tolist()
182
-
183
- # If show_progress is True, wrap in a progress bar
184
- date_iterator = dates_to_process
185
- if self.show_progress:
186
- date_iterator = tqdm(date_iterator,
187
- desc=f"Processing priority {priority}:{self.dataclass.__name__}",
188
- unit="date")
189
-
190
- # Process each date for this priority
191
- for current_date in date_iterator:
192
- self.process_date(current_date)
193
-
194
- # Launch a separate thread for each priority
195
- with ThreadPoolExecutor(max_workers=len(priorities)) as executor:
196
- futures = {executor.submit(process_priority, p): p for p in priorities}
197
- retries = {p: 0 for p in priorities} # Track retry counts for each priority
198
-
199
- while futures:
200
- for future in list(futures.keys()):
201
- try:
202
- future.result(timeout=self.timeout)
203
- del futures[future] # Remove completed future
204
- except TimeoutError:
205
- priority = futures[future]
206
- retries[priority] += 1
207
-
208
- if retries[priority] <= max_retries:
209
- self.logger.warning(
210
- f"Thread for priority {priority} timed out. Retrying ({retries[priority]}/{max_retries})..."
211
- )
212
- new_future = executor.submit(process_priority, priority)
213
- futures[new_future] = priority
214
- else:
215
- self.logger.error(
216
- f"Thread for priority {priority} timed out. Max retries ({max_retries}) exceeded. Skipping."
217
- )
218
- del futures[future] # Remove the timed-out future
219
- except Exception as e:
220
- self.logger.error(f"Error processing priority {futures[future]}: {e}")
221
- del futures[future] # Remove the failed future
222
-
223
- def process_date(self, date: datetime.date):
224
- """
225
- Processes data for a given date and saves it as a Parquet file.
226
-
227
- This method processes data for the specified date by loading the data
228
- corresponding to that day, saving it into a structured storage format
229
- (Parquet), and logging relevant information such as processing time
230
- and errors that may occur during the process. It uses provided
231
- dataclass and parameters to operate and ensures the data is stored
232
- in a structured folder hierarchy.
233
-
234
- :param date: The specific date for which data processing and saving should occur
235
- :type date: datetime.date
236
- :return: None
237
- """
238
- folder = f'{self.data_path}{date.year}/{date.month:02d}/{date.day:02d}/'
239
- full_parquet_filename = f"{folder}{self.parquet_filename}"
122
+ if self.show_progress:
123
+ #display(self._enhanced_display_table(update_plan))
124
+ display(update_plan)
125
+
126
+ for priority in sorted(update_plan["update_priority"].unique()):
127
+ self._process_priority_group(update_plan, priority, max_retries)
128
+
129
+ def _process_priority_group(self,
130
+ update_plan: pd.DataFrame,
131
+ priority: int,
132
+ max_retries: int):
133
+ """Process a single priority group with parallel execution"""
134
+ dates = update_plan[update_plan["update_priority"] == priority]["date"].tolist()
135
+ if not dates:
136
+ return
240
137
 
241
- start_time = datetime.datetime.now()
242
- self.logger.info(f"Processing date: {date}")
243
- self.logger.info(f"Processing {full_parquet_filename}...")
138
+ desc = f"Processing {self.dataclass.__name__}, task: {self._priority_label(priority)}"
139
+ self.logger.info(f"Starting {desc.lower()}")
244
140
 
245
- data_object = self.dataclass(**self.class_params)
246
- df = data_object.load_period(dt_field=self.date_field, start=date, end=date)
141
+ with ThreadPoolExecutor() as executor:
142
+ futures = {
143
+ executor.submit(self._process_date_with_retry, date, max_retries): date
144
+ for date in dates
145
+ }
247
146
 
248
- if len(df.index) == 0:
249
- self.logger.error("No data found for the specified date.")
250
- return
147
+ for future in tqdm(as_completed(futures),
148
+ total=len(futures),
149
+ desc=desc,
150
+ disable=not self.show_progress):
151
+ date = futures[future]
152
+ try:
153
+ future.result(timeout=self.timeout)
154
+ except Exception as e:
155
+ self.logger.error(f"Permanent failure processing {date}: {str(e)}")
156
+
157
+ def _priority_label(self, priority: int) -> str:
158
+ """Get human-readable label for priority level"""
159
+ return next(
160
+ (k for k, v in self.priority_map.items() if v == priority),
161
+ f"Unknown Priority {priority}"
162
+ )
163
+
164
+ def _enhanced_display_table(self, df: pd.DataFrame) -> pd.DataFrame.style:
165
+ """Format the update plan table for better readability"""
166
+ return df.style \
167
+ .bar(subset=["file_age_minutes"], color="#5fba7d") \
168
+ .background_gradient(subset=["update_priority"], cmap="YlOrBr") \
169
+ .set_caption(f"Update Plan: {self.dataclass.__name__}")
170
+
171
+ def generate_update_plan(self) -> pd.DataFrame:
172
+ """Generate update plan with parallel file status checks"""
173
+ dates = self.generate_date_range()
174
+ history_start = self.reference_date - datetime.timedelta(days=self.history_days_threshold)
175
+ rows = []
251
176
 
252
- with self._lock:
253
- parquet_saver = ParquetSaver(df, parquet_storage_path=folder, logger=self.logger, fs=self.fs)
254
- parquet_saver.save_to_parquet(self.parquet_filename, clear_existing=True)
177
+ with ThreadPoolExecutor() as executor:
178
+ future_to_date = {
179
+ executor.submit(self._get_file_status, date): date
180
+ for date in dates
181
+ }
255
182
 
256
- end_time = datetime.datetime.now()
257
- duration_seconds = (end_time - start_time).total_seconds()
258
- self.logger.info(
259
- f"Data saved to {full_parquet_filename}. Processing time: {duration_seconds:.2f} seconds"
260
- )
183
+ for future in tqdm(as_completed(future_to_date),
184
+ total=len(future_to_date),
185
+ desc=f"Analyzing files for {self.dataclass.__name__} ",
186
+ disable=not self.show_progress):
187
+ current_date = future_to_date[future]
188
+ file_exists, file_age = future.result()
189
+ rows.append(self._create_plan_row(
190
+ current_date,
191
+ history_start,
192
+ file_exists,
193
+ file_age
194
+ ))
195
+
196
+ return pd.DataFrame(rows).sort_values("update_priority")
197
+
198
+ def _get_file_status(self, date: datetime.date) -> Tuple[bool, float]:
199
+ """Get file existence and age with error handling"""
200
+ path = f"{self.data_path}{date.year}/{date.month:02d}/{date.day:02d}/{self.parquet_filename}"
201
+ try:
202
+ exists = self.fs.exists(path)
203
+ age = self.age_checker.get_file_or_dir_age_minutes(path, self.fs) if exists else None
204
+ return exists, age
205
+ except Exception as e:
206
+ self.logger.warning(f"Error checking {path}: {str(e)}")
207
+ return False, None
208
+
209
+ def _create_plan_row(self,
210
+ date: datetime.date,
211
+ history_start: datetime.date,
212
+ file_exists: bool,
213
+ file_age: float) -> dict:
214
+ """Create a row for the update plan DataFrame"""
215
+ within_history = history_start <= date <= self.reference_date
216
+ category, update_required = "file_is_recent", False
217
+
218
+ if self.overwrite:
219
+ category, update_required = "overwrite", True
220
+ elif within_history:
221
+ if not file_exists:
222
+ category, update_required = "missing_in_history", True
223
+ elif file_age > self.max_age_minutes:
224
+ category, update_required = "existing_but_stale", True
225
+ elif not file_exists and not self.ignore_missing:
226
+ category, update_required = "missing_outside_history", True
227
+
228
+ return {
229
+ "date": date,
230
+ "file_exists": file_exists,
231
+ "file_age_minutes": file_age,
232
+ "age_threshold": self.max_age_minutes,
233
+ "within_history": within_history,
234
+ "ignore_missing": self.ignore_missing,
235
+ "update_category": category,
236
+ "update_priority": self.priority_map[category],
237
+ "update_required": update_required,
238
+ "class": self.dataclass.__name__
239
+ }
261
240
 
262
- self.processed_dates.append(date)
263
- self.logger.info(f"Finished processing date: {date}")
241
+ def _process_date_with_retry(self, date: datetime.date, max_retries: int):
242
+ """Process a date with retry logic"""
243
+ for attempt in range(1, max_retries + 1):
244
+ try:
245
+ self._process_single_date(date)
246
+ return
247
+ except Exception as e:
248
+ if attempt < max_retries:
249
+ self.logger.warning(f"Retry {attempt}/{max_retries} for {date}: {str(e)}")
250
+ else:
251
+ raise RuntimeError(f"Failed processing {date} after {max_retries} attempts") from e
264
252
 
265
- def generate_update_plan_with_conditions(self):
266
- """
267
- Generates an update plan for data files based on specific conditions. The function evaluates the need for updating or
268
- overwriting data files for a given date range. Conditions include file existence, whether the file falls within a
269
- specified historical threshold, and the necessity to overwrite or handle missing files. A priority map is utilized to
270
- assign priority levels to update categories.
253
+ def _process_single_date(self, date: datetime.date):
254
+ """Core date processing logic"""
255
+ path = f"{self.data_path}{date.year}/{date.month:02d}/{date.day:02d}/"
256
+ full_path = f"{path}{self.parquet_filename}"
271
257
 
272
- :raises FileNotFoundError: If any file is referenced that does not exist and the ``ignore_missing`` property is set to False.
273
- :raises AttributeError: If any required attribute like ``fs``, ``dataclass``, or others are not properly set or initialized.
258
+ self.logger.info(f"Processing {date} ({full_path})")
259
+ start_time = datetime.datetime.now()
274
260
 
275
- :return: A Pandas DataFrame representing the update plan, where each row contains information about a date, the conditions
276
- evaluated for that date, and the determined update priority.
277
- :rtype: pandas.DataFrame
278
- """
279
- rows = []
261
+ try:
262
+ data = self.dataclass(**self.class_params)
263
+ df = data.load_period(
264
+ dt_field=self.date_field,
265
+ start=date,
266
+ end=date,
267
+ **self.load_params
268
+ )
280
269
 
281
- today = datetime.date.today()
282
- history_start_date = today - datetime.timedelta(days=self.history_days_threshold)
283
- priority_map = {
284
- "file is recent":0,
285
- "overwrite": 1,
286
- "history_days": 2,
287
- "missing_files": 3
288
- }
289
- date_range = self.generate_date_range()
290
- if self.show_progress:
291
- date_range = tqdm(date_range, desc=f"Evaluating update plan:{self.dataclass.__name__}", unit="date")
292
-
293
- for current_date in date_range:
294
- folder = f'{self.data_path}{current_date.year}/{current_date.month:02d}/{current_date.day:02d}/'
295
- full_parquet_filename = f"{folder}{self.parquet_filename}"
296
-
297
- file_exists = self.fs.exists(full_parquet_filename)
298
- within_history = history_start_date <= current_date <= today
299
- missing_file = not file_exists and not self.ignore_missing
300
- category = None
301
-
302
- # Hierarchy 1: Overwrite
303
- if self.overwrite:
304
- category = "overwrite"
305
- update_required = True
306
- # Hierarchy 2: History threshold evaluation
307
- elif within_history:
308
- if file_exists:
309
- if self.date_utils.is_file_older_than(
310
- full_parquet_filename,
311
- max_age_minutes=self.max_age_minutes,
312
- fs=self.fs,
313
- ignore_missing=self.ignore_missing,
314
- verbose=self.verbose
315
- ):
316
- category = "history_days"
317
- update_required = True
318
- else:
319
- category = "file is recent"
320
- update_required = False
321
- else:
322
- category = "missing_files"
323
- update_required = True
324
-
325
- # Hierarchy 3: Missing files
326
- elif missing_file and current_date <= today:
327
- category = "missing_files"
328
- update_required = True
329
- else:
330
- category = "No Update Required"
331
- update_required = False
332
-
333
- # Collect condition descriptions for the update plan table
334
- row = {
335
- "date": current_date,
336
- "file_exists": file_exists,
337
- "within_history": within_history,
338
- "missing_file": missing_file,
339
- "update_required": update_required,
340
- "update_category": category,
341
- "datawrapper class": self.dataclass.__name__,
342
- "update_priority": priority_map.get(category, 0)
343
- }
344
- rows.append(row)
345
-
346
- update_plan_table = pd.DataFrame(rows)
347
- return update_plan_table
348
-
349
- # # wrapper.process()
350
- # # wrapper = DataWrapper(
351
- # # dataclass=YourDataClass,
352
- # # date_field="created_at",
353
- # # data_path="s3://your-bucket-name/path/to/data",
354
- # # parquet_filename="data.parquet",
355
- # # start_date="2022-01-01",
356
- # # end_date="2022-12-31",
357
- # # filesystem_type="s3",
358
- # # filesystem_options={
359
- # # "key": "your_aws_access_key",
360
- # # "secret": "your_aws_secret_key",
361
- # # "client_kwargs": {"endpoint_url": "https://s3.amazonaws.com"}
362
- # # },
363
- # # verbose=True
364
- # #)
365
- # #wrapper.process()
270
+ if len(df.index)==0:
271
+ self.logger.warning(f"No data found for {date}")
272
+ return
273
+
274
+ with self._lock:
275
+ ParquetSaver(
276
+ df_result=df,
277
+ parquet_storage_path=path,
278
+ fs=self.fs,
279
+ logger=self.logger
280
+ ).save_to_parquet(self.parquet_filename)
281
+
282
+ duration = (datetime.datetime.now() - start_time).total_seconds()
283
+ self._log_success(date, duration, full_path)
284
+
285
+ except Exception as e:
286
+ self._log_failure(date, e)
287
+ raise
288
+
289
+ def _log_success(self, date: datetime.date, duration: float, path: str):
290
+ """Handle successful processing logging"""
291
+ msg = f"Completed {date} in {duration:.1f}s | Saved to {path}"
292
+ self.logger.info(msg)
293
+ self.processed_dates.append(date)
294
+
295
+ def _log_failure(self, date: datetime.date, error: Exception):
296
+ """Handle error logging"""
297
+ msg = f"Failed processing {date}: {str(error)}"
298
+ self.logger.error(msg)
299
+
300
+ # Helper functions omitted for brevity (date conversion, path normalization)
301
+
302
+ # import datetime
303
+ # from concurrent.futures import ThreadPoolExecutor
304
+ # from typing import Type, Any, Dict, Optional, Union
305
+ # from threading import Lock
306
+ # import fsspec
307
+ # import pandas as pd
308
+ # from IPython.display import display
309
+ # from tqdm import tqdm
310
+ #
311
+ # from sibi_dst.utils import Logger, DateUtils
312
+ # from sibi_dst.utils import ParquetSaver
313
+ #
314
+ #
315
+ # class DataWrapper:
316
+ # """
317
+ # Utility class for handling file-based operations, including processing and saving data
318
+ # in Parquet format, while managing a hierarchy of conditions such as overwrite, history
319
+ # threshold, and missing file detection.
320
+ #
321
+ # This class aims to simplify the process of managing large datasets stored in a filesystem.
322
+ # It allows for controlled updates to data files based on parameters set by the user, with
323
+ # support for different filesystem types and options.
324
+ #
325
+ # It also provides features like logging actions, managing processing threads, generating
326
+ # update plans, checking file age, and dynamically creating date ranges for data operations.
327
+ #
328
+ # The design supports flexible integration with user-defined classes (dataclasses) to define
329
+ # custom loading and processing behavior.
330
+ #
331
+ # :ivar dataclass: The user-defined class for data processing.
332
+ # :type dataclass: Type
333
+ # :ivar date_field: The name of the date field in the user-defined class.
334
+ # :type date_field: str
335
+ # :ivar data_path: Base path for the dataset storage.
336
+ # :type data_path: str
337
+ # :ivar parquet_filename: File name for the Parquet file.
338
+ # :type parquet_filename: str
339
+ # :ivar start_date: Start date for processing.
340
+ # :type start_date: datetime.date
341
+ # :ivar end_date: End date for processing.
342
+ # :type end_date: datetime.date
343
+ # :ivar fs: File system object for managing files.
344
+ # :type fs: Optional[fsspec.AbstractFileSystem]
345
+ # :ivar filesystem_type: Type of the filesystem (e.g., "file", "s3").
346
+ # :type filesystem_type: str
347
+ # :ivar filesystem_options: Additional options for initializing the filesystem.
348
+ # :type filesystem_options: Optional[Dict]
349
+ # :ivar verbose: Flag to enable verbose logging.
350
+ # :type verbose: bool
351
+ # :ivar class_params: Parameters to initialize the dataclass.
352
+ # :type class_params: Optional[Dict]
353
+ # :ivar load_params: Additional parameters for loading functions.
354
+ # :type load_params: Optional[Dict]
355
+ # :ivar reverse_order: Flag to reverse the order of date range generation.
356
+ # :type reverse_order: bool
357
+ # :ivar overwrite: Whether to overwrite all files during processing.
358
+ # :type overwrite: bool
359
+ # :ivar ignore_missing: Whether to ignore missing files.
360
+ # :type ignore_missing: bool
361
+ # :ivar logger: Logger instance for logging information.
362
+ # :type logger: Optional[Logger]
363
+ # :ivar max_age_minutes: Maximum file age threshold in minutes.
364
+ # :type max_age_minutes: int
365
+ # :ivar history_days_threshold: Number of days for the history threshold.
366
+ # :type history_days_threshold: int
367
+ # :ivar show_progress: Flag to enable progress display.
368
+ # :type show_progress: bool
369
+ # :ivar timeout: Timeout in seconds for processing tasks with threads.
370
+ # :type timeout: Optional[int]
371
+ # """
372
+ # DEFAULT_MAX_AGE_MINUTES = 1440
373
+ # DEFAULT_HISTORY_DAYS_THRESHOLD = 30
374
+ #
375
+ # def __init__(self,
376
+ # dataclass: Type,
377
+ # date_field: str,
378
+ # data_path: str,
379
+ # parquet_filename: str,
380
+ # start_date: Any,
381
+ # end_date: Any,
382
+ # fs: Optional[fsspec.AbstractFileSystem] = None,
383
+ # filesystem_type: str = "file",
384
+ # filesystem_options: Optional[Dict] = None,
385
+ # verbose: bool = False,
386
+ # class_params: Optional[Dict] = None,
387
+ # load_params: Optional[Dict] = None,
388
+ # reverse_order: bool = False,
389
+ # overwrite: bool = False,
390
+ # ignore_missing: bool = False,
391
+ # logger: Logger = None,
392
+ # max_age_minutes: int = DEFAULT_MAX_AGE_MINUTES,
393
+ # history_days_threshold: int = DEFAULT_HISTORY_DAYS_THRESHOLD,
394
+ # show_progress: bool = False,
395
+ # timeout: float = 60):
396
+ # self.dataclass = dataclass
397
+ # self.date_field = date_field
398
+ # self.data_path = self.ensure_forward_slash(data_path)
399
+ # self.parquet_filename = parquet_filename
400
+ # self.filesystem_type = filesystem_type
401
+ # self.filesystem_options = filesystem_options or {}
402
+ # self.fs = fs
403
+ # self.verbose = verbose
404
+ # self.class_params = class_params or {}
405
+ # self.load_params = load_params or {}
406
+ # self.reverse_order = reverse_order
407
+ # self.overwrite = overwrite
408
+ # self.ignore_missing = ignore_missing
409
+ # self.logger = logger or Logger.default_logger(logger_name=self.dataclass.__name__)
410
+ # self.max_age_minutes = max_age_minutes
411
+ # self.history_days_threshold = history_days_threshold
412
+ # self.show_progress = show_progress
413
+ # self.timeout = timeout
414
+ #
415
+ # self.start_date = self.convert_to_date(start_date)
416
+ # self.end_date = self.convert_to_date(end_date)
417
+ # self._lock = Lock()
418
+ # self.processed_dates = []
419
+ # self.date_utils = DateUtils(logger=self.logger)
420
+ # if self.fs is None:
421
+ # with self._lock:
422
+ # if self.fs is None:
423
+ # self.fs = fsspec.filesystem(self.filesystem_type, **self.filesystem_options)
424
+ #
425
+ # @staticmethod
426
+ # def convert_to_date(date: Union[datetime.date, str]) -> datetime.date:
427
+ # if isinstance(date, datetime.date):
428
+ # return date
429
+ # try:
430
+ # return pd.to_datetime(date).date()
431
+ # except ValueError as e:
432
+ # raise ValueError(f"Error converting {date} to datetime: {e}")
433
+ #
434
+ # @staticmethod
435
+ # def ensure_forward_slash(path: str) -> str:
436
+ # return path if path.endswith('/') else path + '/'
437
+ #
438
+ # def generate_date_range(self):
439
+ # """Generate a range of dates between start_date and end_date."""
440
+ # date_range = pd.date_range(self.start_date, self.end_date, freq='D')
441
+ # if self.reverse_order:
442
+ # date_range = date_range[::-1]
443
+ # for date in date_range:
444
+ # yield date.date()
445
+ #
446
+ # def process(self, max_retries: int = 3):
447
+ # """
448
+ # Processes update tasks by generating an update plan, filtering required updates, and distributing
449
+ # the workload across threads based on priority levels.
450
+ #
451
+ # This method operates by assessing required updates through generated conditions,
452
+ # grouping them by priority levels, and processing them in parallel threads.
453
+ # Each thread handles the updates for a specific priority level, ensuring a streamlined approach
454
+ # to handling the updates efficiently.
455
+ #
456
+ # :param max_retries: Maximum number of retries for a task after a timeout. Defaults to 3.
457
+ # :raises TimeoutError: If a thread processing a priority level exceeds the allowed timeout duration.
458
+ # :return: None
459
+ # """
460
+ # update_plan_table = self.generate_update_plan_with_conditions()
461
+ #
462
+ # # Filter out rows that do not require updates (priority 0 means skip)
463
+ # with self._lock:
464
+ # update_plan_table = update_plan_table[
465
+ # (update_plan_table["update_required"] == True) & (update_plan_table["update_priority"] != 0)
466
+ # ]
467
+ # # Display the update plan table to the user if requested
468
+ # if len(update_plan_table.index) == 0:
469
+ # return
470
+ # if self.show_progress:
471
+ # display(update_plan_table)
472
+ # # Group by priority
473
+ # with self._lock:
474
+ # priorities = sorted(update_plan_table["update_priority"].unique())
475
+ #
476
+ # # We will process each priority level in its own thread.
477
+ # # Each thread will handle all dates associated with that priority.
478
+ # def process_priority(priority):
479
+ # # Extract dates for the current priority
480
+ # dates_to_process = update_plan_table[
481
+ # update_plan_table["update_priority"] == priority
482
+ # ]["date"].tolist()
483
+ #
484
+ # # If show_progress is True, wrap in a progress bar
485
+ # date_iterator = dates_to_process
486
+ # if self.show_progress:
487
+ # date_iterator = tqdm(date_iterator,
488
+ # desc=f"Processing priority {priority}:{self.dataclass.__name__}",
489
+ # unit="date")
490
+ #
491
+ # # Process each date for this priority
492
+ # for current_date in date_iterator:
493
+ # self.process_date(current_date)
494
+ #
495
+ # # Launch a separate thread for each priority
496
+ # with ThreadPoolExecutor(max_workers=len(priorities)) as executor:
497
+ # futures = {executor.submit(process_priority, p): p for p in priorities}
498
+ # retries = {p: 0 for p in priorities} # Track retry counts for each priority
499
+ #
500
+ # while futures:
501
+ # for future in list(futures.keys()):
502
+ # try:
503
+ # future.result(timeout=self.timeout)
504
+ # del futures[future] # Remove completed future
505
+ # except TimeoutError:
506
+ # priority = futures[future]
507
+ # retries[priority] += 1
508
+ #
509
+ # if retries[priority] <= max_retries:
510
+ # self.logger.warning(
511
+ # f"Thread for priority {priority} timed out. Retrying ({retries[priority]}/{max_retries})..."
512
+ # )
513
+ # new_future = executor.submit(process_priority, priority)
514
+ # futures[new_future] = priority
515
+ # else:
516
+ # self.logger.error(
517
+ # f"Thread for priority {priority} timed out. Max retries ({max_retries}) exceeded. Skipping."
518
+ # )
519
+ # del futures[future] # Remove the timed-out future
520
+ # except Exception as e:
521
+ # self.logger.error(f"Error processing priority {futures[future]}: {e}")
522
+ # del futures[future] # Remove the failed future
523
+ #
524
+ # def process_date(self, date: datetime.date):
525
+ # """
526
+ # Processes data for a given date and saves it as a Parquet file.
527
+ #
528
+ # This method processes data for the specified date by loading the data
529
+ # corresponding to that day, saving it into a structured storage format
530
+ # (Parquet), and logging relevant information such as processing time
531
+ # and errors that may occur during the process. It uses provided
532
+ # dataclass and parameters to operate and ensures the data is stored
533
+ # in a structured folder hierarchy.
534
+ #
535
+ # :param date: The specific date for which data processing and saving should occur
536
+ # :type date: datetime.date
537
+ # :return: None
538
+ # """
539
+ # folder = f'{self.data_path}{date.year}/{date.month:02d}/{date.day:02d}/'
540
+ # full_parquet_filename = f"{folder}{self.parquet_filename}"
541
+ #
542
+ # start_time = datetime.datetime.now()
543
+ # self.logger.info(f"Processing date: {date}")
544
+ # self.logger.info(f"Processing {full_parquet_filename}...")
545
+ #
546
+ # data_object = self.dataclass(**self.class_params)
547
+ # df = data_object.load_period(dt_field=self.date_field, start=date, end=date)
548
+ #
549
+ # if len(df.index) == 0:
550
+ # self.logger.error("No data found for the specified date.")
551
+ # return
552
+ #
553
+ # with self._lock:
554
+ # parquet_saver = ParquetSaver(df, parquet_storage_path=folder, logger=self.logger, fs=self.fs)
555
+ # parquet_saver.save_to_parquet(self.parquet_filename, clear_existing=True)
556
+ #
557
+ # end_time = datetime.datetime.now()
558
+ # duration_seconds = (end_time - start_time).total_seconds()
559
+ # self.logger.info(
560
+ # f"Data saved to {full_parquet_filename}. Processing time: {duration_seconds:.2f} seconds"
561
+ # )
562
+ #
563
+ # self.processed_dates.append(date)
564
+ # self.logger.info(f"Finished processing date: {date}")
565
+ #
566
+ # def generate_update_plan_with_conditions(self):
567
+ # """
568
+ # Generates an update plan for data files based on specific conditions. The function evaluates the need for updating or
569
+ # overwriting data files for a given date range. Conditions include file existence, whether the file falls within a
570
+ # specified historical threshold, and the necessity to overwrite or handle missing files. A priority map is utilized to
571
+ # assign priority levels to update categories.
572
+ #
573
+ # :raises FileNotFoundError: If any file is referenced that does not exist and the ``ignore_missing`` property is set to False.
574
+ # :raises AttributeError: If any required attribute like ``fs``, ``dataclass``, or others are not properly set or initialized.
575
+ #
576
+ # :return: A Pandas DataFrame representing the update plan, where each row contains information about a date, the conditions
577
+ # evaluated for that date, and the determined update priority.
578
+ # :rtype: pandas.DataFrame
579
+ # """
580
+ # rows = []
581
+ #
582
+ # today = datetime.date.today()
583
+ # history_start_date = today - datetime.timedelta(days=self.history_days_threshold)
584
+ # priority_map = {
585
+ # "file is recent":0,
586
+ # "overwrite": 1,
587
+ # "history_days": 2,
588
+ # "missing_files": 3
589
+ # }
590
+ # date_range = self.generate_date_range()
591
+ # if self.show_progress:
592
+ # date_range = tqdm(date_range, desc=f"Evaluating update plan:{self.dataclass.__name__}", unit="date")
593
+ #
594
+ # for current_date in date_range:
595
+ # folder = f'{self.data_path}{current_date.year}/{current_date.month:02d}/{current_date.day:02d}/'
596
+ # full_parquet_filename = f"{folder}{self.parquet_filename}"
597
+ #
598
+ # file_exists = self.fs.exists(full_parquet_filename)
599
+ # within_history = history_start_date <= current_date <= today
600
+ # missing_file = not file_exists and not self.ignore_missing
601
+ # category = None
602
+ # update_required = False
603
+ #
604
+ # # Hierarchy 1: Overwrite
605
+ # if self.overwrite:
606
+ # category = "overwrite"
607
+ # update_required = True
608
+ # elif missing_file and current_date < today:
609
+ # category = "missing_files"
610
+ # update_required = True
611
+ #
612
+ # elif within_history:
613
+ # if file_exists:
614
+ # if self.date_utils.is_file_older_than(
615
+ # full_parquet_filename,
616
+ # max_age_minutes=self.max_age_minutes,
617
+ # fs=self.fs,
618
+ # ignore_missing=self.ignore_missing,
619
+ # verbose=self.verbose
620
+ # ):
621
+ # category = "history_days"
622
+ # update_required = True
623
+ # else:
624
+ # category = "file is recent"
625
+ # update_required = False
626
+ # else:
627
+ # category = "missing_files"
628
+ # update_required = True
629
+ # else:
630
+ # category = "No Update Required"
631
+ # update_required = False
632
+ #
633
+ # # Collect condition descriptions for the update plan table
634
+ # row = {
635
+ # "date": current_date,
636
+ # "file_exists": file_exists,
637
+ # "within_history": within_history,
638
+ # "missing_file": missing_file,
639
+ # "update_required": update_required,
640
+ # "update_category": category,
641
+ # "datawrapper class": self.dataclass.__name__,
642
+ # "update_priority": priority_map.get(category, 0)
643
+ # }
644
+ # rows.append(row)
645
+ #
646
+ # update_plan_table = pd.DataFrame(rows)
647
+ # return update_plan_table
648
+ #
649
+ # # # wrapper.process()
650
+ # # # wrapper = DataWrapper(
651
+ # # # dataclass=YourDataClass,
652
+ # # # date_field="created_at",
653
+ # # # data_path="s3://your-bucket-name/path/to/data",
654
+ # # # parquet_filename="data.parquet",
655
+ # # # start_date="2022-01-01",
656
+ # # # end_date="2022-12-31",
657
+ # # # filesystem_type="s3",
658
+ # # # filesystem_options={
659
+ # # # "key": "your_aws_access_key",
660
+ # # # "secret": "your_aws_secret_key",
661
+ # # # "client_kwargs": {"endpoint_url": "https://s3.amazonaws.com"}
662
+ # # # },
663
+ # # # verbose=True
664
+ # # #)
665
+ # # #wrapper.process()