siat 3.9.1__py3-none-any.whl → 3.9.10__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
siat/event_study.py CHANGED
@@ -44,6 +44,15 @@ if __name__=='__main__':
44
44
  event_window=[1,1] #事件发生时股市已经收盘,故检测下一个交易日的股市反应
45
45
  market_index='000001.SS' #贵州茅台在上交所上市,故使用上证综合指数
46
46
  RF=0
47
+
48
+ #测试组1b
49
+ ticker='600519.SS'
50
+
51
+ event_date='2024-4-2' #贵州茅台2023年报于2024年4月2日晚披露
52
+ start='2024-3-1'; end='2024-4-30'
53
+ event_window=[0,2] #事件发生时股市已经收盘,故检测下一个交易日的股市反应
54
+ market_index='000001.SS' #贵州茅台在上交所上市,故使用上证综合指数
55
+ RF=0
47
56
 
48
57
  #测试组2
49
58
  ticker=['600519.SS','399997.SZ']
@@ -75,6 +84,7 @@ if __name__=='__main__':
75
84
  facecolor="whitesmoke"
76
85
  show_AR=True
77
86
  show_RF=True
87
+ show_BHAR=True
78
88
  loc='best'
79
89
 
80
90
  es=event_study("600519.SS",event_date="2024-4-2", \
@@ -111,8 +121,9 @@ def event_study(ticker,event_date, \
111
121
  RF="market index", \
112
122
  ret_type="Daily Adj Ret%", \
113
123
  ticker_type='auto', \
114
- facecolor="whitesmoke",show_AR='auto',show_RF=False, \
115
- loc='best'):
124
+ show_AR='auto',show_RF=False,show_BHAR=False, \
125
+ draw_CAR=True,draw_BHAR=False, \
126
+ facecolor="whitesmoke",loc='best'):
116
127
  """
117
128
  ===========================================================================
118
129
  功能:展示事件研究法的累计异常收益率CAR。
@@ -127,13 +138,15 @@ def event_study(ticker,event_date, \
127
138
  注意:事件窗口不一定包括事件日(适用于事件日在非交易日的情形,例如周末或假日,或者在当日闭市后发生)
128
139
  如果事件日为非交易日,事件窗口需要后移至事件日后的第一个交易日。
129
140
  如果怀疑市场提前对事件发生反应,可以考虑前移事件窗口的开始日期。
141
+ 使用CAR时,事件窗口长度一般为数日;使用BHAR时可长达数月。
130
142
  post_event_days:用于分析事件窗口后的漂移效应,取事件窗口后多少天。
131
143
  默认不分析,取0天。可以指定天数,注意是否跨过非交易日情形,过长的窗口期也可能混杂其他事件的影响。
132
144
  method:估计事件窗口以及事件后窗口收益率预期值的方法
133
- 默认为CAPM(主要用于ticker为股票等),即通常所说的市场模型。
145
+ 默认为CAPM(主要用于ticker为股票等),即通常所说的市场模型法。
134
146
  如果ticker为股票等,也可直接使用指数收益率为其预期收益率,此时method为Market或Index,即常说的市场调整模型。
135
147
  如果ticker为指数,无法再借助指数,method只能使用Random Walk,即使用前一个收益率为预期收益率。
136
148
  注意:不管多个ticker时里面的不同证券类型,仅按第一个ticker的类型判断,并使用同一种证券类型。
149
+ 使用CAR时,对每日异常收益率相加,反映短期逐日异常收益的累积;使用BHAR时则为复利累积,反映长期异常收益。
137
150
  early_response_days:默认为-2,即提前2天市场就开始有反应。
138
151
  市场很可能对事件提前发生反应(因为泄密等原因),例如中国市场规定上市公司董事会开完后两天内必须披露。
139
152
  很可能刚开完董事会,市场就得到了消息。为规避这种情况对估计窗口的影响,可以调节此参数。
@@ -145,12 +158,17 @@ def event_study(ticker,event_date, \
145
158
  默认使用市场模型"market index"自动计算,无需指定。
146
159
  可直接指定具体数值。
147
160
  也可指定特定指标替代,例如一年期中国国债收益率"1YCNY.B"或一年期美债收益率"1YUSY.B"等。
148
- show_RF:在使用市场模型或指定指标时是否显示计算出的RF均值,默认为False。
149
161
  ticker_type:显式指明ticker的证券类型,当siat误判其类型(中国内地股票/债券/基金)时使用,默认'auto'。
150
- facecolor:显式指定绘图背景颜色,默认"whitesmoke"
162
+ show_RF:在使用市场模型或指定指标时是否显示计算出的RF均值,默认为False
151
163
  show_AR:是否绘图时绘制异常收益率AR
152
164
  默认'auto'(单个ticker时绘制,多个时不绘制)。
153
165
  也可指定True/False强行绘制/不绘制。
166
+ show_BHAR;是否显示BHAR数值,适用于长期窗口,默认否False。
167
+ draw_CAR:是否绘制CAR曲线,默认是True。
168
+ draw_BHAR:是否绘制BHAR曲线,默认否False。
169
+ 注意:对于短期窗口,CAR曲线与BHAR曲线差异微小,可能基本重合,因此建议仅绘制其中之一。
170
+ facecolor:显式指定绘图背景颜色,默认"whitesmoke"。
171
+
154
172
 
155
173
  示例:美的收购库卡事件对股价的影响
156
174
  es=event_study(["000333.SZ"],
@@ -441,10 +459,11 @@ def event_study(ticker,event_date, \
441
459
  if DEBUG2:
442
460
  print(" DEBUG: RF_type={0}, RF_text={1}, rf_dict={2}".format(RF_type,RF_text, rf_dict))
443
461
 
444
- #=====计算CAR==============================================================
462
+ #=====计算CAR和BHAR==============================================================
445
463
  for t in ticker_name(ticker,ticker_type):
446
464
  try:
447
465
  df_ret[t+"_CAR"]=0
466
+ df_ret[t+"_BHAR"]=0
448
467
  except: continue
449
468
 
450
469
  event_window_startpd=pd.to_datetime(event_window_start)
@@ -452,11 +471,14 @@ def event_study(ticker,event_date, \
452
471
  post_event_endpd=pd.to_datetime(post_event_end)
453
472
  startpd=pd.to_datetime(start); endpd=pd.to_datetime(end)
454
473
 
455
- #计算CAR
474
+ #计算CAR和BHAR
456
475
  df_ret_event=df_ret[(df_ret.index >=event_window_startpd) & (df_ret.index <=endpd)]
457
476
  for t in ticker_name(ticker,ticker_type):
458
477
  try:
459
- df_ret_event[t+'_CAR'] = df_ret_event[t+'_AR'].cumsum()
478
+ # CAR:单利累加求和(每日异常收益相加)
479
+ df_ret_event[t+'_CAR'] = df_ret_event[t+'_AR'].cumsum(skipna=True)
480
+ # BHAR:复利累积
481
+ df_ret_event[t+'_BHAR'] = ((1+df_ret_event[t+'_AR']/100).cumprod()-1)*100
460
482
  except: continue
461
483
 
462
484
  #合成事件前期间
@@ -464,11 +486,12 @@ def event_study(ticker,event_date, \
464
486
  for t in ticker_name(ticker,ticker_type):
465
487
  try:
466
488
  df_ret_before_event[t+'_CAR']=np.nan
489
+ df_ret_before_event[t+'_BHAR']=np.nan
467
490
  except: continue
468
491
 
469
492
  df_show=pd.concat([df_ret_before_event,df_ret_event])
470
493
 
471
- #是否显示AR:默认单证券显示,多证券不显示
494
+ #是否显示AR:默认单证券显示,多证券时不显示
472
495
  df_show_cols=[]
473
496
  for c in list(df_show):
474
497
  if show_AR=='auto':
@@ -555,6 +578,17 @@ def event_study(ticker,event_date, \
555
578
  #footnote5=footnote5+c_name+p_value_str+","
556
579
  #footnote5=footnote5+"{0}({1}, {2}), ".format(c_name,car_value_str,p_value_str)
557
580
  footnote5=footnote5+"{0}({1}, {2}, {3}), ".format(c_name,car_mean_str,car_median_str,p_value_str)
581
+
582
+ if 'BHAR' in c.upper():
583
+ bhar_value=df_event_window[c][-1]
584
+ if bhar_value > 0:
585
+ bhar_value_str=str(round(bhar_value,4))[:6]
586
+ else:
587
+ bhar_value_str=str(round(bhar_value,4))[:7]
588
+
589
+ if show_BHAR:
590
+ footnote5=footnote5+"BHAR: {0}, ".format(bhar_value_str)
591
+
558
592
  footnote5=footnote5.strip(", ")
559
593
 
560
594
  #显著性检验:异于零的t检验,事件后窗口
@@ -606,6 +640,17 @@ def event_study(ticker,event_date, \
606
640
 
607
641
  #footnote6=footnote6+c[:-4]+str(p_value)[:6]+","
608
642
  footnote6=footnote6+"{0}({1}, {2}, {3}), ".format(c_name,car_mean_str,car_median_str,p_value_str)
643
+
644
+ if 'BHAR' in c.upper():
645
+ bhar_value=df_post_event_window[c][-1]
646
+ if bhar_value > 0:
647
+ bhar_value_str=str(round(bhar_value,4))[:6]
648
+ else:
649
+ bhar_value_str=str(round(bhar_value,4))[:7]
650
+
651
+ if show_BHAR:
652
+ footnote6=footnote6+"BHAR: {0}, ".format(bhar_value_str)
653
+
609
654
  footnote6=footnote6.strip(", ")
610
655
 
611
656
  footnote7="数据来源:Sina/EM/Yahoo/Stooq/SWHY,"+stoday
@@ -659,8 +704,16 @@ def event_study(ticker,event_date, \
659
704
  attention_point.sort(reverse=False)
660
705
  attention_point=list({}.fromkeys(attention_point).keys())
661
706
 
707
+ # 是否绘制CAR或BHAR曲线:对于短期窗口,CAR曲线和BHAR曲线很可能基本重合,建议仅绘制其中之一!
708
+ df0draw=df0.copy()
709
+ for c in list(df0draw):
710
+ if not draw_CAR and 'CAR' in c:
711
+ del df0draw[c]
712
+ if not draw_BHAR and 'BHAR' in c:
713
+ del df0draw[c]
714
+
662
715
  #绘图
663
- draw_lines(df0,y_label,x_label,axhline_value,axhline_label,title_txt, \
716
+ draw_lines(df0draw,y_label,x_label,axhline_value,axhline_label,title_txt, \
664
717
  data_label=False, \
665
718
  loc=loc,resample_freq='D',smooth=False, \
666
719
  annotate=True,annotate_value=False, \
@@ -668,7 +721,7 @@ def event_study(ticker,event_date, \
668
721
  attention_point_area=attention_point_area, \
669
722
  ticker_type=ticker_type,facecolor=facecolor)
670
723
 
671
- #=====输出AR和/或CAR表格====================================================
724
+ #=====输出AR和/或CAR或BHAR表格====================================================
672
725
  df1=df0.copy()
673
726
  #df1=df1.replace([np.nan, None], np.nan).dropna()
674
727
  df1=df1.replace([np.nan, None],'-')
@@ -735,6 +788,10 @@ def event_study(ticker,event_date, \
735
788
  else:
736
789
  footnote=footnote2+footnote3+footnote4+'\n'+footnote5+'\n'+footnote6
737
790
 
791
+ for c in list(df1):
792
+ if not show_BHAR and 'BHAR' in c:
793
+ del df1[c]
794
+
738
795
  #显示结果表格
739
796
  df_display_CSS(df1,titletxt=title_txt,footnote=footnote,facecolor=facecolor,decimals=4, \
740
797
  first_col_align='left',second_col_align='left', \
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: siat
3
- Version: 3.9.1
3
+ Version: 3.9.10
4
4
  Summary: Securities Investment Analysis Tools (siat)
5
5
  Home-page: https://pypi.org/project/siat/
6
6
  Author: Prof. WANG Dehong, International Business School, Beijing Foreign Studies University
@@ -34,7 +34,7 @@ siat/economy2.py,sha256=inmArHl43HFnSn6O4uY-xcsQY93IyMlFet3pQ7JpsjM,81089
34
34
  siat/economy_test.py,sha256=6vjNlPz7W125pJb7simCddobSEp3jmLIMvVkLRZ7zW8,13339
35
35
  siat/esg.py,sha256=GMhaonIKtvOK83rhpQUH5aJt2OL3HQBSVfD__Yw-0oo,19040
36
36
  siat/esg_test.py,sha256=Z9m6GUt8O7oHZSEG9aDYpGdvvrv2AiRJdHTiU6jqmZ0,2944
37
- siat/event_study.py,sha256=30ji4TP4xztNVjQdkBlwWstkCIGg6McTYe8dWlbloTg,34341
37
+ siat/event_study.py,sha256=xhWpKMcLbXxyFWADxgEeMLp_370CsPonGlELbpOJVLA,36978
38
38
  siat/exchange_bond_china.pickle,sha256=zDqdPrFacQ0nqjP_SuF6Yy87EgijIRsFvFroW7FAYYY,1265092
39
39
  siat/fama_french.py,sha256=aUTC-67t_CEPbLk4u79woW_zfZ7OCP6Fo4z5EdWCSkQ,48051
40
40
  siat/fama_french_test.py,sha256=M4O23lBKsJxhWHRluwCb3l7HSEn3OFTjzGMpehcevRg,4678
@@ -145,8 +145,8 @@ siat/valuation_china.py,sha256=eSKIDckyjG8QkENlW_OKkqbQHno8pzDcomBO9iGNJVM,83079
145
145
  siat/valuation_market_china_test.py,sha256=gbJ0ioauuo4koTPH6WKUkqcXiQPafnbhU5eKJ6lpdLA,1571
146
146
  siat/var_model_validation.py,sha256=R0caWnuZarrRg9939hxh3vJIIpIyPfvelYmzFNZtPbo,14910
147
147
  siat/yf_name.py,sha256=laNKMTZ9hdenGX3IZ7G0a2RLBKEWtUQJFY9CWuk_fp8,24058
148
- siat-3.9.1.dist-info/LICENSE,sha256=NTEMMROY9_4U1szoKC3N2BLHcDd_o5uTgqdVH8tbApw,1071
149
- siat-3.9.1.dist-info/METADATA,sha256=TdLVtDZHF0gBr7cfi0UwFMXUD69-PUAsoZIRgwTu2MA,8334
150
- siat-3.9.1.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
151
- siat-3.9.1.dist-info/top_level.txt,sha256=r1cVyL7AIKqeAmEJjNR8FMT20OmEzufDstC2gv3NvEY,5
152
- siat-3.9.1.dist-info/RECORD,,
148
+ siat-3.9.10.dist-info/LICENSE,sha256=NTEMMROY9_4U1szoKC3N2BLHcDd_o5uTgqdVH8tbApw,1071
149
+ siat-3.9.10.dist-info/METADATA,sha256=tcyrbbCQ4PKsHAi4jCkJXdIAXyCicGRom6snzC3cqso,8335
150
+ siat-3.9.10.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
151
+ siat-3.9.10.dist-info/top_level.txt,sha256=r1cVyL7AIKqeAmEJjNR8FMT20OmEzufDstC2gv3NvEY,5
152
+ siat-3.9.10.dist-info/RECORD,,
File without changes
File without changes