siat 3.8.48__py3-none-any.whl → 3.9.10__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- siat/allin.py +1 -0
- siat/event_study.py +68 -11
- siat/grafix.py +32 -11
- siat/other_indexes.py +189 -0
- siat/security_price2.py +8 -2
- siat/translate.py +27 -1
- {siat-3.8.48.dist-info → siat-3.9.10.dist-info}/METADATA +1 -1
- {siat-3.8.48.dist-info → siat-3.9.10.dist-info}/RECORD +11 -10
- {siat-3.8.48.dist-info → siat-3.9.10.dist-info}/LICENSE +0 -0
- {siat-3.8.48.dist-info → siat-3.9.10.dist-info}/WHEEL +0 -0
- {siat-3.8.48.dist-info → siat-3.9.10.dist-info}/top_level.txt +0 -0
siat/allin.py
CHANGED
siat/event_study.py
CHANGED
@@ -44,6 +44,15 @@ if __name__=='__main__':
|
|
44
44
|
event_window=[1,1] #事件发生时股市已经收盘,故检测下一个交易日的股市反应
|
45
45
|
market_index='000001.SS' #贵州茅台在上交所上市,故使用上证综合指数
|
46
46
|
RF=0
|
47
|
+
|
48
|
+
#测试组1b
|
49
|
+
ticker='600519.SS'
|
50
|
+
|
51
|
+
event_date='2024-4-2' #贵州茅台2023年报于2024年4月2日晚披露
|
52
|
+
start='2024-3-1'; end='2024-4-30'
|
53
|
+
event_window=[0,2] #事件发生时股市已经收盘,故检测下一个交易日的股市反应
|
54
|
+
market_index='000001.SS' #贵州茅台在上交所上市,故使用上证综合指数
|
55
|
+
RF=0
|
47
56
|
|
48
57
|
#测试组2
|
49
58
|
ticker=['600519.SS','399997.SZ']
|
@@ -75,6 +84,7 @@ if __name__=='__main__':
|
|
75
84
|
facecolor="whitesmoke"
|
76
85
|
show_AR=True
|
77
86
|
show_RF=True
|
87
|
+
show_BHAR=True
|
78
88
|
loc='best'
|
79
89
|
|
80
90
|
es=event_study("600519.SS",event_date="2024-4-2", \
|
@@ -111,8 +121,9 @@ def event_study(ticker,event_date, \
|
|
111
121
|
RF="market index", \
|
112
122
|
ret_type="Daily Adj Ret%", \
|
113
123
|
ticker_type='auto', \
|
114
|
-
|
115
|
-
|
124
|
+
show_AR='auto',show_RF=False,show_BHAR=False, \
|
125
|
+
draw_CAR=True,draw_BHAR=False, \
|
126
|
+
facecolor="whitesmoke",loc='best'):
|
116
127
|
"""
|
117
128
|
===========================================================================
|
118
129
|
功能:展示事件研究法的累计异常收益率CAR。
|
@@ -127,13 +138,15 @@ def event_study(ticker,event_date, \
|
|
127
138
|
注意:事件窗口不一定包括事件日(适用于事件日在非交易日的情形,例如周末或假日,或者在当日闭市后发生)
|
128
139
|
如果事件日为非交易日,事件窗口需要后移至事件日后的第一个交易日。
|
129
140
|
如果怀疑市场提前对事件发生反应,可以考虑前移事件窗口的开始日期。
|
141
|
+
使用CAR时,事件窗口长度一般为数日;使用BHAR时可长达数月。
|
130
142
|
post_event_days:用于分析事件窗口后的漂移效应,取事件窗口后多少天。
|
131
143
|
默认不分析,取0天。可以指定天数,注意是否跨过非交易日情形,过长的窗口期也可能混杂其他事件的影响。
|
132
144
|
method:估计事件窗口以及事件后窗口收益率预期值的方法
|
133
|
-
默认为CAPM(主要用于ticker
|
145
|
+
默认为CAPM(主要用于ticker为股票等),即通常所说的市场模型法。
|
134
146
|
如果ticker为股票等,也可直接使用指数收益率为其预期收益率,此时method为Market或Index,即常说的市场调整模型。
|
135
147
|
如果ticker为指数,无法再借助指数,method只能使用Random Walk,即使用前一个收益率为预期收益率。
|
136
148
|
注意:不管多个ticker时里面的不同证券类型,仅按第一个ticker的类型判断,并使用同一种证券类型。
|
149
|
+
使用CAR时,对每日异常收益率相加,反映短期逐日异常收益的累积;使用BHAR时则为复利累积,反映长期异常收益。
|
137
150
|
early_response_days:默认为-2,即提前2天市场就开始有反应。
|
138
151
|
市场很可能对事件提前发生反应(因为泄密等原因),例如中国市场规定上市公司董事会开完后两天内必须披露。
|
139
152
|
很可能刚开完董事会,市场就得到了消息。为规避这种情况对估计窗口的影响,可以调节此参数。
|
@@ -145,12 +158,17 @@ def event_study(ticker,event_date, \
|
|
145
158
|
默认使用市场模型"market index"自动计算,无需指定。
|
146
159
|
可直接指定具体数值。
|
147
160
|
也可指定特定指标替代,例如一年期中国国债收益率"1YCNY.B"或一年期美债收益率"1YUSY.B"等。
|
148
|
-
show_RF:在使用市场模型或指定指标时是否显示计算出的RF均值,默认为False。
|
149
161
|
ticker_type:显式指明ticker的证券类型,当siat误判其类型(中国内地股票/债券/基金)时使用,默认'auto'。
|
150
|
-
|
162
|
+
show_RF:在使用市场模型或指定指标时是否显示计算出的RF均值,默认为False。
|
151
163
|
show_AR:是否绘图时绘制异常收益率AR
|
152
164
|
默认'auto'(单个ticker时绘制,多个时不绘制)。
|
153
165
|
也可指定True/False强行绘制/不绘制。
|
166
|
+
show_BHAR;是否显示BHAR数值,适用于长期窗口,默认否False。
|
167
|
+
draw_CAR:是否绘制CAR曲线,默认是True。
|
168
|
+
draw_BHAR:是否绘制BHAR曲线,默认否False。
|
169
|
+
注意:对于短期窗口,CAR曲线与BHAR曲线差异微小,可能基本重合,因此建议仅绘制其中之一。
|
170
|
+
facecolor:显式指定绘图背景颜色,默认"whitesmoke"。
|
171
|
+
|
154
172
|
|
155
173
|
示例:美的收购库卡事件对股价的影响
|
156
174
|
es=event_study(["000333.SZ"],
|
@@ -441,10 +459,11 @@ def event_study(ticker,event_date, \
|
|
441
459
|
if DEBUG2:
|
442
460
|
print(" DEBUG: RF_type={0}, RF_text={1}, rf_dict={2}".format(RF_type,RF_text, rf_dict))
|
443
461
|
|
444
|
-
#=====计算CAR==============================================================
|
462
|
+
#=====计算CAR和BHAR==============================================================
|
445
463
|
for t in ticker_name(ticker,ticker_type):
|
446
464
|
try:
|
447
465
|
df_ret[t+"_CAR"]=0
|
466
|
+
df_ret[t+"_BHAR"]=0
|
448
467
|
except: continue
|
449
468
|
|
450
469
|
event_window_startpd=pd.to_datetime(event_window_start)
|
@@ -452,11 +471,14 @@ def event_study(ticker,event_date, \
|
|
452
471
|
post_event_endpd=pd.to_datetime(post_event_end)
|
453
472
|
startpd=pd.to_datetime(start); endpd=pd.to_datetime(end)
|
454
473
|
|
455
|
-
#计算CAR
|
474
|
+
#计算CAR和BHAR
|
456
475
|
df_ret_event=df_ret[(df_ret.index >=event_window_startpd) & (df_ret.index <=endpd)]
|
457
476
|
for t in ticker_name(ticker,ticker_type):
|
458
477
|
try:
|
459
|
-
|
478
|
+
# CAR:单利累加求和(每日异常收益相加)
|
479
|
+
df_ret_event[t+'_CAR'] = df_ret_event[t+'_AR'].cumsum(skipna=True)
|
480
|
+
# BHAR:复利累积
|
481
|
+
df_ret_event[t+'_BHAR'] = ((1+df_ret_event[t+'_AR']/100).cumprod()-1)*100
|
460
482
|
except: continue
|
461
483
|
|
462
484
|
#合成事件前期间
|
@@ -464,11 +486,12 @@ def event_study(ticker,event_date, \
|
|
464
486
|
for t in ticker_name(ticker,ticker_type):
|
465
487
|
try:
|
466
488
|
df_ret_before_event[t+'_CAR']=np.nan
|
489
|
+
df_ret_before_event[t+'_BHAR']=np.nan
|
467
490
|
except: continue
|
468
491
|
|
469
492
|
df_show=pd.concat([df_ret_before_event,df_ret_event])
|
470
493
|
|
471
|
-
#是否显示AR
|
494
|
+
#是否显示AR:默认单证券显示,多证券时不显示
|
472
495
|
df_show_cols=[]
|
473
496
|
for c in list(df_show):
|
474
497
|
if show_AR=='auto':
|
@@ -555,6 +578,17 @@ def event_study(ticker,event_date, \
|
|
555
578
|
#footnote5=footnote5+c_name+p_value_str+","
|
556
579
|
#footnote5=footnote5+"{0}({1}, {2}), ".format(c_name,car_value_str,p_value_str)
|
557
580
|
footnote5=footnote5+"{0}({1}, {2}, {3}), ".format(c_name,car_mean_str,car_median_str,p_value_str)
|
581
|
+
|
582
|
+
if 'BHAR' in c.upper():
|
583
|
+
bhar_value=df_event_window[c][-1]
|
584
|
+
if bhar_value > 0:
|
585
|
+
bhar_value_str=str(round(bhar_value,4))[:6]
|
586
|
+
else:
|
587
|
+
bhar_value_str=str(round(bhar_value,4))[:7]
|
588
|
+
|
589
|
+
if show_BHAR:
|
590
|
+
footnote5=footnote5+"BHAR: {0}, ".format(bhar_value_str)
|
591
|
+
|
558
592
|
footnote5=footnote5.strip(", ")
|
559
593
|
|
560
594
|
#显著性检验:异于零的t检验,事件后窗口
|
@@ -606,6 +640,17 @@ def event_study(ticker,event_date, \
|
|
606
640
|
|
607
641
|
#footnote6=footnote6+c[:-4]+str(p_value)[:6]+","
|
608
642
|
footnote6=footnote6+"{0}({1}, {2}, {3}), ".format(c_name,car_mean_str,car_median_str,p_value_str)
|
643
|
+
|
644
|
+
if 'BHAR' in c.upper():
|
645
|
+
bhar_value=df_post_event_window[c][-1]
|
646
|
+
if bhar_value > 0:
|
647
|
+
bhar_value_str=str(round(bhar_value,4))[:6]
|
648
|
+
else:
|
649
|
+
bhar_value_str=str(round(bhar_value,4))[:7]
|
650
|
+
|
651
|
+
if show_BHAR:
|
652
|
+
footnote6=footnote6+"BHAR: {0}, ".format(bhar_value_str)
|
653
|
+
|
609
654
|
footnote6=footnote6.strip(", ")
|
610
655
|
|
611
656
|
footnote7="数据来源:Sina/EM/Yahoo/Stooq/SWHY,"+stoday
|
@@ -659,8 +704,16 @@ def event_study(ticker,event_date, \
|
|
659
704
|
attention_point.sort(reverse=False)
|
660
705
|
attention_point=list({}.fromkeys(attention_point).keys())
|
661
706
|
|
707
|
+
# 是否绘制CAR或BHAR曲线:对于短期窗口,CAR曲线和BHAR曲线很可能基本重合,建议仅绘制其中之一!
|
708
|
+
df0draw=df0.copy()
|
709
|
+
for c in list(df0draw):
|
710
|
+
if not draw_CAR and 'CAR' in c:
|
711
|
+
del df0draw[c]
|
712
|
+
if not draw_BHAR and 'BHAR' in c:
|
713
|
+
del df0draw[c]
|
714
|
+
|
662
715
|
#绘图
|
663
|
-
draw_lines(
|
716
|
+
draw_lines(df0draw,y_label,x_label,axhline_value,axhline_label,title_txt, \
|
664
717
|
data_label=False, \
|
665
718
|
loc=loc,resample_freq='D',smooth=False, \
|
666
719
|
annotate=True,annotate_value=False, \
|
@@ -668,7 +721,7 @@ def event_study(ticker,event_date, \
|
|
668
721
|
attention_point_area=attention_point_area, \
|
669
722
|
ticker_type=ticker_type,facecolor=facecolor)
|
670
723
|
|
671
|
-
#=====输出AR和/或CAR表格====================================================
|
724
|
+
#=====输出AR和/或CAR或BHAR表格====================================================
|
672
725
|
df1=df0.copy()
|
673
726
|
#df1=df1.replace([np.nan, None], np.nan).dropna()
|
674
727
|
df1=df1.replace([np.nan, None],'-')
|
@@ -735,6 +788,10 @@ def event_study(ticker,event_date, \
|
|
735
788
|
else:
|
736
789
|
footnote=footnote2+footnote3+footnote4+'\n'+footnote5+'\n'+footnote6
|
737
790
|
|
791
|
+
for c in list(df1):
|
792
|
+
if not show_BHAR and 'BHAR' in c:
|
793
|
+
del df1[c]
|
794
|
+
|
738
795
|
#显示结果表格
|
739
796
|
df_display_CSS(df1,titletxt=title_txt,footnote=footnote,facecolor=facecolor,decimals=4, \
|
740
797
|
first_col_align='left',second_col_align='left', \
|
siat/grafix.py
CHANGED
@@ -331,7 +331,9 @@ def plot_line(df0,colname,collabel,ylabeltxt,titletxt,footnote,datatag=False, \
|
|
331
331
|
atpd=at
|
332
332
|
|
333
333
|
if DEBUG: print(f"atpd={atpd}")
|
334
|
-
|
334
|
+
at_str=atpd.strftime('%Y-%m-%d')
|
335
|
+
#plt.axvline(x=atpd,ls=":",c=color,linewidth=1.5,label=text_lang("关注点","Attention point ")+str(at))
|
336
|
+
plt.axvline(x=atpd,ls=":",c=color,linewidth=1.5,label=text_lang("关注点","Attention point ")+at_str)
|
335
337
|
|
336
338
|
if not attention_point_area=='':
|
337
339
|
if isinstance(attention_point_area,list) and len(attention_point_area)>=2:
|
@@ -722,8 +724,9 @@ def plot_line2_coaxial(df01,ticker1,colname1,label1, \
|
|
722
724
|
|
723
725
|
if DEBUG:
|
724
726
|
print("atpd=",atpd)
|
725
|
-
|
726
|
-
|
727
|
+
|
728
|
+
at_str=atpd.strftime('%Y-%m-%d')
|
729
|
+
plt.axvline(x=atpd,ls=":",c=color,linewidth=1.5,label=text_lang("关注点","Attention point ")+at_str)
|
727
730
|
|
728
731
|
if not attention_point_area=='':
|
729
732
|
if isinstance(attention_point_area,list) and len(attention_point_area)>=2:
|
@@ -992,8 +995,10 @@ def plot_line2_coaxial2(df01,ticker1,colname1,label1, \
|
|
992
995
|
|
993
996
|
if DEBUG:
|
994
997
|
print("atpd=",atpd)
|
995
|
-
|
996
|
-
|
998
|
+
|
999
|
+
at_str=atpd.strftime('%Y-%m-%d')
|
1000
|
+
#plt.axvline(x=atpd,ls=":",c=color,linewidth=1.5,label=text_lang("关注点","Attention point ")+str(at))
|
1001
|
+
plt.axvline(x=atpd,ls=":",c=color,linewidth=1.5,label=text_lang("关注点","Attention point ")+at_str)
|
997
1002
|
|
998
1003
|
if not attention_point_area=='':
|
999
1004
|
if isinstance(attention_point_area,list) and len(attention_point_area)>=2:
|
@@ -1207,7 +1212,9 @@ def plot_line2_twinx(df01,ticker1,colname1,label1, \
|
|
1207
1212
|
atpd=pd.to_datetime(at)
|
1208
1213
|
except:
|
1209
1214
|
atpd=at
|
1210
|
-
|
1215
|
+
|
1216
|
+
at_str=atpd.strftime('%Y-%m-%d')
|
1217
|
+
plt.axvline(x=atpd,ls=":",c=color,linewidth=1.5,label=text_lang("关注点","Attention point ")+at_str)
|
1211
1218
|
|
1212
1219
|
if not attention_point_area=='':
|
1213
1220
|
if isinstance(attention_point_area,list) and len(attention_point_area)>=2:
|
@@ -1455,7 +1462,10 @@ def plot_line2_LR(df01,ticker1,colname1,label1, \
|
|
1455
1462
|
atpd=pd.to_datetime(at)
|
1456
1463
|
except:
|
1457
1464
|
atpd=at
|
1458
|
-
|
1465
|
+
|
1466
|
+
at_str=atpd.strftime('%Y-%m-%d')
|
1467
|
+
#ax.axvline(x=atpd,ls=":",c=color,linewidth=1.5,label=text_lang("关注点","Attention point ")+str(at))
|
1468
|
+
ax.axvline(x=atpd,ls=":",c=color,linewidth=1.5,label=text_lang("关注点","Attention point ")+at_str)
|
1459
1469
|
|
1460
1470
|
if not attention_point_area=='':
|
1461
1471
|
if isinstance(attention_point_area,list) and len(attention_point_area)>=2:
|
@@ -1698,7 +1708,10 @@ def plot_line2_UD(df01,ticker1,colname1,label1, \
|
|
1698
1708
|
atpd=pd.to_datetime(at)
|
1699
1709
|
except:
|
1700
1710
|
atpd=at
|
1701
|
-
|
1711
|
+
|
1712
|
+
at_str=atpd.strftime('%Y-%m-%d')
|
1713
|
+
#ax.axvline(x=atpd,ls=":",c=color,linewidth=1.5,label=text_lang("关注点","Attention point ")+str(at))
|
1714
|
+
ax.axvline(x=atpd,ls=":",c=color,linewidth=1.5,label=text_lang("关注点","Attention point ")+at_str)
|
1702
1715
|
|
1703
1716
|
if not attention_point_area=='':
|
1704
1717
|
if isinstance(attention_point_area,list) and len(attention_point_area)>=2:
|
@@ -1938,7 +1951,10 @@ def plot_line2_twinx2(df01,ticker1,colname1,label1, \
|
|
1938
1951
|
atpd=pd.to_datetime(at)
|
1939
1952
|
except:
|
1940
1953
|
atpd=at
|
1941
|
-
|
1954
|
+
|
1955
|
+
at_str=atpd.strftime('%Y-%m-%d')
|
1956
|
+
#plt.axvline(x=atpd,ls=":",c=color,linewidth=1.5,label=text_lang("关注点","Attention point ")+str(at))
|
1957
|
+
plt.axvline(x=atpd,ls=":",c=color,linewidth=1.5,label=text_lang("关注点","Attention point ")+at_str)
|
1942
1958
|
|
1943
1959
|
if not attention_point_area=='':
|
1944
1960
|
if isinstance(attention_point_area,list) and len(attention_point_area)>=2:
|
@@ -2406,7 +2422,9 @@ def draw_lines(df0,y_label,x_label,axhline_value,axhline_label,title_txt, \
|
|
2406
2422
|
plt.arrow(atpd,yaxis_min,arrow_dx,arrow_dy,ls=':',lw=2,fc=color,ec=color,alpha=0.5,shape='full', \
|
2407
2423
|
width=0.05,length_includes_head=True)
|
2408
2424
|
"""
|
2409
|
-
|
2425
|
+
at_str=atpd.strftime('%Y-%m-%d')
|
2426
|
+
#plt.axvline(x=atpd,ls=":",c=color,linewidth=1.5,label=text_lang("关注点","Attention point ")+str(at))
|
2427
|
+
plt.axvline(x=atpd,ls=":",c=color,linewidth=1.5,label=text_lang("关注点","Attention point ")+at_str)
|
2410
2428
|
|
2411
2429
|
if not attention_point_area=='':
|
2412
2430
|
if isinstance(attention_point_area,list) and len(attention_point_area)>=2:
|
@@ -2782,7 +2800,10 @@ def draw_lines2(df0,y_label,x_label,axhline_value,axhline_label,title_txt, \
|
|
2782
2800
|
atpd=pd.to_datetime(at)
|
2783
2801
|
except:
|
2784
2802
|
atpd=at
|
2785
|
-
|
2803
|
+
|
2804
|
+
at_str=atpd.strftime('%Y-%m-%d')
|
2805
|
+
#plt.axvline(x=atpd,ls=":",c=color,linewidth=1.5,label=text_lang("关注点","Attention point ")+str(at))
|
2806
|
+
plt.axvline(x=atpd,ls=":",c=color,linewidth=1.5,label=text_lang("关注点","Attention point ")+at_str)
|
2786
2807
|
|
2787
2808
|
if not attention_point_area=='':
|
2788
2809
|
if isinstance(attention_point_area,list) and len(attention_point_area)>=2:
|
siat/other_indexes.py
ADDED
@@ -0,0 +1,189 @@
|
|
1
|
+
# -*- coding: utf-8 -*-
|
2
|
+
"""
|
3
|
+
本模块功能:另类证券市场指数
|
4
|
+
所属工具包:证券投资分析工具SIAT
|
5
|
+
SIAT:Security Investment Analysis Tool
|
6
|
+
创建日期:2025年5月8日
|
7
|
+
最新修订日期:
|
8
|
+
作者:王德宏 (WANG Dehong, Peter)
|
9
|
+
作者单位:北京外国语大学国际商学院
|
10
|
+
作者邮件:wdehong2000@163.com
|
11
|
+
版权所有:王德宏
|
12
|
+
用途限制:仅限研究与教学使用,不可商用!商用需要额外授权。
|
13
|
+
特别声明:作者不对使用本工具进行证券投资导致的任何损益负责!
|
14
|
+
"""
|
15
|
+
#==============================================================================
|
16
|
+
#关闭所有警告
|
17
|
+
import warnings; warnings.filterwarnings('ignore')
|
18
|
+
|
19
|
+
from siat.common import *
|
20
|
+
#==============================================================================
|
21
|
+
|
22
|
+
|
23
|
+
def other_index_translate(index_code):
|
24
|
+
"""
|
25
|
+
===========================================================================
|
26
|
+
功能:另类证券市场指数代码
|
27
|
+
参数:
|
28
|
+
index_code: 指数代码,非标准,来自东方财富和新浪。
|
29
|
+
返回值:是否找到,基于语言环境为中文或英文解释。
|
30
|
+
语言环境判断为check_language()
|
31
|
+
|
32
|
+
数据结构:['指数代码','指数符号','指数名称中文','指数名称英文','数据来源']
|
33
|
+
"""
|
34
|
+
|
35
|
+
import pandas as pd
|
36
|
+
trans_dict=pd.DataFrame([
|
37
|
+
|
38
|
+
['INDEXCF','俄罗斯MICEX指数','俄罗斯MICEX指数','MICEX Index','sina'],
|
39
|
+
['RTS','俄罗斯RTS指数','俄罗斯RTS指数','RTS Index','sina'],
|
40
|
+
['CASE','埃及CASE 30指数','埃及CASE30指数','CASE30 Index','sina'],
|
41
|
+
['VNINDEX','越南胡志明','越南胡志明指数','Ho Chi-Ming Index','em'],
|
42
|
+
['HSCEI','国企指数','港股国企指数','HK H-share Index','em'],
|
43
|
+
['HSCCI','红筹指数','港股红筹指数','HK Red-share Index','em'],
|
44
|
+
['CSEALL','斯里兰卡科伦坡','斯里兰卡科伦坡全指','Colombo Index','em'],
|
45
|
+
['UDI','美元指数','美元指数','US Dollar Index','em'],
|
46
|
+
['CRB','路透CRB商品指数','路透CRB商品指数','Reuters CRB Index','em'],
|
47
|
+
['BDI','波罗的海BDI指数','波罗的海BDI指数','Baltic Dry Index','em'],
|
48
|
+
['KSE100','巴基斯坦卡拉奇','巴基斯坦卡拉奇指数','KSE100 Index','em'],
|
49
|
+
|
50
|
+
|
51
|
+
], columns=['code','symbol','name_cn','name_en','source'])
|
52
|
+
|
53
|
+
found=False; symbol=index_code
|
54
|
+
try:
|
55
|
+
dict_word=trans_dict[trans_dict['code']==index_code]
|
56
|
+
found=True
|
57
|
+
except:
|
58
|
+
#未查到翻译词汇,返回原词
|
59
|
+
pass
|
60
|
+
|
61
|
+
if dict_word is None:
|
62
|
+
found=False
|
63
|
+
elif len(dict_word) == 0:
|
64
|
+
found=False
|
65
|
+
|
66
|
+
source=''; name=''
|
67
|
+
if found:
|
68
|
+
symbol=dict_word['symbol'].values[0]
|
69
|
+
|
70
|
+
lang=check_language()
|
71
|
+
if lang == 'Chinese':
|
72
|
+
name=dict_word['name_cn'].values[0]
|
73
|
+
else:
|
74
|
+
name=dict_word['name_en'].values[0]
|
75
|
+
|
76
|
+
source=dict_word['source'].values[0]
|
77
|
+
|
78
|
+
return symbol,name,source
|
79
|
+
|
80
|
+
if __name__=='__main__':
|
81
|
+
index_code='KSE100'
|
82
|
+
index_code='CASE'
|
83
|
+
index_code='XYZ'
|
84
|
+
|
85
|
+
set_language('Chinese')
|
86
|
+
set_language('English')
|
87
|
+
other_index_translate(index_code)
|
88
|
+
|
89
|
+
#==============================================================================
|
90
|
+
def get_other_index_em(index_code,start,end):
|
91
|
+
"""
|
92
|
+
功能:获取另类指数历史行情,东方财富
|
93
|
+
参数:
|
94
|
+
index_code:指数代码
|
95
|
+
start,end:开始/结束日期
|
96
|
+
"""
|
97
|
+
symbol,name,source=other_index_translate(index_code)
|
98
|
+
if symbol == index_code:
|
99
|
+
return None
|
100
|
+
|
101
|
+
import akshare as ak
|
102
|
+
dft = ak.index_global_hist_em(symbol=symbol)
|
103
|
+
dft.rename(columns={'日期':'Date','代码':'ticker','名称':'Name','今开':'Open', \
|
104
|
+
'最新价':'Close','最高':'High','最低':'Low','振幅':'Change'}, \
|
105
|
+
inplace=True)
|
106
|
+
dft['Change']=dft['Change']/100.00
|
107
|
+
dft['Adj Close']=dft['Close']
|
108
|
+
dft['source']=source
|
109
|
+
dft['Volume']=0
|
110
|
+
dft['Name']=name
|
111
|
+
|
112
|
+
import pandas as pd
|
113
|
+
dft['date']=dft['Date'].apply(lambda x: pd.to_datetime(x))
|
114
|
+
dft.set_index('date',inplace=True)
|
115
|
+
|
116
|
+
startpd=pd.to_datetime(start); endpd=pd.to_datetime(end)
|
117
|
+
df=dft[(dft.index >= startpd) & (dft.index <= endpd)]
|
118
|
+
|
119
|
+
return df
|
120
|
+
|
121
|
+
if __name__=='__main__':
|
122
|
+
index_code='KSE100'
|
123
|
+
start='2025-2-1'; end='2025-3-31'
|
124
|
+
get_other_index_em(index_code,start,end)
|
125
|
+
#==============================================================================
|
126
|
+
def get_other_index_sina(index_code,start,end):
|
127
|
+
"""
|
128
|
+
功能:获取另类指数历史行情,新浪财经
|
129
|
+
参数:
|
130
|
+
index_code:指数代码
|
131
|
+
start,end:开始/结束日期
|
132
|
+
"""
|
133
|
+
symbol,name,source=other_index_translate(index_code)
|
134
|
+
if symbol == index_code:
|
135
|
+
return None
|
136
|
+
|
137
|
+
import akshare as ak
|
138
|
+
dft = ak.index_global_hist_sina(symbol=symbol)
|
139
|
+
dft.rename(columns={'open':'Open','high':'High','low':'Low','close':'Close', \
|
140
|
+
'volume':'Volume'},inplace=True)
|
141
|
+
dft['ticker']=index_code; dft['Name']=name; dft['Date']=dft['date']
|
142
|
+
dft['Adj Close']=dft['Close']
|
143
|
+
dft['source']=source
|
144
|
+
|
145
|
+
import pandas as pd
|
146
|
+
dft['date']=dft['Date'].apply(lambda x: pd.to_datetime(x))
|
147
|
+
dft.set_index('date',inplace=True)
|
148
|
+
|
149
|
+
startpd=pd.to_datetime(start); endpd=pd.to_datetime(end)
|
150
|
+
df=dft[(dft.index >= startpd) & (dft.index <= endpd)]
|
151
|
+
|
152
|
+
return df
|
153
|
+
|
154
|
+
if __name__=='__main__':
|
155
|
+
index_code='CASE'
|
156
|
+
start='2025-2-1'; end='2025-3-31'
|
157
|
+
get_other_index_sina(index_code,start,end)
|
158
|
+
#==============================================================================
|
159
|
+
def get_other_index_ak(index_code,start,end):
|
160
|
+
"""
|
161
|
+
功能:获取另类指数历史行情,新浪财经或东方财富
|
162
|
+
参数:
|
163
|
+
index_code:指数代码
|
164
|
+
start,end:开始/结束日期
|
165
|
+
"""
|
166
|
+
symbol,name,source=other_index_translate(index_code)
|
167
|
+
if symbol == index_code:
|
168
|
+
return None
|
169
|
+
|
170
|
+
if source == 'em':
|
171
|
+
df=get_other_index_em(index_code,start,end)
|
172
|
+
elif source == 'sina':
|
173
|
+
df=get_other_index_sina(index_code,start,end)
|
174
|
+
else:
|
175
|
+
df=None
|
176
|
+
|
177
|
+
return df
|
178
|
+
|
179
|
+
if __name__=='__main__':
|
180
|
+
index_code='CASE'
|
181
|
+
index_code='KSE100'
|
182
|
+
index_code='VNINDEX'
|
183
|
+
start='2025-2-1'; end='2025-3-31'
|
184
|
+
get_other_index(index_code,start,end)
|
185
|
+
#==============================================================================
|
186
|
+
#==============================================================================
|
187
|
+
#==============================================================================
|
188
|
+
|
189
|
+
|
siat/security_price2.py
CHANGED
@@ -14,6 +14,7 @@ import warnings; warnings.filterwarnings('ignore')
|
|
14
14
|
from siat.common import *
|
15
15
|
from siat.translate import *
|
16
16
|
from siat.security_prices import *
|
17
|
+
from siat.other_indexes import *
|
17
18
|
#==============================================================================
|
18
19
|
import pandas as pd
|
19
20
|
#==============================================================================
|
@@ -67,6 +68,7 @@ if __name__=='__main__':
|
|
67
68
|
|
68
69
|
# 新测试组
|
69
70
|
ticker="XAUUSD"
|
71
|
+
ticker="^NSEI"
|
70
72
|
fromdate='2024-5-1'; todate='2024-5-20'
|
71
73
|
ticker_type='auto';source='auto'
|
72
74
|
adjust='';fill=False
|
@@ -119,7 +121,7 @@ def get_price_1ticker(ticker,fromdate,todate, \
|
|
119
121
|
ticker_type=ticker_type_preprocess_1str(ticker,ticker_type)
|
120
122
|
|
121
123
|
#数据源情形1:akshare
|
122
|
-
if source in ['auto','sina']:
|
124
|
+
if source in ['auto','sina','em']:
|
123
125
|
#中国的证券
|
124
126
|
if suffix in SUFFIX_LIST_CN:
|
125
127
|
#含处理证券类型优先级
|
@@ -185,7 +187,11 @@ def get_price_1ticker(ticker,fromdate,todate, \
|
|
185
187
|
if source in ['auto'] and found not in ['Found','Empty']:
|
186
188
|
dft=get_index_fred(ticker1,fromdate,todate)
|
187
189
|
found=df_have_data(dft)
|
188
|
-
|
190
|
+
|
191
|
+
#数据源情形6:仅用于几个另类非常用指数,例如胡志明指数/卡拉奇指数/埃及指数等,新浪/东方财富
|
192
|
+
if source in ['auto','sina','em'] and found not in ['Found','Empty']:
|
193
|
+
dft=get_other_index_ak(ticker1,fromdate,todate)
|
194
|
+
found=df_have_data(dft)
|
189
195
|
#数据源情形6:pandas_datareader,其他数据源,暂不支持
|
190
196
|
"""
|
191
197
|
Tiingo:获取股票,共同基金和信息和交易所交易基金的信息,可以免费注册获得API_KEY
|
siat/translate.py
CHANGED
@@ -1150,7 +1150,19 @@ def codetranslate0(code):
|
|
1150
1150
|
|
1151
1151
|
['^XU100','伊斯坦布尔100指数'], ['10TRY.B','土耳其10年期国债收益率%'],
|
1152
1152
|
|
1153
|
-
|
1153
|
+
# 另类指数
|
1154
|
+
['INDEXCF','俄罗斯MICEX指数'],
|
1155
|
+
['RTS','俄罗斯RTS指数'],
|
1156
|
+
['CASE','埃及CASE30指数'],
|
1157
|
+
['VNINDEX','越南胡志明指数'],
|
1158
|
+
['HSCEI','港股国企指数'],
|
1159
|
+
['HSCCI','港股红筹指数'],
|
1160
|
+
['CSEALL','斯里兰卡科伦坡全指'],
|
1161
|
+
['UDI','美元指数'],
|
1162
|
+
['CRB','路透CRB商品指数'],
|
1163
|
+
['BDI','波罗的海BDI指数'],
|
1164
|
+
['KSE100','巴基斯坦卡拉奇指数'],
|
1165
|
+
|
1154
1166
|
|
1155
1167
|
#债券==================================================================
|
1156
1168
|
['sh019521','15国债21'],['sz128086','国轩转债'],['sz123027','蓝晓转债'],
|
@@ -2035,6 +2047,20 @@ def codetranslate1(code):
|
|
2035
2047
|
['^XU100','ISE National-100 index'], ['10TRY.B','Turkey 10-year Treasurybond Yield%'],
|
2036
2048
|
['10CNY.B','10-Year China Treasurybond Yield%'],
|
2037
2049
|
|
2050
|
+
# 另类指数
|
2051
|
+
['INDEXCF','Russia MICEX Index'],
|
2052
|
+
['RTS','Russia RTS Index'],
|
2053
|
+
['CASE','Egypt CASE30 Index'],
|
2054
|
+
['VNINDEX','Ho Chi-Ming Index'],
|
2055
|
+
['HSCEI','HK H-share Index'],
|
2056
|
+
['HSCCI','HK Red-share Index'],
|
2057
|
+
['CSEALL','Colombo Index'],
|
2058
|
+
['UDI','US Dollar Index'],
|
2059
|
+
['CRB','Reuters CRB Index'],
|
2060
|
+
['BDI','Baltic Dry Index'],
|
2061
|
+
['KSE100','Pakistan KSE100 Index'],
|
2062
|
+
|
2063
|
+
|
2038
2064
|
#债券==================================================================
|
2039
2065
|
['sh019521','15国债21'],['sz128086','国轩转债'],['sz123027','蓝晓转债'],
|
2040
2066
|
['^IRX','13-week Treasury Yield%'],['^FVX','5-year Treasury Yield%'],
|
@@ -1,7 +1,7 @@
|
|
1
1
|
siat/__init__ -20240701.py,sha256=gP5uajXnJesnH5SL0ZPwq_Qhv59AG1bs4qwZv26Fo2Y,2894
|
2
2
|
siat/__init__.py,sha256=tpSBf8BYpWOzBDF2iNQ4tlVxjx7bmkVQ3kPUu9X3iog,2227
|
3
3
|
siat/__init__.py.backup_20250214.py,sha256=pIo4CV3lNPKIhitmhIh_6aAfZrmzQWGNDcEnvZ7GXoc,3216
|
4
|
-
siat/allin.py,sha256
|
4
|
+
siat/allin.py,sha256=--32Bt2Mfg7l38w7X9cLJCdWtYRB3tTtVHnS9WnqKDI,3035
|
5
5
|
siat/alpha_vantage_test.py,sha256=tKr-vmuFH3CZAqwmISz6jzjPHzV1JJl3sPfZdz8aTfM,747
|
6
6
|
siat/assets_liquidity.py,sha256=o_UZdLs693uNWPEQB2OzxDH0mdWimOmq4qe_vx1pue0,28987
|
7
7
|
siat/assets_liquidity_test.py,sha256=UWk6HIUlizU7LQZ890fGx8LwU1jMMrIZswg8cFUJWZ8,1285
|
@@ -34,7 +34,7 @@ siat/economy2.py,sha256=inmArHl43HFnSn6O4uY-xcsQY93IyMlFet3pQ7JpsjM,81089
|
|
34
34
|
siat/economy_test.py,sha256=6vjNlPz7W125pJb7simCddobSEp3jmLIMvVkLRZ7zW8,13339
|
35
35
|
siat/esg.py,sha256=GMhaonIKtvOK83rhpQUH5aJt2OL3HQBSVfD__Yw-0oo,19040
|
36
36
|
siat/esg_test.py,sha256=Z9m6GUt8O7oHZSEG9aDYpGdvvrv2AiRJdHTiU6jqmZ0,2944
|
37
|
-
siat/event_study.py,sha256=
|
37
|
+
siat/event_study.py,sha256=xhWpKMcLbXxyFWADxgEeMLp_370CsPonGlELbpOJVLA,36978
|
38
38
|
siat/exchange_bond_china.pickle,sha256=zDqdPrFacQ0nqjP_SuF6Yy87EgijIRsFvFroW7FAYYY,1265092
|
39
39
|
siat/fama_french.py,sha256=aUTC-67t_CEPbLk4u79woW_zfZ7OCP6Fo4z5EdWCSkQ,48051
|
40
40
|
siat/fama_french_test.py,sha256=M4O23lBKsJxhWHRluwCb3l7HSEn3OFTjzGMpehcevRg,4678
|
@@ -64,7 +64,7 @@ siat/future_china.py,sha256=F-HsIf2Op8Z22RzTjet1g8COzldgnMjFNSXsAkeGyWo,17595
|
|
64
64
|
siat/future_china_test.py,sha256=BrSzmDVaOHki6rntOtosmRn-6dkfOBuLulJNqh7MOpc,1163
|
65
65
|
siat/global_index_test.py,sha256=hnFp3wqqzzL-kAP8mgxDZ54Bd5Ijf6ENi5YJlGBgcXw,2402
|
66
66
|
siat/google_authenticator.py,sha256=ZUbZR8OW0IAKDbcYtlqGqIpZdERpFor9NccFELxg9yI,1637
|
67
|
-
siat/grafix.py,sha256=
|
67
|
+
siat/grafix.py,sha256=8aL8z5TF963T7GgW62iNL5h5P_HA_AxAVxmBJK3Os28,141240
|
68
68
|
siat/grafix_test.py,sha256=kXvcpLgQNO7wd30g_bWljLj5UH7bIVI0_dUtXbfiKR0,3150
|
69
69
|
siat/holding_risk.py,sha256=uWRtMMJqKr-puQn26g6Fq5N3mFB70c0B99zLQug8hAo,30774
|
70
70
|
siat/holding_risk_test.py,sha256=FRlw_9wFG98BYcg_cSj95HX5WZ1TvkGaOUdXD7-V86s,474
|
@@ -89,6 +89,7 @@ siat/option_china_test.py,sha256=UQ-YUHUjoGBQyanLcM-yzqeEIUQP_gCQIeT0W6rnUnA,163
|
|
89
89
|
siat/option_pricing.py,sha256=vyQNgBsjcJi70Pa-fJTVVIGK_3jWh80tkd1ESnn3sE4,74069
|
90
90
|
siat/option_pricing_test.py,sha256=eeorV5Ja5vjlRXnP6fWJHetGU5Vb8SnLopkC6RV3GfA,2203
|
91
91
|
siat/option_sina_api_test.py,sha256=dn-k_wrQnAaNKHoROvWJEc7lqlU0bwiV2Aa4usWAFGM,5908
|
92
|
+
siat/other_indexes.py,sha256=DXijuTBhXWj7xEAIGzeczbt1CcJlfxV0hQ_UIuqIdfk,6859
|
92
93
|
siat/proxy_test.py,sha256=erQJrmGs2X46z8Gb1h-7GYQ0rTUcaR8dxHExWoBz2eM,2610
|
93
94
|
siat/quandl_test.py,sha256=EcPoXnLuqzPl5dKyVEZi3j3PJZFpsnU_iNPhLWC9p-A,1552
|
94
95
|
siat/risk_adjusted_return.py,sha256=6F8CpKm-HKO4wfnndri0ew-D3lDAH1fs5O9K5cphoLg,55096
|
@@ -101,7 +102,7 @@ siat/risk_free_rate_test.py,sha256=CpmhUf8aEAEZeNu4gvWP2Mz2dLoIgBX5bI41vfUBEr8,4
|
|
101
102
|
siat/sector_china.py,sha256=9zjdORWx5ia_gUezidhOKWmCnVDwWcnnjjugHudelaQ,157411
|
102
103
|
siat/sector_china_test.py,sha256=1wq7ef8Bb_L8F0h0W6FvyBrIcBTEbrTV7hljtpj49U4,5843
|
103
104
|
siat/security_price.py,sha256=2oHskgiw41KMGfqtnA0i2YjNNV6cYgtlUK0j3YeuXWs,29185
|
104
|
-
siat/security_price2.py,sha256=
|
105
|
+
siat/security_price2.py,sha256=2my4JgVIoQunQ-xDlHPGZRyBJ4KFuM6nVQTwqmauIK0,26966
|
105
106
|
siat/security_prices.py,sha256=HoCZ7YPrQYZHgKC-LyXFeeBCTfRc3EMMEiEg52SVv2w,109073
|
106
107
|
siat/security_prices_test.py,sha256=OEphoJ87NPKoNow1QA8EU_5MUYrJF-qKoWKNapVfZNI,10779
|
107
108
|
siat/security_trend.py,sha256=o0vpWdrJkmODCP94X-Bvn-w7efHhj9HpUYBHtLl55D0,17240
|
@@ -135,7 +136,7 @@ siat/transaction_test.py,sha256=Z8g1LJCN4-mnUByXMUMoFmN0t105cbmsz2QmvSuIkbU,1858
|
|
135
136
|
siat/translate-20230125.py,sha256=NPPSXhT38s5t9fzMvl_fvi4ckSB73ThLmZetVI-xGdU,117953
|
136
137
|
siat/translate-20230206.py,sha256=-vtI125WyaJhmPotOpDAmclt_XnYVaWU9ByLWZ6FyYE,118133
|
137
138
|
siat/translate-20230215.py,sha256=TJgtPE3n8IjljmZ4Pefy8dmHoNdFF-1zpML6BhA9FKE,121657
|
138
|
-
siat/translate.py,sha256=
|
139
|
+
siat/translate.py,sha256=m8mDVHilsw9nSIGBcvl_pS-aMy3W7UVKEZsLwhfuIEg,263300
|
139
140
|
siat/translate_20240606.py,sha256=63IyHWEU3Uz9mjwyuAX3fqY4nUMdwh0ICQAgmgPXP7Y,215121
|
140
141
|
siat/translate_241003_keep.py,sha256=un7Fqe1v35MXsja5exZgjmLzrZtt66NARZIGlyFuGGU,218747
|
141
142
|
siat/universal_test.py,sha256=CDAOffW1Rvs-TcNN5giWVvHMlch1w4dp-w5SIV9jXL0,3936
|
@@ -144,8 +145,8 @@ siat/valuation_china.py,sha256=eSKIDckyjG8QkENlW_OKkqbQHno8pzDcomBO9iGNJVM,83079
|
|
144
145
|
siat/valuation_market_china_test.py,sha256=gbJ0ioauuo4koTPH6WKUkqcXiQPafnbhU5eKJ6lpdLA,1571
|
145
146
|
siat/var_model_validation.py,sha256=R0caWnuZarrRg9939hxh3vJIIpIyPfvelYmzFNZtPbo,14910
|
146
147
|
siat/yf_name.py,sha256=laNKMTZ9hdenGX3IZ7G0a2RLBKEWtUQJFY9CWuk_fp8,24058
|
147
|
-
siat-3.
|
148
|
-
siat-3.
|
149
|
-
siat-3.
|
150
|
-
siat-3.
|
151
|
-
siat-3.
|
148
|
+
siat-3.9.10.dist-info/LICENSE,sha256=NTEMMROY9_4U1szoKC3N2BLHcDd_o5uTgqdVH8tbApw,1071
|
149
|
+
siat-3.9.10.dist-info/METADATA,sha256=tcyrbbCQ4PKsHAi4jCkJXdIAXyCicGRom6snzC3cqso,8335
|
150
|
+
siat-3.9.10.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
151
|
+
siat-3.9.10.dist-info/top_level.txt,sha256=r1cVyL7AIKqeAmEJjNR8FMT20OmEzufDstC2gv3NvEY,5
|
152
|
+
siat-3.9.10.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|