siat 3.8.2__py3-none-any.whl → 3.8.20__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
siat/beta_adjustment.py CHANGED
@@ -727,7 +727,7 @@ def draw_hamada_factors(stkcd,mktidx,betas):
727
727
  #计算资产负债率:由 D/E到 D/(A=D+E)
728
728
  betas['Debt/Assets%']=1/(1+1/(betas['Debt Ratio%']/100))*100
729
729
 
730
- #fig=plt.figure(figsize=(8,6))
730
+ #fig=plt.figure(figsize=(12.8,6.4))
731
731
  fig=plt.figure()
732
732
  ax1=fig.add_subplot(111)
733
733
  ax1.plot(betas['CFLB%'],marker='o',color='green',lw=3,label='CFLB%')
@@ -345,7 +345,7 @@ def draw_hamada_factors_china(stkcd,mktidx,betas):
345
345
  #计算资产负债率:由 D/E到 D/(A=D+E)
346
346
  betas['Debt/Assets%']=1/(1+1/(betas['lev ratio']/100))*100
347
347
 
348
- #fig=plt.figure(figsize=(8,6))
348
+ #fig=plt.figure(figsize=(12.8,6.4))
349
349
  fig=plt.figure()
350
350
  ax1=fig.add_subplot(111)
351
351
  ax1.plot(betas['CFLB%'],marker='o',color='green',lw=3,label='CFLB%')
siat/bond.py CHANGED
@@ -22,7 +22,8 @@ from siat.bond_base import *
22
22
 
23
23
  #==============================================================================
24
24
  import matplotlib.pyplot as plt
25
- plt.rcParams['figure.figsize']=(12.8,7.2)
25
+ #plt.rcParams['figure.figsize']=(12.8,7.2)
26
+ plt.rcParams['figure.figsize']=(12.8,6.4)
26
27
  plt.rcParams['figure.dpi']=300
27
28
  plt.rcParams['font.size'] = 13
28
29
  plt.rcParams['xtick.labelsize']=11 #横轴字体大小
@@ -2357,7 +2358,8 @@ def kpmg_rnpm1_rrd(k1,theta,i1, \
2357
2358
  df.reset_index(drop=True,inplace=True)
2358
2359
 
2359
2360
  #绘图
2360
- fig = plt.figure(figsize=(12.8,7.2),dpi=300)
2361
+ #fig = plt.figure(figsize=(12.8,7.2),dpi=300)
2362
+ fig = plt.figure(figsize=(12.8,6.4),dpi=300)
2361
2363
  #plt.rcParams['figure.dpi']=300
2362
2364
 
2363
2365
  ax = fig.add_subplot(111)
siat/bond_base.py CHANGED
@@ -19,7 +19,8 @@ from siat.common import *
19
19
  from siat.translate import *
20
20
  #==============================================================================
21
21
  import matplotlib.pyplot as plt
22
- plt.rcParams['figure.figsize']=(12.8,7.2)
22
+ #plt.rcParams['figure.figsize']=(12.8,7.2)
23
+ plt.rcParams['figure.figsize']=(12.8,6.4)
23
24
  plt.rcParams['figure.dpi']=300
24
25
  plt.rcParams['font.size'] = 13
25
26
  plt.rcParams['xtick.labelsize']=11 #横轴字体大小
siat/bond_china.py CHANGED
@@ -28,7 +28,8 @@ from siat.security_prices import *
28
28
  from siat.security_price2 import *
29
29
  #==============================================================================
30
30
  import matplotlib.pyplot as plt
31
- plt.rcParams['figure.figsize']=(12.8,7.2)
31
+ #plt.rcParams['figure.figsize']=(12.8,7.2)
32
+ plt.rcParams['figure.figsize']=(12.8,6.4)
32
33
  plt.rcParams['figure.dpi']=300
33
34
  plt.rcParams['font.size'] = 13
34
35
  plt.rcParams['xtick.labelsize']=11 #横轴字体大小
siat/capm_beta2.py CHANGED
@@ -86,7 +86,7 @@ if __name__=='__main__':
86
86
  reg_result,dretdf3=regression_capm(ticker,start2,end,RF,regtrddays)
87
87
 
88
88
  def regression_capm(ticker,start2,end, \
89
- adjust='', \
89
+ adjust='qfq', \
90
90
  RF=0,regtrddays=252, \
91
91
  mktidx='auto',source='auto',ticker_type='auto'):
92
92
  """
@@ -203,7 +203,7 @@ def regression_capm(ticker,start2,end, \
203
203
  return reg_result,dretdf3
204
204
 
205
205
 
206
- def regression_capm_df(marketdf,pricedf,mktidx,adjust='',RF=0,regtrddays=252):
206
+ def regression_capm_df(marketdf,pricedf,mktidx,adjust='qfq',RF=0,regtrddays=252):
207
207
  """
208
208
  功能:进行CAPM回归,R-Rf=beta*(Rm-Rf),无截距项回归
209
209
  x为(Rm-Rf),y为R-Rf,均为日收益率,默认回归样本长度一年(365日历日或252交易日)
@@ -289,7 +289,7 @@ if __name__=='__main__':
289
289
  beta1=get_capm_beta(ticker,start,end,RF,regtrddays)
290
290
  beta1.plot()
291
291
 
292
- def get_capm_beta(ticker,start,end,adjust='',RF=0,regtrddays=252,mktidx='auto', \
292
+ def get_capm_beta(ticker,start,end,adjust='qfq',RF=0,regtrddays=252,mktidx='auto', \
293
293
  source='auto',ticker_type='auto'):
294
294
  """
295
295
  功能:套壳函数regression_capm,仅返回滚动的贝塔系数,基于日收益率
@@ -306,7 +306,11 @@ def get_capm_beta(ticker,start,end,adjust='',RF=0,regtrddays=252,mktidx='auto',
306
306
 
307
307
  startpd=pd.to_datetime(date_adjust(start,adjust=-7))
308
308
  endpd=pd.to_datetime(end)
309
- reg_result2=reg_result[(reg_result.index >= startpd) & (reg_result.index <= endpd)]
309
+
310
+ try:
311
+ reg_result2=reg_result[(reg_result.index >= startpd) & (reg_result.index <= endpd)]
312
+ except:
313
+ print(" #Error(get_capm_beta): none obtained from capm regression")
310
314
 
311
315
  return reg_result2
312
316
 
@@ -335,7 +339,8 @@ def compare_mticker_1beta(ticker,start,end, \
335
339
  RF=0,regression_period=365, \
336
340
  attention_value='',attention_value_area='', \
337
341
  attention_point='',attention_point_area='', \
338
- axhline_value=1,axhline_label='', \
342
+ axhline_value=1,axhline_label='零线', \
343
+ band_area='', \
339
344
  graph=True,facecolor='whitesmoke',loc='best', \
340
345
  annotate=False,annotate_value=False, \
341
346
  mark_top=False,mark_bottom=False,mark_end=False, \
@@ -361,7 +366,7 @@ def compare_mticker_1beta(ticker,start,end, \
361
366
  RF=RF[0]
362
367
  if isinstance(regression_period,list):
363
368
  regression_period=regression_period[0]
364
- print(" Starting to retrieve and calculate capm beta, please wait ......")
369
+ print(" Working on capm beta, please wait ......")
365
370
 
366
371
  #计算日历日regression_period对应的交易日数
367
372
  regtrddays=int(252 / 365 * regression_period)
@@ -382,8 +387,17 @@ def compare_mticker_1beta(ticker,start,end, \
382
387
  break
383
388
  else:
384
389
  dft=df_tmp[['beta']]
385
- dft.rename(columns={'beta':ticker_name(t,tt)},inplace=True)
390
+
391
+ tname=ticker_name(t,tt)
392
+ dft.rename(columns={'beta':tname},inplace=True)
386
393
  mktidx_name=ticker_name(df_tmp['mktidx'].values[0])
394
+
395
+ # 将band_area中的ticker替换为tname
396
+ if band_area != '':
397
+ for index, item in enumerate(band_area):
398
+ if item == t:
399
+ band_area[index] = tname
400
+
387
401
  if len(df)==0: #第一个
388
402
  df=dft
389
403
  else:
@@ -432,6 +446,7 @@ def compare_mticker_1beta(ticker,start,end, \
432
446
  title_txt=title_txt,data_label=False, \
433
447
  attention_value=attention_value,attention_value_area=attention_value_area, \
434
448
  attention_point=attention_point,attention_point_area=attention_point_area, \
449
+ band_area=band_area, \
435
450
  annotate=annotate,annotate_value=annotate, \
436
451
  mark_top=mark_top,mark_bottom=mark_bottom,mark_end=mark_end,
437
452
  facecolor=facecolor,loc=loc)
@@ -463,7 +478,8 @@ def compare_1ticker_mRF(ticker,start,end, \
463
478
  regression_period=365, \
464
479
  attention_value='',attention_value_area='', \
465
480
  attention_point='',attention_point_area='', \
466
- axhline_value=1,axhline_label='', \
481
+ axhline_value=1,axhline_label='零线', \
482
+ band_area='', \
467
483
  graph=True,facecolor='whitesmoke',loc='best', \
468
484
  annotate=False,annotate_value=False, \
469
485
  mark_top=False,mark_bottom=False,mark_end=False, \
@@ -490,7 +506,7 @@ def compare_1ticker_mRF(ticker,start,end, \
490
506
  RF=[RF]
491
507
  if isinstance(regression_period,list):
492
508
  regression_period=regression_period[0]
493
- print(" Starting to retrieve and calculate capm beta on different RF, please wait ......")
509
+ print(" Working on capm beta with different RFs, please wait ......")
494
510
 
495
511
  #计算日历日regression_period对应的交易日数
496
512
  regtrddays=int(252 / 365 * regression_period)
@@ -508,8 +524,17 @@ def compare_1ticker_mRF(ticker,start,end, \
508
524
  break
509
525
  else:
510
526
  dft=df_tmp[['beta']]
511
- dft.rename(columns={'beta':"基于无风险利率"+str(round(t*100,4))+'%'},inplace=True)
527
+
528
+ #tname="基于无风险利率"+str(round(t*100,4))+'%'
529
+ tname="RF="+str(round(t*100,4))+'%'
530
+ dft.rename(columns={'beta':tname},inplace=True)
512
531
  mktidx_name=ticker_name(df_tmp['mktidx'].values[0])
532
+
533
+ # 将band_area中的ticker替换为tname
534
+ if band_area != '':
535
+ for index, item in enumerate(band_area):
536
+ if item == t:
537
+ band_area[index] = tname
513
538
 
514
539
  if len(df)==0: #第一个
515
540
  df=dft
@@ -558,6 +583,7 @@ def compare_1ticker_mRF(ticker,start,end, \
558
583
  title_txt=title_txt,data_label=False, \
559
584
  attention_value=attention_value,attention_value_area=attention_value_area, \
560
585
  attention_point=attention_point,attention_point_area=attention_point_area, \
586
+ band_area=band_area, \
561
587
  annotate=annotate,annotate_value=annotate, \
562
588
  mark_top=mark_top,mark_bottom=mark_bottom,mark_end=mark_end, \
563
589
  facecolor=facecolor,loc=loc)
@@ -587,7 +613,8 @@ def compare_1ticker_mregression_period(ticker,start,end, \
587
613
  regression_period=[183,365,730], \
588
614
  attention_value='',attention_value_area='', \
589
615
  attention_point='',attention_point_area='', \
590
- axhline_value=1,axhline_label='', \
616
+ axhline_value=1,axhline_label='零线', \
617
+ band_area='', \
591
618
  graph=True,facecolor='whitesmoke',loc='best', \
592
619
  annotate=False,annotate_value=False, \
593
620
  mark_top=False,mark_bottom=False,mark_end=False, \
@@ -614,7 +641,7 @@ def compare_1ticker_mregression_period(ticker,start,end, \
614
641
  RF=RF[0]
615
642
  if isinstance(regression_period,int):
616
643
  regression_period=[regression_period]
617
- print(" Starting to retrieve and calculate capm beta on different regression period, please wait ......")
644
+ print(" Working on capm beta with different regression periods ......")
618
645
 
619
646
  #预处理ticker_type
620
647
  ticker_type=ticker_type_preprocess_mticker_mixed(ticker,ticker_type)
@@ -632,8 +659,18 @@ def compare_1ticker_mregression_period(ticker,start,end, \
632
659
  break
633
660
  else:
634
661
  dft=df_tmp[['beta']]
635
- dft.rename(columns={'beta':"基于"+str(t)+"自然日回归"},inplace=True)
662
+
663
+ #tname="基于"+str(t)+"自然日回归"
664
+ tname="基于"+str(t)+"自然日回归"
665
+ dft.rename(columns={'beta':tname},inplace=True)
636
666
  mktidx_name=ticker_name(df_tmp['mktidx'].values[0])
667
+
668
+ # 将band_area中的ticker替换为tname
669
+ if band_area != '':
670
+ for index, item in enumerate(band_area):
671
+ if item == t:
672
+ band_area[index] = tname
673
+
637
674
  if len(df)==0: #第一个
638
675
  df=dft
639
676
  else:
@@ -677,6 +714,7 @@ def compare_1ticker_mregression_period(ticker,start,end, \
677
714
  title_txt=title_txt,data_label=False, \
678
715
  attention_value=attention_value,attention_value_area=attention_value_area, \
679
716
  attention_point=attention_point,attention_point_area=attention_point_area, \
717
+ band_area=band_area, \
680
718
  annotate=annotate,annotate_value=annotate, \
681
719
  mark_top=mark_top,mark_bottom=mark_bottom,mark_end=mark_end, \
682
720
  facecolor=facecolor,loc=loc)
@@ -706,10 +744,11 @@ if __name__=='__main__':
706
744
  betas=compare_beta_security(ticker,start,end,RF)
707
745
 
708
746
  def compare_beta_security(ticker,start,end, \
709
- adjust='', \
747
+ adjust='qfq', \
710
748
  RF=0,regression_period=365, \
711
749
  attention_value='',attention_value_area='', \
712
750
  attention_point='',attention_point_area='', \
751
+ band_area='', \
713
752
  graph=True,facecolor='whitesmoke', \
714
753
  annotate=False,annotate_value=False, \
715
754
  mark_top=False,mark_bottom=False,mark_end=False, \
@@ -731,6 +770,7 @@ def compare_beta_security(ticker,start,end, \
731
770
  RF=RF,regression_period=regression_period, \
732
771
  attention_value=attention_value,attention_value_area=attention_value_area, \
733
772
  attention_point=attention_point,attention_point_area=attention_point_area, \
773
+ band_area=band_area, \
734
774
  graph=graph,facecolor=facecolor,loc=loc, \
735
775
  annotate=annotate,annotate_value=annotate, \
736
776
  mark_top=mark_top,mark_bottom=mark_bottom,mark_end=mark_end, \
@@ -749,6 +789,7 @@ def compare_beta_security(ticker,start,end, \
749
789
  RF=RF,regression_period=regression_period, \
750
790
  attention_value=attention_value,attention_value_area=attention_value_area, \
751
791
  attention_point=attention_point,attention_point_area=attention_point_area, \
792
+ band_area=band_area, \
752
793
  graph=graph,facecolor=facecolor,loc=loc, \
753
794
  annotate=annotate,annotate_value=annotate, \
754
795
  mark_top=mark_top,mark_bottom=mark_bottom,mark_end=mark_end, \
@@ -767,6 +808,7 @@ def compare_beta_security(ticker,start,end, \
767
808
  RF=RF,regression_period=regression_period, \
768
809
  attention_value=attention_value,attention_value_area=attention_value_area, \
769
810
  attention_point=attention_point,attention_point_area=attention_point_area, \
811
+ band_area=band_area, \
770
812
  graph=graph,facecolor=facecolor,loc=loc, \
771
813
  annotate=annotate,annotate_value=annotate, \
772
814
  mark_top=mark_top,mark_bottom=mark_bottom,mark_end=mark_end, \
@@ -783,6 +825,7 @@ def compare_beta_security(ticker,start,end, \
783
825
  RF=RF,regression_period=regression_period, \
784
826
  attention_value=attention_value,attention_value_area=attention_value_area, \
785
827
  attention_point=attention_point,attention_point_area=attention_point_area, \
828
+ band_area=band_area, \
786
829
  graph=graph,facecolor=facecolor,loc=loc, \
787
830
  annotate=annotate,annotate_value=annotate, \
788
831
  mark_top=mark_top,mark_bottom=mark_bottom,mark_end=mark_end, \
siat/common.py CHANGED
@@ -3125,29 +3125,29 @@ def df_preprocess(dfs,measure,axhline_label,x_label,y_label, \
3125
3125
  measure_suffix='(change %)'
3126
3126
  else:
3127
3127
  if preprocess1 == 'standardize':
3128
- std_notes="注意:为突出变化趋势,对数据进行了标准化处理"
3128
+ std_notes="注意:为突出变化趋势,对数据进行了标准化处理,非原值"
3129
3129
  measure_suffix='(标准化处理后)'
3130
3130
  if preprocess1 == 'normalize':
3131
- std_notes="注意:为突出变化趋势,对数据进行了归一化处理"
3131
+ std_notes="注意:为突出变化趋势,对数据进行了归一化处理,非原值"
3132
3132
  measure_suffix='(归一化处理后)'
3133
3133
  if preprocess1 == 'logarithm':
3134
- std_notes="注意:为突出变化趋势,对数据进行了对数处理"
3134
+ std_notes="注意:为突出变化趋势,对数据进行了对数处理,非原值"
3135
3135
  measure_suffix='(对数处理后)'
3136
3136
  if preprocess1 == 'scaling':
3137
3137
  if scaling_option == 'mean':
3138
- std_notes="注意:为突出变化趋势,按均值对原始数据进行了比例缩放"
3139
- measure_suffix='(按均值比例缩放后,非原值)'
3138
+ std_notes="注意:为突出变化趋势,按均值对原始数据进行了比例缩放,非原值"
3139
+ measure_suffix='(按均值比例缩放后)'
3140
3140
  elif scaling_option == 'min':
3141
- std_notes="注意:为突出变化趋势,按最小值对原始数据进行了比例缩放"
3142
- measure_suffix='(按最小值比例缩放后,非原值)'
3141
+ std_notes="注意:为突出变化趋势,按最小值对原始数据进行了比例缩放,非原值"
3142
+ measure_suffix='(按最小值比例缩放后)'
3143
3143
  elif scaling_option == 'start':
3144
- std_notes="注意:为突出变化趋势,按起点值对原始数据进行了比例缩放"
3145
- measure_suffix='(按起点值比例缩放后,非原值)'
3144
+ std_notes="注意:为突出变化趋势,按起点值对原始数据进行了比例缩放,非原值"
3145
+ measure_suffix='(按起点值比例缩放后)'
3146
3146
  elif scaling_option == 'percentage':
3147
- std_notes="注释:为突出变化趋势,期间起点数值=100%,其他数值为相对百分比"
3147
+ std_notes="注释:为突出变化趋势,期间起点数值=100%,其他数值为相对百分比,非原值"
3148
3148
  measure_suffix='(相对百分数%)'
3149
3149
  elif scaling_option == 'change%':
3150
- std_notes="注释:为突出变化趋势,图中数值为相对期间起点的增减百分比"
3150
+ std_notes="注释:为突出变化趋势,图中数值为相对期间起点的增减百分比,非原值"
3151
3151
  #measure_suffix='(增/减%)'
3152
3152
  measure_suffix='(涨跌幅度%)'
3153
3153
  axhline_label='零线' #可以在security_trend中使用critical_value选项指定水平线位置,默认0
@@ -4972,6 +4972,33 @@ if __name__ == '__main__':
4972
4972
  #await jupyter2pdf2(notebook_dir, notebook_file)
4973
4973
  # 注意:上面的await命令会导致编译失败,测试后要注释掉
4974
4974
  #==============================================================================
4975
+ if __name__ == '__main__':
4976
+ df=security_trend("600519.SS",indicator=['Close','Open','High','Low'],graph=False)
4977
+ col_name='持股总数'; position=3
4978
+
4979
+ df=shift_column_position(df,col_name='Low',position=0)
4980
+
4981
+ def shift_column_position(df,col_name,position=1):
4982
+ """
4983
+ 功能:将df中的字段col_name挪动到位置position,其余字段不动。
4984
+ 注意:位置顺序从0开始。
4985
+ """
4986
+ # 获取所有列名
4987
+ columns = df.columns.tolist()
4988
+ if col_name not in columns:
4989
+ raise ValueError(f" #Warning: column '{col_name}' does not exist in the DataFrame.")
4990
+ return df
4991
+
4992
+ # 移除要移动的列
4993
+ columns.remove(col_name)
4994
+
4995
+ # 插入到指定位置
4996
+ columns.insert(position, col_name)
4997
+
4998
+ # 重新排列 DataFrame
4999
+ df = df[columns]
5000
+
5001
+ return df
4975
5002
  #==============================================================================
4976
5003
  #==============================================================================
4977
5004
  #==============================================================================
siat/cryptocurrency.py CHANGED
@@ -385,7 +385,8 @@ def evalSpread_in2Markets(fsym,tsym,market1,market2,begdate,enddate):
385
385
  df12=pd.merge(df1,df2,how='inner',left_index=True,right_index=True)
386
386
  df12['spread']=df12['close_x'] - df12['close_y']
387
387
 
388
- plt.figure(figsize=(12,6))
388
+ #plt.figure(figsize=(12,6))
389
+ plt.figure(figsize=(12.8,6.4))
389
390
  labeltxt=market1+"与"+market2+"的价差"
390
391
  plt.plot(df12.spread, '.-', label=labeltxt)
391
392
  #plt.plot(df2.close, '.-', label=market2)
@@ -531,7 +532,8 @@ def eval_Position(market1,market2,investment,ac1,ac2,money):
531
532
 
532
533
 
533
534
  ymax=(round(max(money)/1000)+1)*1000
534
- plt.figure(figsize=(18,9))
535
+ #plt.figure(figsize=(18,9))
536
+ plt.figure(figsize=(12.8,6.4))
535
537
  # market1的账户ac1变化图
536
538
  plt.subplot(2,3,1)
537
539
  plt.plot(ac1)
@@ -564,7 +566,8 @@ def eval_Roi(fsym,tsym,market1,market2,roi,begdate,enddate):
564
566
  ymax=round(10*roi[-1])*10+10
565
567
  product=fsym+"/"+tsym+":"
566
568
  mktpair="市场配对("+market1+","+market2+")"
567
- plt.figure(figsize=(8,5))
569
+ #plt.figure(figsize=(8,5))
570
+ plt.figure(figsize=(12.8,6.4))
568
571
  plt.plot(np.array(roi)*100, 'r')
569
572
 
570
573
  footnote1="交易序列(总计"+str(ttltrdnum)+"次)"
siat/economy2.py CHANGED
@@ -769,7 +769,7 @@ def economy_mtickers_wb(ticker=['CN','US','JP'],indicator='NY.GDP.MKTP.PP.CD', \
769
769
  axhline_value=0
770
770
  axhline_label="零线"
771
771
  else:
772
- if one_unit and unit != '':
772
+ if one_unit and unit != '' and preprocess == 'none':
773
773
  titletxt=titletxt+', '+unit
774
774
 
775
775
  # 为避免出错,对空值进行插值
@@ -808,7 +808,8 @@ def economy_mtickers_wb(ticker=['CN','US','JP'],indicator='NY.GDP.MKTP.PP.CD', \
808
808
  attention_point=attention_point,attention_point_area=attention_point_area, \
809
809
  annotate=annotate,annotate_value=annotate_value,plus_sign=plus_sign, \
810
810
  mark_top=mark_top,mark_bottom=mark_bottom,mark_end=mark_end,facecolor=facecolor, \
811
- maxticks=30,translate=translate)
811
+ maxticks_enable=False,maxticks=10, \
812
+ translate=translate)
812
813
 
813
814
  return dfs2
814
815
 
siat/financials.py CHANGED
@@ -24,7 +24,8 @@ from siat.grafix import *
24
24
  #==============================================================================
25
25
  import matplotlib.pyplot as plt
26
26
 
27
- plt.rcParams['figure.figsize']=(12.8,7.2)
27
+ #plt.rcParams['figure.figsize']=(12.8,7.2)
28
+ plt.rcParams['figure.figsize']=(12.8,6.4)
28
29
  plt.rcParams['figure.dpi']=300
29
30
  plt.rcParams['font.size'] = 13
30
31
  plt.rcParams['xtick.labelsize']=11 #横轴字体大小
@@ -1936,7 +1937,8 @@ def compare_dupont(tickerlist,fsdate='latest',scale1 = 10,scale2 = 10,hatchlist=
1936
1937
  code=df.loc[i,'公司']
1937
1938
  df.loc[i,'公司']=ticker_name(code)
1938
1939
 
1939
- f,ax1 = plt.subplots(1,figsize=(10,5))
1940
+ #f,ax1 = plt.subplots(1,figsize=(10,5))
1941
+ f,ax1 = plt.subplots(1,figsize=(12.8,6.4))
1940
1942
  w = 0.75
1941
1943
  x = [i+1 for i in range(len(df[name1]))]
1942
1944
  #tick_pos = [i+(w/2.) for i in x]
siat/financials2.py CHANGED
@@ -26,7 +26,8 @@ from siat.grafix import *
26
26
  #==============================================================================
27
27
  import matplotlib.pyplot as plt
28
28
 
29
- plt.rcParams['figure.figsize']=(12.8,7.2)
29
+ #plt.rcParams['figure.figsize']=(12.8,7.2)
30
+ plt.rcParams['figure.figsize']=(12.8,6.4)
30
31
  plt.rcParams['figure.dpi']=300
31
32
  plt.rcParams['font.size'] = 13
32
33
  plt.rcParams['xtick.labelsize']=11 #横轴字体大小
@@ -1009,7 +1010,8 @@ def fs_analysis(tickers,fsdates=[],analysis_type='balance sheet', \
1009
1010
 
1010
1011
  fin_period=df2['endDate'].values[0]
1011
1012
 
1012
- f,ax1 = plt.subplots(1,figsize=(10,5))
1013
+ #f,ax1 = plt.subplots(1,figsize=(10,5))
1014
+ f,ax1 = plt.subplots(1,figsize=(12.8,6.4))
1013
1015
  w = 0.75
1014
1016
  x = [i+1 for i in range(len(df2[name1]))]
1015
1017
  tick_pos = [i for i in x]
siat/financials_china.py CHANGED
@@ -770,7 +770,8 @@ def compare_dupont_china(tickerlist,fsdate='latest',scale1 = 10,scale2 = 10, \
770
770
  code=df.loc[i,'公司']
771
771
  df.loc[i,'公司']=ticker_name(code,'stock').replace("(A股)",'')
772
772
 
773
- f,ax1 = plt.subplots(1,figsize=(10,5))
773
+ #f,ax1 = plt.subplots(1,figsize=(10,5))
774
+ f,ax1 = plt.subplots(1,figsize=(12.8,6.4))
774
775
  w = 0.75
775
776
  x = [i+1 for i in range(len(df[name1]))]
776
777
  #tick_pos = [i+(w/2.) for i in x]
siat/fund.py CHANGED
@@ -129,8 +129,8 @@ def pof_list_china(fund_type='全部类型',printout=True):
129
129
  print(prefix,"{:,}".format(n),"\b,",round(n/num*100,2),'\b%')
130
130
 
131
131
  import datetime
132
- today = datetime.date.today()
133
- print("来源:东方财富/天天基金,",today)
132
+ todaydt = datetime.date.today()
133
+ print("来源:东方财富/天天基金,",todaydt)
134
134
 
135
135
  return df3
136
136
 
@@ -215,8 +215,8 @@ def oef_rank_china(info_type='单位净值',fund_type='全部类型'):
215
215
 
216
216
  print(" 净值日期:",nvdate,'\b. ',end='')
217
217
  import datetime
218
- today = datetime.date.today()
219
- print(" 来源:东方财富/天天基金,",today)
218
+ todaydt = datetime.date.today()
219
+ print(" 来源:东方财富/天天基金,",todaydt)
220
220
 
221
221
  return df
222
222
 
@@ -261,7 +261,7 @@ def oef_trend_china(fund,fromdate,todate,trend_type='净值',power=0):
261
261
  import akshare as ak
262
262
 
263
263
  #开放式基金-历史数据
264
- import datetime; today = datetime.date.today()
264
+ import datetime; todaydt = datetime.date.today()
265
265
  source="来源:东方财富/天天基金"
266
266
  import siat.grafix as grf
267
267
 
@@ -288,7 +288,7 @@ def oef_trend_china(fund,fromdate,todate,trend_type='净值',power=0):
288
288
  ylabeltxt='人民币元'
289
289
  titletxt="开放式基金的净值趋势:"+fund
290
290
 
291
- footnote=source+', '+str(today)
291
+ footnote=source+', '+str(todaydt)
292
292
  grf.plot_line2(dfp,ticker1,colname1,label1, \
293
293
  dfp,ticker2,colname2,label2, \
294
294
  ylabeltxt,titletxt,footnote,power=power)
@@ -306,7 +306,7 @@ def oef_trend_china(fund,fromdate,todate,trend_type='净值',power=0):
306
306
  colname='累计收益率'; collabel='累计收益率%'
307
307
  ylabeltxt=''
308
308
  titletxt="开放式基金的累计收益率趋势:"+fund
309
- footnote=source+', '+str(today)
309
+ footnote=source+', '+str(todaydt)
310
310
  grf.plot_line(dfp,colname,collabel,ylabeltxt,titletxt,footnote,power=power)
311
311
  return df
312
312
 
@@ -332,7 +332,7 @@ def oef_trend_china(fund,fromdate,todate,trend_type='净值',power=0):
332
332
  ticker2=fund; colname2='同类排名百分比';label2='同类排名百分比'
333
333
  ylabeltxt=''
334
334
  titletxt="开放式基金的近三个月收益率排名趋势:"+fund
335
- footnote=source+', '+str(today)
335
+ footnote=source+', '+str(todaydt)
336
336
  grf.plot_line2(dfp,ticker1,colname1,label1, \
337
337
  dfp,ticker2,colname2,label2, \
338
338
  ylabeltxt,titletxt,footnote,power=power,twinx=True)
@@ -388,8 +388,8 @@ def mmf_rank_china():
388
388
 
389
389
  print("收益率日期:",nvdate,'\b. ',end='')
390
390
  import datetime
391
- today = datetime.date.today()
392
- print("来源:东方财富/天天基金,",today)
391
+ todaydt = datetime.date.today()
392
+ print("来源:东方财富/天天基金,",todaydt)
393
393
 
394
394
  return df
395
395
 
@@ -421,7 +421,7 @@ def mmf_trend_china(fund,fromdate,todate,power=0):
421
421
  import akshare as ak
422
422
 
423
423
  #基金历史数据
424
- import datetime; today = datetime.date.today()
424
+ import datetime; dt = datetime.date.today()
425
425
  source="来源:东方财富/天天基金"
426
426
  import siat.grafix as grf
427
427
 
@@ -440,7 +440,7 @@ def mmf_trend_china(fund,fromdate,todate,power=0):
440
440
  colname='7日年化%'; collabel='7日年化%'
441
441
  ylabeltxt=''
442
442
  titletxt="货币型基金的7日年化收益率趋势:"+fund
443
- footnote=source+', '+str(today)
443
+ footnote=source+', '+str(todaydt)
444
444
  grf.plot_line(dfp,colname,collabel,ylabeltxt,titletxt,footnote,power=power)
445
445
 
446
446
  return df