siat 3.7.3__py3-none-any.whl → 3.7.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- siat/common.py +17 -6
- siat/financials_china.py +5 -0
- siat/financials_china2.py +1 -1
- siat/stock_china.py +80 -47
- {siat-3.7.3.dist-info → siat-3.7.5.dist-info}/METADATA +1 -1
- {siat-3.7.3.dist-info → siat-3.7.5.dist-info}/RECORD +9 -9
- {siat-3.7.3.dist-info → siat-3.7.5.dist-info}/WHEEL +1 -1
- {siat-3.7.3.dist-info → siat-3.7.5.dist-info}/LICENSE +0 -0
- {siat-3.7.3.dist-info → siat-3.7.5.dist-info}/top_level.txt +0 -0
siat/common.py
CHANGED
@@ -3836,6 +3836,8 @@ def upgrade_siat(module_list=['siat','akshare','pandas','pandas_datareader', \
|
|
3836
3836
|
或python -m pip install --upgrade pip
|
3837
3837
|
如果上述方法不适用,您可能需要重新安装Python,并确保在安装过程中选中了“Add Python to PATH”
|
3838
3838
|
"""
|
3839
|
+
DEBUG=False
|
3840
|
+
|
3839
3841
|
print("Upgrading siat and related modules, please wait ... ...")
|
3840
3842
|
|
3841
3843
|
#获取系统目录
|
@@ -3865,7 +3867,8 @@ def upgrade_siat(module_list=['siat','akshare','pandas','pandas_datareader', \
|
|
3865
3867
|
if sp_list[-1] == 'anaconda3': break
|
3866
3868
|
|
3867
3869
|
#生成pip命令字符串前半段,仅缺插件名
|
3868
|
-
cmdstr=sp+sep_flag+'Scripts'+sep_flag+pipcmd+' '
|
3870
|
+
#cmdstr=sp+sep_flag+'Scripts'+sep_flag+pipcmd+' '
|
3871
|
+
cmdstr=sp+sep_flag+pipcmd+' '
|
3869
3872
|
|
3870
3873
|
#检查是否使用镜像源
|
3871
3874
|
if alternative == "":
|
@@ -3898,17 +3901,25 @@ def upgrade_siat(module_list=['siat','akshare','pandas','pandas_datareader', \
|
|
3898
3901
|
for m in tqdm(module_list):
|
3899
3902
|
#print("Upgrading",m,"... ...",end='')
|
3900
3903
|
#print_progress_percent2(m,module_list,steps=5,leading_blanks=2)
|
3904
|
+
if DEBUG:
|
3905
|
+
print(" DEBUG: m={}".format(m))
|
3901
3906
|
|
3902
3907
|
if alternative == "":
|
3903
3908
|
cmdstr1=cmdstr+m
|
3904
3909
|
else:
|
3905
3910
|
cmdstr1=cmdstr+m+' '+alter_source
|
3906
|
-
|
3911
|
+
if DEBUG:
|
3912
|
+
print(" DEBUG: cmdstr1={}".format(cmdstr1))
|
3907
3913
|
|
3908
3914
|
#proc=subprocess.run(cmdstr1.split(' '),stdout=subprocess.PIPE)
|
3909
|
-
|
3910
|
-
|
3911
|
-
|
3915
|
+
try:
|
3916
|
+
proc=subprocess.run(cmdstr1.split(' '))
|
3917
|
+
rcode=proc.returncode
|
3918
|
+
if rcode !=0: fail_list=fail_list+[m]
|
3919
|
+
except:
|
3920
|
+
print(" #Error(upgrade_siat): executable file python not found in {}".format(sp))
|
3921
|
+
print(" Solution: find out the exact path where the executable file python locates")
|
3922
|
+
return
|
3912
3923
|
|
3913
3924
|
if len(fail_list) == 0:
|
3914
3925
|
print("All specified modules are successfully upgraded!")
|
@@ -3918,7 +3929,7 @@ def upgrade_siat(module_list=['siat','akshare','pandas','pandas_datareader', \
|
|
3918
3929
|
|
3919
3930
|
if 'pip' in fail_list:
|
3920
3931
|
print("Upgrading for pip, in Anaconda Prompt (Windows) or Terminal (Mac):")
|
3921
|
-
print(" python -m pip install --upgrade pip")
|
3932
|
+
print(" python -m pip install --upgrade --user pip")
|
3922
3933
|
|
3923
3934
|
return
|
3924
3935
|
|
siat/financials_china.py
CHANGED
@@ -3872,6 +3872,9 @@ def get_fin_indicator_1ticker_china(ticker,fsdates):
|
|
3872
3872
|
|
3873
3873
|
import pandas as pd
|
3874
3874
|
# 过滤财报日期
|
3875
|
+
if isinstance(fsdates,str):
|
3876
|
+
fsdates=[fsdates]
|
3877
|
+
|
3875
3878
|
fsdates2=[]
|
3876
3879
|
for d in fsdates:
|
3877
3880
|
d1=pd.to_datetime(d)
|
@@ -3886,6 +3889,8 @@ def get_fin_indicator_1ticker_china(ticker,fsdates):
|
|
3886
3889
|
_,t1,_=split_prefix_suffix(ticker)
|
3887
3890
|
try:
|
3888
3891
|
dft=ak.stock_financial_analysis_indicator(t1)
|
3892
|
+
dft['日期']=dft['日期'].apply(lambda x: x.strftime("%Y-%m-%d"))
|
3893
|
+
dft.sort_values(by=['日期'],ascending=False,inplace=True)
|
3889
3894
|
except:
|
3890
3895
|
print(" #Error(get_fin_summary_1ticker_china): no fin stmts found or info source unavailable for",ticker)
|
3891
3896
|
return None
|
siat/financials_china2.py
CHANGED
siat/stock_china.py
CHANGED
@@ -673,7 +673,7 @@ def price_direction_knn(ticker,df,ndays=1,diff=0.01,min_score=0.9,votes=100,max_
|
|
673
673
|
decision='='
|
674
674
|
decision_text='FLAT'
|
675
675
|
|
676
|
-
if not printout: return decision,today_close,
|
676
|
+
if not printout: return decision,today_close,stoday
|
677
677
|
|
678
678
|
print(" Model voting for stock price after "+str(ndays)+" trading days: Higher("+str(zhang)+'), Lower('+str(die)+')')
|
679
679
|
print(" "+ticker_name(ticker,'stock')+': previously closed '+str(known_close)+' @ '+str(known_day))
|
@@ -949,7 +949,7 @@ def price_price_knn(ticker,df,ndays=1,max_neighbours=10,max_RS=20,printout=True)
|
|
949
949
|
import numpy as np
|
950
950
|
if np.isnan(decision): decision='?'
|
951
951
|
|
952
|
-
if not printout: return decision,decision_score,today_close,
|
952
|
+
if not printout: return decision,decision_score,today_close,stoday
|
953
953
|
|
954
954
|
print(" Model poll for stock price after "+str(ndays)+" trading days:",decision)
|
955
955
|
print(" Last close price: "+ticker_name(ticker,'stock')+', closed '+str(known_close)+', '+str(known_day))
|
@@ -1128,11 +1128,19 @@ def stock_profile_china(ticker,category='profile', \
|
|
1128
1128
|
DEBUG=False
|
1129
1129
|
|
1130
1130
|
#检查是否A股
|
1131
|
-
_,
|
1131
|
+
_,prefix,suffix=split_prefix_suffix(ticker)
|
1132
1132
|
if not (suffix.upper() in ['SS','SZ','BJ']):
|
1133
1133
|
print(" #Warning(stock_profile_china): not a stock in China for",ticker)
|
1134
1134
|
return
|
1135
1135
|
|
1136
|
+
if suffix.upper() in ['SS','SH']:
|
1137
|
+
sx='SH'
|
1138
|
+
elif suffix.upper() in ['SZ']:
|
1139
|
+
sx='SZ'
|
1140
|
+
else:
|
1141
|
+
sx='BJ'
|
1142
|
+
sxticker=sx+prefix
|
1143
|
+
|
1136
1144
|
categorylist=['profile','business','shareholder','financial','dividend','valuation']
|
1137
1145
|
if not (category in categorylist):
|
1138
1146
|
print(" #Error(stock_detail_china): unsupported category",category)
|
@@ -1144,7 +1152,7 @@ def stock_profile_china(ticker,category='profile', \
|
|
1144
1152
|
from datetime import datetime
|
1145
1153
|
|
1146
1154
|
import datetime as dt
|
1147
|
-
|
1155
|
+
stoday=str(dt.date.today())
|
1148
1156
|
|
1149
1157
|
yi=100000000.0
|
1150
1158
|
yiyuan_name='(亿元)'
|
@@ -1156,6 +1164,7 @@ def stock_profile_china(ticker,category='profile', \
|
|
1156
1164
|
#确定表格字体大小
|
1157
1165
|
titile_font_size=font_size
|
1158
1166
|
heading_font_size=data_font_size=str(int(font_size.replace('px',''))-1)+'px'
|
1167
|
+
heading_font_size_small=data_font_size_small=str(int(font_size.replace('px',''))-3)+'px'
|
1159
1168
|
|
1160
1169
|
import akshare as ak
|
1161
1170
|
# 个股基本信息======================================================================================
|
@@ -1248,12 +1257,13 @@ def stock_profile_china(ticker,category='profile', \
|
|
1248
1257
|
print('\n数据来源:巨潮资讯,',str(today))
|
1249
1258
|
"""
|
1250
1259
|
titletxt1=titletxt+":基本信息"
|
1251
|
-
footnote='数据来源:巨潮资讯,'+str(
|
1260
|
+
footnote='数据来源:巨潮资讯,'+str(stoday)
|
1252
1261
|
df_display_CSS(df=dftmp15,titletxt=titletxt1,footnote=footnote, \
|
1253
1262
|
facecolor=facecolor,decimals=2,last_col_align='left', \
|
1254
1263
|
titile_font_size=titile_font_size,heading_font_size=heading_font_size, \
|
1255
1264
|
data_font_size=data_font_size)
|
1256
1265
|
|
1266
|
+
print(' ')
|
1257
1267
|
print("*****",titletxt+":业务范围")
|
1258
1268
|
longtext=df6.iloc[0]["主营业务"]
|
1259
1269
|
print_sentence(longtext,mid_symbol=[';','。'])
|
@@ -1268,20 +1278,20 @@ def stock_profile_china(ticker,category='profile', \
|
|
1268
1278
|
|
1269
1279
|
# 主营业务信息查询=============================================================================
|
1270
1280
|
# 主营业务仅在年报/中报中公布,一三季报中无此信息
|
1281
|
+
import numpy as np
|
1271
1282
|
if category == 'business':
|
1272
1283
|
try:
|
1273
|
-
df2=ak.
|
1284
|
+
df2=ak.stock_zygc_em(symbol=sxticker)
|
1274
1285
|
except:
|
1275
|
-
print(" #Warning(stock_profile_china): business info
|
1286
|
+
print(" #Warning(stock_profile_china): fetching business info failed for",ticker)
|
1276
1287
|
return
|
1277
1288
|
|
1278
|
-
df2['
|
1279
|
-
|
1289
|
+
df2['分类类型']=df2['分类类型'].apply(lambda x: '按业务分类' if x in [np.nan,None] else x)
|
1290
|
+
df2['报告日期']=df2['报告日期'].apply(lambda x: x.strftime("%Y-%m-%d"))
|
1280
1291
|
# 整理信息
|
1281
|
-
df2['报告年度']=df2['
|
1282
|
-
df2['
|
1283
|
-
df2['
|
1284
|
-
df2['报告日期']=df2['报告年度']+'-'+df2['报告月日']
|
1292
|
+
df2['报告年度']=df2['报告日期'].apply(lambda x: x[:4])
|
1293
|
+
df2['报告月日']=df2['报告日期'].apply(lambda x: x[-5:])
|
1294
|
+
df2['报告类别']=df2['报告月日'].apply(lambda x: '年度' if x=='12-31' else '中期' if x=='06-30' else '季度')
|
1285
1295
|
|
1286
1296
|
if business_period in ['annual','recent']:
|
1287
1297
|
if business_period == 'annual': #最近一期年报
|
@@ -1290,14 +1300,14 @@ def stock_profile_china(ticker,category='profile', \
|
|
1290
1300
|
if business_period == 'recent': #最近一期年报/中报
|
1291
1301
|
df2a=df2.copy(deep=True)
|
1292
1302
|
|
1293
|
-
period=df2a.head(1)['
|
1303
|
+
period=df2a.head(1)['报告日期'][0]
|
1294
1304
|
else: #具体中报或年报日期
|
1295
1305
|
result,business_period1=check_date2(business_period)
|
1296
1306
|
if result:
|
1297
1307
|
df2a=df2[df2['报告日期']==business_period1].copy(deep=True)
|
1298
1308
|
if len(df2a) > 0:
|
1299
1309
|
df2a.reset_index(drop=True,inplace=True)
|
1300
|
-
period=df2a.head(1)['
|
1310
|
+
period=df2a.head(1)['报告日期'][0]
|
1301
1311
|
else:
|
1302
1312
|
print(" #Warning(stock_profile_china): invalid business period for",business_period)
|
1303
1313
|
print(" Valid business_period: annual, recent, or an valid mid-term/annual report date, eg 2022-12-31 or 2022-6-30")
|
@@ -1307,13 +1317,23 @@ def stock_profile_china(ticker,category='profile', \
|
|
1307
1317
|
print(" Valid business_period: annual, recent, or an valid mid-term/annual report date, eg 2022-12-31 or 2022-6-30")
|
1308
1318
|
return
|
1309
1319
|
|
1310
|
-
dftmp=df2[df2['
|
1311
|
-
|
1312
|
-
|
1313
|
-
|
1314
|
-
|
1315
|
-
|
1316
|
-
|
1320
|
+
dftmp=df2[df2['报告日期']==period]
|
1321
|
+
cols1=['主营构成','主营收入','收入比例','主营成本','成本比例','主营利润','利润比例','毛利率']
|
1322
|
+
#cols2=['分类方向','分类','营业收入-同比增长','营业成本-同比增长','毛利率','毛利率-同比增长']
|
1323
|
+
|
1324
|
+
for c in cols1:
|
1325
|
+
if c in ['主营收入','主营成本','主营利润']:
|
1326
|
+
dftmp[c]=dftmp[c].apply(lambda x: round(x/yi,2))
|
1327
|
+
if c in ['收入比例','成本比例','利润比例','毛利率']:
|
1328
|
+
dftmp[c]=dftmp[c].apply(lambda x: round(x*100,2))
|
1329
|
+
dftmp.rename(columns={c:c+'%'},inplace=True)
|
1330
|
+
|
1331
|
+
cols1p=['主营构成','主营收入','收入比例%','主营成本','成本比例%','主营利润','利润比例%','毛利率%']
|
1332
|
+
dftmp1a=dftmp[dftmp['分类类型']=='按业务分类'][cols1p]
|
1333
|
+
dftmp1b=dftmp[dftmp['分类类型']=='按地区分类'][cols1p]
|
1334
|
+
|
1335
|
+
titletxt1a=ticker_name(ticker,'stock')+':主营业务构成,按业务分类,单位:亿元,'+period
|
1336
|
+
titletxt1b=ticker_name(ticker,'stock')+':主营业务构成,按地区分类,单位:亿元,'+period
|
1317
1337
|
"""
|
1318
1338
|
if prettytab:
|
1319
1339
|
pandas2prettytable(dftmp1,titletxt1,firstColSpecial=True,leftColAlign='l',otherColAlign='c',tabborder=tabborder)
|
@@ -1323,15 +1343,23 @@ def stock_profile_china(ticker,category='profile', \
|
|
1323
1343
|
print(dftmp1.to_markdown(tablefmt='Simple',index=False,colalign=['left','left','right','right','right','right','right']))
|
1324
1344
|
print('\n数据来源:益盟-F10,',str(today))
|
1325
1345
|
"""
|
1326
|
-
footnote='
|
1327
|
-
df_display_CSS(df=
|
1328
|
-
first_col_align='left',second_col_align='
|
1346
|
+
footnote=''
|
1347
|
+
df_display_CSS(df=dftmp1a,titletxt=titletxt1a,footnote=footnote, \
|
1348
|
+
first_col_align='left',second_col_align='right', \
|
1329
1349
|
facecolor=facecolor,decimals=2, \
|
1330
1350
|
titile_font_size=titile_font_size,heading_font_size=heading_font_size, \
|
1331
1351
|
data_font_size=data_font_size)
|
1332
|
-
|
1333
|
-
|
1334
|
-
|
1352
|
+
|
1353
|
+
print('\n')
|
1354
|
+
footnote='数据来源:东方财富,'+str(stoday)
|
1355
|
+
df_display_CSS(df=dftmp1b,titletxt=titletxt1b,footnote=footnote, \
|
1356
|
+
first_col_align='left',second_col_align='right', \
|
1357
|
+
facecolor=facecolor,decimals=2, \
|
1358
|
+
titile_font_size=titile_font_size,heading_font_size=heading_font_size, \
|
1359
|
+
data_font_size=data_font_size)
|
1360
|
+
|
1361
|
+
#dftmp2=dftmp[cols2]
|
1362
|
+
#titletxt2=ticker_name(ticker,'stock')+':主营业务增长,'+period
|
1335
1363
|
"""
|
1336
1364
|
if prettytab:
|
1337
1365
|
pandas2prettytable(dftmp2,titletxt2,firstColSpecial=True,leftColAlign='l',otherColAlign='c',tabborder=tabborder)
|
@@ -1341,12 +1369,13 @@ def stock_profile_china(ticker,category='profile', \
|
|
1341
1369
|
print(dftmp2.to_markdown(tablefmt='Simple',index=False,colalign=['left','left','right','right','right','right']))
|
1342
1370
|
print('\n数据来源:益盟-F10,',str(today))
|
1343
1371
|
"""
|
1372
|
+
"""
|
1344
1373
|
df_display_CSS(df=dftmp2,titletxt=titletxt2,footnote=footnote, \
|
1345
1374
|
first_col_align='left',second_col_align='left', \
|
1346
1375
|
facecolor=facecolor,decimals=2, \
|
1347
1376
|
titile_font_size=titile_font_size,heading_font_size=heading_font_size, \
|
1348
1377
|
data_font_size=data_font_size)
|
1349
|
-
|
1378
|
+
"""
|
1350
1379
|
# 历史分红信息查询=============================================================================
|
1351
1380
|
"""
|
1352
1381
|
if category == 'dividend':
|
@@ -1427,7 +1456,7 @@ def stock_profile_china(ticker,category='profile', \
|
|
1427
1456
|
print(dftmp3.to_markdown(tablefmt='Simple',index=False,colalign=alignlist))
|
1428
1457
|
print('【注】送股/转增:股数/10股,派息:元(税前)/10股,数据来源:新浪财经,',str(today))
|
1429
1458
|
"""
|
1430
|
-
footnote='【注】送股/转增:股数/10股,派息:元(税前)/10股,数据来源:新浪财经,'+str(
|
1459
|
+
footnote='【注】送股/转增:股数/10股,派息:元(税前)/10股,数据来源:新浪财经,'+str(stoday)
|
1431
1460
|
df_display_CSS(df=dftmp3,titletxt=titletxt,footnote=footnote, \
|
1432
1461
|
facecolor=facecolor,decimals=2, \
|
1433
1462
|
titile_font_size=titile_font_size,heading_font_size=heading_font_size, \
|
@@ -1465,7 +1494,7 @@ def stock_profile_china(ticker,category='profile', \
|
|
1465
1494
|
print(dftmp3.to_markdown(tablefmt='Simple',index=False,colalign=alignlist))
|
1466
1495
|
print('【注】配股方案:每10股的配股数,配股价格为元。数据来源:新浪财经,',str(today))
|
1467
1496
|
"""
|
1468
|
-
footnote='【注】配股方案:每10股的配股数,配股价格为元。数据来源:新浪财经,'+str(
|
1497
|
+
footnote='【注】配股方案:每10股的配股数,配股价格为元。数据来源:新浪财经,'+str(stoday)
|
1469
1498
|
df_display_CSS(df=dftmp3,titletxt=titletxt,footnote=footnote, \
|
1470
1499
|
facecolor=facecolor,decimals=2, \
|
1471
1500
|
titile_font_size=titile_font_size,heading_font_size=heading_font_size, \
|
@@ -1557,7 +1586,7 @@ def stock_profile_china(ticker,category='profile', \
|
|
1557
1586
|
print(dftmp1.to_markdown(tablefmt='Simple',index=False,colalign=['center','left','left','right']))
|
1558
1587
|
print('\n数据来源:新浪财经,',str(today))
|
1559
1588
|
"""
|
1560
|
-
footnote='数据来源:新浪财经,'+str(
|
1589
|
+
footnote='数据来源:新浪财经,'+str(stoday)
|
1561
1590
|
df_display_CSS(df=dftmp1,titletxt=titletxt,footnote=footnote, \
|
1562
1591
|
first_col_align='center',second_col_align='left', \
|
1563
1592
|
facecolor=facecolor,decimals=2, \
|
@@ -1598,7 +1627,7 @@ def stock_profile_china(ticker,category='profile', \
|
|
1598
1627
|
titletxt=ticker_name(ticker,'stock')+':估值与市值'
|
1599
1628
|
import datetime as dt
|
1600
1629
|
today=dt.date.today()
|
1601
|
-
footnote3="数据来源:乐咕乐股,"+str(
|
1630
|
+
footnote3="数据来源:乐咕乐股,"+str(stoday)
|
1602
1631
|
|
1603
1632
|
# 计算市盈率的均值,中位数、最大最小值
|
1604
1633
|
#va='pe'; va_name="市盈率"
|
@@ -1715,7 +1744,11 @@ def stock_profile_china(ticker,category='profile', \
|
|
1715
1744
|
if any(s in category for s in ['financial','healthy']):
|
1716
1745
|
|
1717
1746
|
try:
|
1718
|
-
df7=ak.stock_financial_analysis_indicator(symbol=ticker1)
|
1747
|
+
df7=ak.stock_financial_analysis_indicator(symbol=ticker1)
|
1748
|
+
#其中的日期为datetime.date object类型
|
1749
|
+
df7['日期']=df7['日期'].apply(lambda x: x.strftime("%Y-%m-%d"))
|
1750
|
+
#降序排列
|
1751
|
+
df7.sort_values(by=['日期'],ascending=False,inplace=True)
|
1719
1752
|
except:
|
1720
1753
|
print(" #Warning(stock_detail_china):financial info not found for",ticker)
|
1721
1754
|
return
|
@@ -1760,11 +1793,11 @@ def stock_profile_china(ticker,category='profile', \
|
|
1760
1793
|
print(dftmp1.to_markdown(tablefmt='Simple',index=False,colalign=colalignList))
|
1761
1794
|
print('\n数据来源:新浪财经,',str(today))
|
1762
1795
|
"""
|
1763
|
-
footnote='数据来源:新浪财经,'+str(
|
1796
|
+
footnote='数据来源:新浪财经,'+str(stoday)
|
1764
1797
|
df_display_CSS(df=dftmp1,titletxt=titletxt,footnote=footnote, \
|
1765
1798
|
facecolor=facecolor,decimals=2, \
|
1766
|
-
titile_font_size=titile_font_size,heading_font_size=
|
1767
|
-
data_font_size=
|
1799
|
+
titile_font_size=titile_font_size,heading_font_size=heading_font_size_small, \
|
1800
|
+
data_font_size=data_font_size_small)
|
1768
1801
|
|
1769
1802
|
"""
|
1770
1803
|
加权平均每股收益:
|
@@ -1818,8 +1851,8 @@ def stock_profile_china(ticker,category='profile', \
|
|
1818
1851
|
"""
|
1819
1852
|
df_display_CSS(df=dftmp1,titletxt=titletxt,footnote=footnote, \
|
1820
1853
|
facecolor=facecolor,decimals=2, \
|
1821
|
-
titile_font_size=titile_font_size,heading_font_size=
|
1822
|
-
data_font_size=
|
1854
|
+
titile_font_size=titile_font_size,heading_font_size=heading_font_size_small, \
|
1855
|
+
data_font_size=data_font_size_small)
|
1823
1856
|
|
1824
1857
|
|
1825
1858
|
"""
|
@@ -1864,8 +1897,8 @@ def stock_profile_china(ticker,category='profile', \
|
|
1864
1897
|
"""
|
1865
1898
|
df_display_CSS(df=dftmp2,titletxt=titletxt,footnote=footnote, \
|
1866
1899
|
facecolor=facecolor,decimals=2, \
|
1867
|
-
titile_font_size=titile_font_size,heading_font_size=
|
1868
|
-
data_font_size=
|
1900
|
+
titile_font_size=titile_font_size,heading_font_size=heading_font_size_small, \
|
1901
|
+
data_font_size=data_font_size_small)
|
1869
1902
|
|
1870
1903
|
|
1871
1904
|
"""
|
@@ -1905,8 +1938,8 @@ def stock_profile_china(ticker,category='profile', \
|
|
1905
1938
|
"""
|
1906
1939
|
df_display_CSS(df=dftmp1,titletxt=titletxt,footnote=footnote, \
|
1907
1940
|
facecolor=facecolor,decimals=2, \
|
1908
|
-
titile_font_size=titile_font_size,heading_font_size=
|
1909
|
-
data_font_size=
|
1941
|
+
titile_font_size=titile_font_size,heading_font_size=heading_font_size_small, \
|
1942
|
+
data_font_size=data_font_size_small)
|
1910
1943
|
|
1911
1944
|
|
1912
1945
|
titletxt=ticker_name(ticker,'stock')+":主要财务信息,资产负债分析"
|
@@ -1948,8 +1981,8 @@ def stock_profile_china(ticker,category='profile', \
|
|
1948
1981
|
"""
|
1949
1982
|
df_display_CSS(df=dftmp1,titletxt=titletxt,footnote=footnote, \
|
1950
1983
|
facecolor=facecolor,decimals=2, \
|
1951
|
-
titile_font_size=titile_font_size,heading_font_size=
|
1952
|
-
data_font_size=
|
1984
|
+
titile_font_size=titile_font_size,heading_font_size=heading_font_size_small, \
|
1985
|
+
data_font_size=data_font_size_small)
|
1953
1986
|
|
1954
1987
|
|
1955
1988
|
"""
|
@@ -1995,8 +2028,8 @@ def stock_profile_china(ticker,category='profile', \
|
|
1995
2028
|
"""
|
1996
2029
|
df_display_CSS(df=dftmp1,titletxt=titletxt,footnote=footnote, \
|
1997
2030
|
facecolor=facecolor,decimals=2, \
|
1998
|
-
titile_font_size=titile_font_size,heading_font_size=
|
1999
|
-
data_font_size=
|
2031
|
+
titile_font_size=titile_font_size,heading_font_size=heading_font_size_small, \
|
2032
|
+
data_font_size=data_font_size_small)
|
2000
2033
|
|
2001
2034
|
"""
|
2002
2035
|
资产的经营现金流量回报率是经营活动产生的现金流量净额/总资产,是体现企业收现能力的指标之一。
|
@@ -18,7 +18,7 @@ siat/capm_beta.py,sha256=cxXdRVBQBllhbfz1LeTJAIWvyRYhW54nhtNUXv4HwS0,29063
|
|
18
18
|
siat/capm_beta2.py,sha256=-ZYYp1HK7SkfTR3vBKZ0QVC4Q_tbST2O4MGbX_V77J0,32031
|
19
19
|
siat/capm_beta_test.py,sha256=ImR0c5mc4hIl714XmHztdl7qg8v1E2lycKyiqnFj6qs,1745
|
20
20
|
siat/cmat_commons.py,sha256=Nj9Kf0alywaztVoMVeVVL_EZk5jRERJy8R8kBw88_Tg,38116
|
21
|
-
siat/common.py,sha256=
|
21
|
+
siat/common.py,sha256=2Y51NN6n4FhkNXDRFnV9xPE2Z7XcjqcqaWtZLRaDmgQ,163283
|
22
22
|
siat/compare_cross.py,sha256=3iP9TH2h3w27F2ARZc7FjKcErYCzWRc-TPiymOyoVtw,24171
|
23
23
|
siat/compare_cross_test.py,sha256=xra5XYmQGEtfIZL2h-GssdH2hLdFIhG3eoCrkDrL3gY,3473
|
24
24
|
siat/concepts_iwencai.py,sha256=m1YEDtECRT6FqtzlKm91pt2I9d3Z_XoP59BtWdRdu8I,3061
|
@@ -42,8 +42,8 @@ siat/financial_statements_test.py,sha256=FLhx8JD-tVVWSBGux6AMz1jioXX4U4bp9DmgFHY
|
|
42
42
|
siat/financials.py,sha256=mbEZSNeHMMFcnPUryQWvdmNlWQvpnOG9eItgS7IVw3k,80458
|
43
43
|
siat/financials2 - 副本.py,sha256=dKlNjIfKeoSy055fQ6E6TUj9HEoO5Ney9grD84J5kfk,14389
|
44
44
|
siat/financials2.py,sha256=7mnsTncKsgwFu8PP4refh5C5iMIO9P0KOMSF87ZyncY,45736
|
45
|
-
siat/financials_china.py,sha256=
|
46
|
-
siat/financials_china2.py,sha256=
|
45
|
+
siat/financials_china.py,sha256=Y9QHyJKDgVbkb5L1f65BAiNxLIDmasRUN9_ju4Yby_c,191925
|
46
|
+
siat/financials_china2.py,sha256=NZzpS1eCaxEClOhh8dvfdn88NhIULqeb9E0GUDUiG4U,92892
|
47
47
|
siat/financials_china2_test.py,sha256=Erz5k4LyOplBBvYls2MypuqHpVNJ3daiLdyeJezNPu0,2722
|
48
48
|
siat/financials_china2_test2.py,sha256=C8CuYTMHN4Mhp-sTu-Bmg0zMXRCaYV6ezGDoYartRYQ,3507
|
49
49
|
siat/financials_china2_test3.py,sha256=UXYSA80DNSPRhHpovc2MA9JkpILWMAQaRatbWCHBNPs,3118
|
@@ -109,7 +109,7 @@ siat/shenwan index history test.py,sha256=JCVAzOSEldHalhSFa3pqD8JI_8_djPMQOxpkuY
|
|
109
109
|
siat/stock.py,sha256=sDYEXGE9XYnzRYzxv1AUJqMqAu6ISZx7skiu82L1Z7Y,158613
|
110
110
|
siat/stock_advice_linear.py,sha256=-twT7IGP-NEplkL1WPSACcNJjggRB2j4mlAQCkzOAuo,31655
|
111
111
|
siat/stock_base.py,sha256=uISvbRyOGy8p9QREA96CVydgflBkn5L3OXOGKl8oanc,1312
|
112
|
-
siat/stock_china.py,sha256=
|
112
|
+
siat/stock_china.py,sha256=zzi3JvzkfPG7ldX_ykkiQOe1iMpB3pnejfxuT7mg5oM,93462
|
113
113
|
siat/stock_china_test.py,sha256=eO4HWsSvc6qezl0LndjtL24lViEyrBjH_sx2c2Y2Q2M,1294
|
114
114
|
siat/stock_info.pickle,sha256=XqcFwQrXoBXAzZnE6rnfpI7zETXZS2usqzsx2ff7MEg,1319005
|
115
115
|
siat/stock_info_test.py,sha256=gfG3DbhDACbtD8wnv_R6zhj0t11XaC8NX8uLD9Qv3Fo,6122
|
@@ -141,8 +141,8 @@ siat/valuation_china.py,sha256=CVp1IwIsF3Om0J29RGkyxZLt4n9Ug-ua_RKhLwL9fUQ,69624
|
|
141
141
|
siat/valuation_market_china_test.py,sha256=gbJ0ioauuo4koTPH6WKUkqcXiQPafnbhU5eKJ6lpdLA,1571
|
142
142
|
siat/var_model_validation.py,sha256=R0caWnuZarrRg9939hxh3vJIIpIyPfvelYmzFNZtPbo,14910
|
143
143
|
siat/yf_name.py,sha256=r0Q67cSMMlfebEkI9h9pdGlJCooEq7hw_3M5IUs4cSI,20081
|
144
|
-
siat-3.7.
|
145
|
-
siat-3.7.
|
146
|
-
siat-3.7.
|
147
|
-
siat-3.7.
|
148
|
-
siat-3.7.
|
144
|
+
siat-3.7.5.dist-info/LICENSE,sha256=NTEMMROY9_4U1szoKC3N2BLHcDd_o5uTgqdVH8tbApw,1071
|
145
|
+
siat-3.7.5.dist-info/METADATA,sha256=P8JImZGTi4f_S8g00nK3hIfsnKoE6EQMlRcc1Tb94ws,8009
|
146
|
+
siat-3.7.5.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
|
147
|
+
siat-3.7.5.dist-info/top_level.txt,sha256=r1cVyL7AIKqeAmEJjNR8FMT20OmEzufDstC2gv3NvEY,5
|
148
|
+
siat-3.7.5.dist-info/RECORD,,
|
File without changes
|
File without changes
|