siat 3.7.28__py3-none-any.whl → 3.8.10__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- siat/__init__.py +27 -5
- siat/allin.py +2 -0
- siat/beta_adjustment.py +1 -1
- siat/beta_adjustment_china.py +1 -1
- siat/bond.py +4 -2
- siat/bond_base.py +2 -1
- siat/bond_china.py +2 -1
- siat/capm_beta2.py +57 -14
- siat/common.py +57 -12
- siat/cryptocurrency.py +6 -3
- siat/economy2.py +977 -0
- siat/financials.py +4 -2
- siat/financials2.py +4 -2
- siat/financials_china.py +2 -1
- siat/fund.py +12 -12
- siat/fund_china.py +561 -2
- siat/grafix.py +185 -50
- siat/holding_risk.py +4 -2
- siat/market_china.py +4 -1
- siat/markowitz.py +7 -7
- siat/markowitz2.py +6 -5
- siat/option_china.py +3 -2
- siat/risk_adjusted_return.py +2 -2
- siat/risk_evaluation.py +10 -6
- siat/sector_china.py +62 -28
- siat/security_trend2.py +10 -2
- siat/stock.py +18 -5
- siat/stock_profile.py +2 -1
- siat/stock_technical.py +2 -1
- siat/translate.py +280 -5
- {siat-3.7.28.dist-info → siat-3.8.10.dist-info}/METADATA +2 -10
- {siat-3.7.28.dist-info → siat-3.8.10.dist-info}/RECORD +35 -34
- {siat-3.7.28.dist-info → siat-3.8.10.dist-info}/WHEEL +1 -1
- {siat-3.7.28.dist-info → siat-3.8.10.dist-info}/LICENSE +0 -0
- {siat-3.7.28.dist-info → siat-3.8.10.dist-info}/top_level.txt +0 -0
siat/financials.py
CHANGED
@@ -24,7 +24,8 @@ from siat.grafix import *
|
|
24
24
|
#==============================================================================
|
25
25
|
import matplotlib.pyplot as plt
|
26
26
|
|
27
|
-
plt.rcParams['figure.figsize']=(12.8,7.2)
|
27
|
+
#plt.rcParams['figure.figsize']=(12.8,7.2)
|
28
|
+
plt.rcParams['figure.figsize']=(12.8,6.4)
|
28
29
|
plt.rcParams['figure.dpi']=300
|
29
30
|
plt.rcParams['font.size'] = 13
|
30
31
|
plt.rcParams['xtick.labelsize']=11 #横轴字体大小
|
@@ -1936,7 +1937,8 @@ def compare_dupont(tickerlist,fsdate='latest',scale1 = 10,scale2 = 10,hatchlist=
|
|
1936
1937
|
code=df.loc[i,'公司']
|
1937
1938
|
df.loc[i,'公司']=ticker_name(code)
|
1938
1939
|
|
1939
|
-
f,ax1 = plt.subplots(1,figsize=(10,5))
|
1940
|
+
#f,ax1 = plt.subplots(1,figsize=(10,5))
|
1941
|
+
f,ax1 = plt.subplots(1,figsize=(12.8,6.4))
|
1940
1942
|
w = 0.75
|
1941
1943
|
x = [i+1 for i in range(len(df[name1]))]
|
1942
1944
|
#tick_pos = [i+(w/2.) for i in x]
|
siat/financials2.py
CHANGED
@@ -26,7 +26,8 @@ from siat.grafix import *
|
|
26
26
|
#==============================================================================
|
27
27
|
import matplotlib.pyplot as plt
|
28
28
|
|
29
|
-
plt.rcParams['figure.figsize']=(12.8,7.2)
|
29
|
+
#plt.rcParams['figure.figsize']=(12.8,7.2)
|
30
|
+
plt.rcParams['figure.figsize']=(12.8,6.4)
|
30
31
|
plt.rcParams['figure.dpi']=300
|
31
32
|
plt.rcParams['font.size'] = 13
|
32
33
|
plt.rcParams['xtick.labelsize']=11 #横轴字体大小
|
@@ -1009,7 +1010,8 @@ def fs_analysis(tickers,fsdates=[],analysis_type='balance sheet', \
|
|
1009
1010
|
|
1010
1011
|
fin_period=df2['endDate'].values[0]
|
1011
1012
|
|
1012
|
-
f,ax1 = plt.subplots(1,figsize=(10,5))
|
1013
|
+
#f,ax1 = plt.subplots(1,figsize=(10,5))
|
1014
|
+
f,ax1 = plt.subplots(1,figsize=(12.8,6.4))
|
1013
1015
|
w = 0.75
|
1014
1016
|
x = [i+1 for i in range(len(df2[name1]))]
|
1015
1017
|
tick_pos = [i for i in x]
|
siat/financials_china.py
CHANGED
@@ -770,7 +770,8 @@ def compare_dupont_china(tickerlist,fsdate='latest',scale1 = 10,scale2 = 10, \
|
|
770
770
|
code=df.loc[i,'公司']
|
771
771
|
df.loc[i,'公司']=ticker_name(code,'stock').replace("(A股)",'')
|
772
772
|
|
773
|
-
f,ax1 = plt.subplots(1,figsize=(10,5))
|
773
|
+
#f,ax1 = plt.subplots(1,figsize=(10,5))
|
774
|
+
f,ax1 = plt.subplots(1,figsize=(12.8,6.4))
|
774
775
|
w = 0.75
|
775
776
|
x = [i+1 for i in range(len(df[name1]))]
|
776
777
|
#tick_pos = [i+(w/2.) for i in x]
|
siat/fund.py
CHANGED
@@ -129,8 +129,8 @@ def pof_list_china(fund_type='全部类型',printout=True):
|
|
129
129
|
print(prefix,"{:,}".format(n),"\b,",round(n/num*100,2),'\b%')
|
130
130
|
|
131
131
|
import datetime
|
132
|
-
|
133
|
-
print("来源:东方财富/天天基金,",
|
132
|
+
todaydt = datetime.date.today()
|
133
|
+
print("来源:东方财富/天天基金,",todaydt)
|
134
134
|
|
135
135
|
return df3
|
136
136
|
|
@@ -215,8 +215,8 @@ def oef_rank_china(info_type='单位净值',fund_type='全部类型'):
|
|
215
215
|
|
216
216
|
print(" 净值日期:",nvdate,'\b. ',end='')
|
217
217
|
import datetime
|
218
|
-
|
219
|
-
print(" 来源:东方财富/天天基金,",
|
218
|
+
todaydt = datetime.date.today()
|
219
|
+
print(" 来源:东方财富/天天基金,",todaydt)
|
220
220
|
|
221
221
|
return df
|
222
222
|
|
@@ -261,7 +261,7 @@ def oef_trend_china(fund,fromdate,todate,trend_type='净值',power=0):
|
|
261
261
|
import akshare as ak
|
262
262
|
|
263
263
|
#开放式基金-历史数据
|
264
|
-
import datetime;
|
264
|
+
import datetime; todaydt = datetime.date.today()
|
265
265
|
source="来源:东方财富/天天基金"
|
266
266
|
import siat.grafix as grf
|
267
267
|
|
@@ -288,7 +288,7 @@ def oef_trend_china(fund,fromdate,todate,trend_type='净值',power=0):
|
|
288
288
|
ylabeltxt='人民币元'
|
289
289
|
titletxt="开放式基金的净值趋势:"+fund
|
290
290
|
|
291
|
-
footnote=source+', '+str(
|
291
|
+
footnote=source+', '+str(todaydt)
|
292
292
|
grf.plot_line2(dfp,ticker1,colname1,label1, \
|
293
293
|
dfp,ticker2,colname2,label2, \
|
294
294
|
ylabeltxt,titletxt,footnote,power=power)
|
@@ -306,7 +306,7 @@ def oef_trend_china(fund,fromdate,todate,trend_type='净值',power=0):
|
|
306
306
|
colname='累计收益率'; collabel='累计收益率%'
|
307
307
|
ylabeltxt=''
|
308
308
|
titletxt="开放式基金的累计收益率趋势:"+fund
|
309
|
-
footnote=source+', '+str(
|
309
|
+
footnote=source+', '+str(todaydt)
|
310
310
|
grf.plot_line(dfp,colname,collabel,ylabeltxt,titletxt,footnote,power=power)
|
311
311
|
return df
|
312
312
|
|
@@ -332,7 +332,7 @@ def oef_trend_china(fund,fromdate,todate,trend_type='净值',power=0):
|
|
332
332
|
ticker2=fund; colname2='同类排名百分比';label2='同类排名百分比'
|
333
333
|
ylabeltxt=''
|
334
334
|
titletxt="开放式基金的近三个月收益率排名趋势:"+fund
|
335
|
-
footnote=source+', '+str(
|
335
|
+
footnote=source+', '+str(todaydt)
|
336
336
|
grf.plot_line2(dfp,ticker1,colname1,label1, \
|
337
337
|
dfp,ticker2,colname2,label2, \
|
338
338
|
ylabeltxt,titletxt,footnote,power=power,twinx=True)
|
@@ -388,8 +388,8 @@ def mmf_rank_china():
|
|
388
388
|
|
389
389
|
print("收益率日期:",nvdate,'\b. ',end='')
|
390
390
|
import datetime
|
391
|
-
|
392
|
-
print("来源:东方财富/天天基金,",
|
391
|
+
todaydt = datetime.date.today()
|
392
|
+
print("来源:东方财富/天天基金,",todaydt)
|
393
393
|
|
394
394
|
return df
|
395
395
|
|
@@ -421,7 +421,7 @@ def mmf_trend_china(fund,fromdate,todate,power=0):
|
|
421
421
|
import akshare as ak
|
422
422
|
|
423
423
|
#基金历史数据
|
424
|
-
import datetime;
|
424
|
+
import datetime; dt = datetime.date.today()
|
425
425
|
source="来源:东方财富/天天基金"
|
426
426
|
import siat.grafix as grf
|
427
427
|
|
@@ -440,7 +440,7 @@ def mmf_trend_china(fund,fromdate,todate,power=0):
|
|
440
440
|
colname='7日年化%'; collabel='7日年化%'
|
441
441
|
ylabeltxt=''
|
442
442
|
titletxt="货币型基金的7日年化收益率趋势:"+fund
|
443
|
-
footnote=source+', '+str(
|
443
|
+
footnote=source+', '+str(todaydt)
|
444
444
|
grf.plot_line(dfp,colname,collabel,ylabeltxt,titletxt,footnote,power=power)
|
445
445
|
|
446
446
|
return df
|