siat 3.5.1__py3-none-any.whl → 3.5.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
siat/bond.py CHANGED
@@ -2705,5 +2705,133 @@ def bond_malkiel(coupon_rate,maturity_years,ytm,coupon_times=2,par_value=100, \
2705
2705
 
2706
2706
 
2707
2707
  #==============================================================================
2708
+ if __name__ =="__main__":
2709
+ start="MRY"; end="today"
2710
+ term="1Y"
2711
+ term=["1Y","5Y","10Y"]
2712
+
2713
+ power=1
2714
+ average_value=True
2715
+ loc1="best"; loc2="best"
2716
+ mark_top=False; mark_bottom=False; mark_end=False
2717
+ twinx=False
2718
+
2719
+ annotate=True; annotate_value=True
2720
+ facecolor="papayawhip"
2721
+
2722
+ rates=treasury_yield_trend_china(term="1Y")
2723
+ rates=treasury_yield_trend_china(term=["1Y","5Y","10Y"])
2724
+
2725
+ def treasury_trend_china(term="1Y",start="MRY",end="today", \
2726
+ power=0, \
2727
+ average_value=False, \
2728
+ mark_top=False,mark_bottom=False,mark_end=False, \
2729
+ annotate=True,annotate_value=True, \
2730
+ twinx=False, \
2731
+ loc1="best",loc2="best", \
2732
+ facecolor="papayawhip"):
2733
+ """
2734
+
2735
+ 功能:分析中国国债收益率走势,支持单个期限或多个期限进行对比
2736
+ """
2737
+ #检查国债期限
2738
+ term_list=['3M','6M','1Y','3Y','5Y','7Y','10Y','30Y']
2739
+ term_list_names=['3个月','6个月','1年期','3年期','5年期','7年期','10年期','30年期']
2740
+
2741
+ start1,end1=start_end_preprocess(start,end)
2742
+ #期间不能超过一年
2743
+ import pandas as pd
2744
+ date1=pd.to_datetime(start1)
2745
+ date2=pd.to_datetime(end1)
2746
+ days=days_between_dates(date1, date2)
2747
+ if days>=365:
2748
+ days=365
2749
+ start1=date_adjust(end1, adjust=-days)
2750
+
2751
+ if isinstance(term,str):
2752
+ if not term in term_list:
2753
+ print(" #Warning(treasury_trend_china): unsupported treasury term",term)
2754
+ print(" Supported terms:", end='')
2755
+ print_list(term_list,leading_blanks=1,end='\n')
2756
+ return None
2757
+ termlist=[term]
2758
+ elif isinstance(term,list):
2759
+ for t in term:
2760
+ if not t in term_list:
2761
+ print(" #Warning(treasury_trend_china): unsupported treasury term",t)
2762
+ term.remove(t)
2763
+ termlist=term
2764
+ else:
2765
+ print(" #Warning(treasury_trend_china):",term," is unsupported")
2766
+ print(" Supported terms:", end='')
2767
+ print_list(term_list,leading_blanks=1,end='\n')
2768
+ return None
2769
+
2770
+ print(" Searching treasury information in China ...")
2771
+ df=pd.DataFrame()
2772
+ for t in termlist:
2773
+ if len(termlist) > 1:
2774
+ print_progress_percent2(t,termlist,steps=len(termlist),leading_blanks=4)
2775
+
2776
+ dftmp=treasury_yields_china(start1,end1,term=t)
2777
+ dftmp[t]=dftmp['rate']*100 #转换为百分数
2778
+ dftmp1=pd.DataFrame(dftmp[t])
2779
+
2780
+ if len(df)==0:
2781
+ df=dftmp1
2782
+ else:
2783
+ df=pd.merge(df,dftmp1,left_index=True,right_index=True)
2784
+
2785
+ #绘图
2786
+ titletxt=text_lang("中国国债收益率走势","China Treasury Yield Trend")
2787
+ ylabeltxt=text_lang('收益率%',"Yield%")
2788
+ import datetime; todaydt = datetime.date.today()
2789
+ footnote=text_lang("数据来源:中国债券信息网,","Data source: China Bond Info, ")+str(todaydt)
2790
+
2791
+ if len(termlist)==1: #单曲线
2792
+ pos=term_list.index(termlist[0])
2793
+ termname=term_list_names[pos]
2794
+ ylabeltxt=text_lang(termname+ylabeltxt,termlist[0]+' '+ylabeltxt)
2795
+
2796
+ plot_line(df,colname=termlist[0],collabel=termlist[0], \
2797
+ ylabeltxt=ylabeltxt,titletxt=titletxt,footnote=footnote, \
2798
+ power=power,average_value=average_value, \
2799
+ loc=loc1, \
2800
+ mark_top=mark_top,mark_bottom=mark_bottom,mark_end=mark_end, \
2801
+ facecolor=facecolor)
2802
+
2803
+ if len(termlist)==2: #两条曲线,twinx
2804
+ bond1=termlist[0]; pos1=term_list.index(bond1); bond1name=term_list_names[pos1]
2805
+ bond2=termlist[1]; pos2=term_list.index(bond2); bond2name=term_list_names[pos2]
2708
2806
 
2807
+ df1=pd.DataFrame(df[bond1]); ticker1=''; colname1=bond1; label1=bond1name
2808
+ df2=pd.DataFrame(df[bond2]); ticker2=''; colname2=bond2; label2=bond2name
2809
+
2810
+ plot_line2(df1,ticker1,colname1,label1, \
2811
+ df2,ticker2,colname2,label2, \
2812
+ ylabeltxt=ylabeltxt,titletxt=titletxt,footnote=footnote, \
2813
+ power=power, \
2814
+ twinx=twinx, \
2815
+ loc1=loc1,loc2=loc2, \
2816
+ color1='red',color2='blue',facecolor=facecolor)
2817
+
2818
+ if len(termlist) > 2: #多条曲线
2819
+ df['date']=df.index
2820
+ df.set_index("date",inplace=True)
2821
+
2822
+ for t in termlist:
2823
+ tpos=term_list.index(t); tname=term_list_names[tpos]
2824
+ df.rename(columns={t:tname},inplace=True)
2825
+
2826
+ draw_lines(df,y_label=ylabeltxt,x_label=footnote, \
2827
+ axhline_value=0,axhline_label='', \
2828
+ title_txt=titletxt, \
2829
+ data_label=False, \
2830
+ loc=loc1,annotate=annotate,annotate_value=annotate_value, \
2831
+ mark_top=mark_top,mark_bottom=mark_bottom,mark_end=mark_end, \
2832
+ facecolor=facecolor)
2833
+
2834
+ return df
2835
+
2836
+
2709
2837
  #==============================================================================
siat/common.py CHANGED
@@ -1361,38 +1361,45 @@ if __name__=='__main__':
1361
1361
  shibor_rate('2021-11-19',rate_period='ON')
1362
1362
  #==============================================================================
1363
1363
  if __name__=='__main__':
1364
- start='2020-1-1'
1365
- end='2023-3-4'
1364
+ start='2023-11-1'
1365
+ end='2024-10-30'
1366
1366
  term='1Y'
1367
+
1368
+ treasury_yields_china(start,end,term='1Y')
1367
1369
 
1368
- def treasury_yields_china(start,end,term='1Y'):
1370
+ def treasury_yields_china(start,end='today',term='1Y'):
1369
1371
  """
1370
1372
  功能:抓取指定期间和期限的国债收益率
1371
1373
 
1372
1374
  注意:这里得到的是年化利率,不带百分号,不是日利率!(日利率=年化利率/365)
1373
1375
  """
1376
+ start,end=start_end_preprocess(start,end)
1377
+
1374
1378
  #检查日期期间
1375
1379
  valid,start1,end1=check_period(start,end)
1376
1380
  if not valid:
1377
- print(" #Error(treasury_yields_china): invalid date period from",start,"to",end)
1381
+ print(" #Warning(treasury_yields_china): invalid date period from",start,"to",end)
1378
1382
  return None
1379
1383
 
1380
1384
  #检查利率期间有效性
1381
1385
  term_list=['3M','6M','1Y','3Y','5Y','7Y','10Y','30Y']
1382
1386
  if not (term in term_list):
1383
- print(" #Error(treasury_yields_china): invalid rate period",term)
1387
+ print(" #Warning(treasury_yields_china): invalid rate period",term)
1384
1388
  print(" Supported rate periods:",term_list)
1385
1389
  return None
1386
1390
 
1387
1391
  #抓取中债国债收益率
1388
1392
  import akshare as ak
1389
- df = ak.bond_china_yield(start_date=start,end_date=end)
1393
+ start2=start1.strftime("%Y%m%d")
1394
+ end2=end1.strftime("%Y%m%d")
1395
+ df = ak.bond_china_yield(start_date=start2,end_date=end2)
1390
1396
  if len(df)==0:
1397
+ print(" #Warning(treasury_yields_china): empty data found, try again later")
1391
1398
  return None
1392
1399
 
1393
1400
  df1=df[df['曲线名称']=='中债国债收益率曲线']
1394
1401
  df1.columns=['curve','date']+term_list
1395
- df1.sort_values(by=['date'],ascending=['True'],inplace=True)
1402
+ df1.sort_values(by=['date'],ascending=True,inplace=True)
1396
1403
 
1397
1404
  df1['Date']=pd.to_datetime(df1['date'])
1398
1405
  df1.set_index(['Date'],inplace=True)
@@ -1401,6 +1408,7 @@ def treasury_yields_china(start,end,term='1Y'):
1401
1408
  df1['period']=term
1402
1409
  df2=df1[['date','rate','period']]
1403
1410
 
1411
+
1404
1412
  return df2
1405
1413
 
1406
1414
  if __name__=='__main__':
@@ -4236,7 +4244,133 @@ def list_intersection(lists=[],numberPerLine=5,printout=True,return_result=False
4236
4244
  else: return
4237
4245
 
4238
4246
  #==============================================================================
4247
+ if __name__ == '__main__':
4248
+ hpr=3.17
4249
+ years=20
4250
+
4251
+ annual_return1(hpr,years)
4252
+
4253
+ def annual_return1(hpr,years):
4254
+ """
4255
+ 功能:计算年均复合增长率,1个
4256
+ """
4257
+ #text1="Holding period return for "+str(years)+" years: "+str(hpr*100)+'%'
4258
+ text1=str(years)+"年的持有期收益率:"+str(round(hpr*100,3))+'%'
4259
+ print(text1,end=',')
4260
+
4261
+ #text2="Annualized compound return:"
4262
+ text2="年均复合收益率:"+str(round((pow(1+hpr,1/years)-1)*100,3))+'%'
4263
+ print(text2)
4264
+
4265
+ return
4266
+
4267
+ if __name__ == '__main__':
4268
+ hpr=3.17
4269
+ hpr=[3.17,2.5]
4270
+ years=20
4271
+
4272
+ annual_return(hpr,years)
4273
+
4274
+ def annual_return(hpr,years):
4275
+ """
4276
+ 功能:hpr可为多个
4277
+ """
4278
+ if isinstance(hpr,float) or isinstance(hpr,int):
4279
+ hpr=[hpr]
4280
+
4281
+ for h in hpr:
4282
+ annual_return1(h,years)
4283
+
4284
+ return
4285
+
4286
+ if __name__ == '__main__':
4287
+ df=security_trend(['801811.SW','801813.SW'],
4288
+ indicator='Exp Adj Ret%',
4289
+ start='L5Y',
4290
+ annotate=True,annotate_value=True)
4291
+
4292
+ df_annual_return(df)
4293
+
4294
+ def df_annual_return(df):
4295
+ """
4296
+ 功能:计算df1中每列的年复合收益率
4297
+ """
4298
+
4299
+ #计算年数
4300
+ date1=df.index[0]
4301
+ date2=df.index[-1]
4302
+ delta=date2-date1
4303
+ years=round(delta.days/365,2)
4304
+ months=int(delta.days/30)
4305
+
4306
+ #计算每列的年均复合增长率
4307
+ collist=list(df)
4308
+ for c in collist:
4309
+ hpr=df[c][-1]
4310
+ hpr1=hpr/100
4311
+ annual_rate=str(round((pow(1+hpr1,1/years)-1)*100,3))+'%'
4312
+
4313
+ if years >=1:
4314
+ text=c+": "+str(years)+"年持有期收益率"+str(round(hpr,3))+'%,年均复合收益率'+annual_rate
4315
+ else:
4316
+ text=c+": "+str(months)+"个月持有期收益率"+str(round(hpr,3))+'%,年均复合收益率'+annual_rate
4317
+ print(text)
4318
+
4319
+ return
4320
+
4239
4321
  #==============================================================================
4322
+
4323
+
4324
+ if __name__ == '__main__':
4325
+ df=security_trend("600519.SS",graph=False)
4326
+ option="save"
4327
+
4328
+ df_save(df,file="moutai")
4329
+ mt=df_restore(file="moutai")
4330
+
4331
+ def df_save(df,file="df"):
4332
+ """
4333
+ 功能:保存df数据,适用于那些需要大量时间获取的df,以便使用时可以恢复
4334
+ """
4335
+
4336
+ if ".pkl" in file:
4337
+ file_name=file
4338
+ else:
4339
+ file_name=file+'.pkl'
4340
+
4341
+ try:
4342
+ df.to_pickle(file_name)
4343
+
4344
+ import os; path=os.getcwd()
4345
+ print(" Data is saved to file",path+"\\"+file_name)
4346
+ except:
4347
+ print(" #Error(df_save): failed to save data to file",file_name)
4348
+
4349
+ return
4350
+
4351
+ def df_restore(file):
4352
+ """
4353
+ 功能:从文件恢复df数据,适用于那些需要大量时间获取的df
4354
+ """
4355
+
4356
+ import pandas as pd
4357
+
4358
+ if ".pkl" in file:
4359
+ file_name=file
4360
+ else:
4361
+ file_name=file+'.pkl'
4362
+
4363
+ try:
4364
+ df=pd.read_pickle(file_name)
4365
+
4366
+ import os; path=os.getcwd()
4367
+ print(" Data is restored from file",path+"\\"+file_name)
4368
+ except:
4369
+ print(" #Error(df_restore): file not found for",file_name)
4370
+ df=None
4371
+ return df
4372
+
4373
+
4240
4374
  #==============================================================================
4241
4375
  #==============================================================================
4242
4376
  #==============================================================================
siat/fund_china.py CHANGED
@@ -762,7 +762,7 @@ def get_oef_rank_china():
762
762
  df3['基金类型']=df3['基金类型'].astype(str)
763
763
  df3['净值日期']=nvdate
764
764
 
765
- print("Successfully retrieved",len(df3),"Chinese OEF products disclosing performance on",nvdate)
765
+ print("Successfully retrieved",len(df3),"OEF products on",nvdate)
766
766
 
767
767
  return df3
768
768
 
@@ -864,7 +864,10 @@ def oef_rank_china2(df,fund_type='全部类型',rank=5,indicator='单位净值')
864
864
  titletxt="中国开放式基金排名:累计净值"
865
865
 
866
866
  if indicator == '手续费':
867
- df.sort_values(by=['手续费'],ascending=False,inplace=True)
867
+ try:
868
+ df['手续费'] = df['手续费'].astype(str)
869
+ df.sort_values(by=['手续费'],ascending=False,inplace=True)
870
+ except: pass
868
871
  #dfprint=df[['基金简称','基金代码','基金类型','手续费','申购状态','赎回状态']]
869
872
  dfprint=df[['基金简称','基金代码','基金类型','手续费','单位净值']]
870
873
  #print(texttranslate("\n===== 中国开放式基金排名:手续费 ====="))
@@ -908,7 +911,7 @@ def oef_rank_china2(df,fund_type='全部类型',rank=5,indicator='单位净值')
908
911
  formatted_hour = time.strftime("%H", current_time)
909
912
  footnote5=''
910
913
  if (formatted_hour >= '18' or formatted_hour <= '06') and not is_weekend(todaydt):
911
- footnote5="注意:此时可能为数据源更新时段,获取的信息可能不全\n"
914
+ footnote5="注意:此时若为数据源更新时段,获取的信息可能不全\n"
912
915
 
913
916
  footnote=footnote1+footnote2+footnote3+footnote4+footnote5
914
917
 
@@ -1146,7 +1149,7 @@ def oef_rank_china(indicator='单位净值',fund_type='全部类型',rank=5):
1146
1149
  formatted_hour = time.strftime("%H", current_time)
1147
1150
  footnote4=''
1148
1151
  if formatted_hour > '17':
1149
- footnote4="此时为数据源更新时段,获取的信息可能不全\n"
1152
+ footnote4="此时若为数据源更新时段,获取的信息可能不全\n"
1150
1153
 
1151
1154
  footnote5="数据来源:新浪财经/天天基金"
1152
1155
  footnote=footnote1+footnote2+footnote3+footnote4+footnote5
siat/grafix.py CHANGED
@@ -209,7 +209,7 @@ def plot_line(df0,colname,collabel,ylabeltxt,titletxt,footnote,datatag=False, \
209
209
  #y1=round(y+high_low*0.01,2)
210
210
  y1=y+high_low*0.01
211
211
  #s='%.0f' if y >= 100 else '%.2f'
212
- s='%.0f' if abs(y) >= 100 else '%.2f' if abs(y) >= 10 else '%.3f'
212
+ s='%.2f' if abs(y) >= 100 else '%.2f' if abs(y) >= 10 else '%.3f'
213
213
  plt.text(x,y1,s % y,ha='right',va='bottom',color='red')
214
214
  """
215
215
  s='%.0f' if y >= 100 else '%.2f'
@@ -224,7 +224,7 @@ def plot_line(df0,colname,collabel,ylabeltxt,titletxt,footnote,datatag=False, \
224
224
  #y1=round(y-high_low*0.055,2) #标记位置对应y1的底部
225
225
  y1=y-high_low*0.050 #标记位置对应y1的底部
226
226
  #s='%.0f' if y >= 100 else '%.2f'
227
- s='%.0f' if abs(y) >= 100 else '%.2f' if abs(y) >= 10 else '%.3f'
227
+ s='%.2f' if abs(y) >= 100 else '%.2f' if abs(y) >= 10 else '%.3f'
228
228
  #plt.text(x,y1,s % y,ha='center',va='bottom',color='seagreen')
229
229
  plt.text(x,y1,s % y,ha='right',va='bottom',color='seagreen')
230
230
  plt.scatter(x,y, color='seagreen',marker='8',s=70)
@@ -236,7 +236,7 @@ def plot_line(df0,colname,collabel,ylabeltxt,titletxt,footnote,datatag=False, \
236
236
  x_end = df_end[colname].idxmin() # 末端值的x坐标
237
237
 
238
238
  #y1=str(int(y_end)) if y_end >= 100 else str(round(y_end,2))
239
- y1=str(int(y_end)) if abs(y_end) >= 100 else str(round(y_end,2)) if abs(y_end) >= 10 else str(round(y_end,3))
239
+ y1=str(round(y_end,2)) if abs(y_end) >= 100 else str(round(y_end,2)) if abs(y_end) >= 10 else str(round(y_end,3))
240
240
  plt.annotate(text=' '+y1,
241
241
  xy=(x_end, y_end),
242
242
  xytext=(x_end, y_end),fontsize=annotate_size)
@@ -1242,7 +1242,7 @@ def draw_lines(df0,y_label,x_label,axhline_value,axhline_label,title_txt, \
1242
1242
 
1243
1243
  if annotate_value: #在标记曲线名称的同时标记其末端数值
1244
1244
  #y1=str(int(y_end)) if y_end >= 100 else str(round(y_end,2))
1245
- y1=str(int(y_end)) if abs(y_end) >= 100 else str(round(y_end,2)) if abs(y_end) >= 10 else str(round(y_end,3))
1245
+ y1=str(round(y_end,2)) if abs(y_end) >= 100 else str(round(y_end,2)) if abs(y_end) >= 10 else str(round(y_end,3))
1246
1246
  plt.annotate(text=c+':'+y1,
1247
1247
  xy=(x_end, y_end),
1248
1248
  xytext=(x_end, y_end),fontsize=annotate_size,
@@ -1274,7 +1274,7 @@ def draw_lines(df0,y_label,x_label,axhline_value,axhline_label,title_txt, \
1274
1274
  #y1=round(y+high_low*0.01,2)
1275
1275
  y1=y+high_low*0.01
1276
1276
  #s='%.0f' if y >= 100 else '%.2f'
1277
- s='%.0f' if abs(y) >= 100 else '%.2f' if abs(y) >= 10 else '%.3f'
1277
+ s='%.2f' if abs(y) >= 100 else '%.2f' if abs(y) >= 10 else '%.3f'
1278
1278
  #plt.text(x,y1,s % y,ha='center',va='bottom',color='red')
1279
1279
  plt.text(x,y1,s % y,ha='right',va='bottom',color=last_line_color)
1280
1280
  plt.scatter(x,y, color='red',marker='8',s=70)
@@ -1285,7 +1285,7 @@ def draw_lines(df0,y_label,x_label,axhline_value,axhline_label,title_txt, \
1285
1285
  #y1=round(y-high_low*0.055,2) #标记位置对应y1的底部
1286
1286
  y1=y-high_low*0.050 #标记位置对应y1的底部
1287
1287
  #s='%.0f' if y >= 100 else '%.2f'
1288
- s='%.0f' if abs(y) >= 100 else '%.2f' if abs(y) >= 10 else '%.3f'
1288
+ s='%.2f' if abs(y) >= 100 else '%.2f' if abs(y) >= 10 else '%.3f'
1289
1289
  #plt.text(x,y1,s % y,ha='center',va='bottom',color='seagreen')
1290
1290
  plt.text(x,y1,s % y,ha='right',va='bottom',color=last_line_color)
1291
1291
  plt.scatter(x,y, color='seagreen',marker='8',s=70)
@@ -1297,7 +1297,7 @@ def draw_lines(df0,y_label,x_label,axhline_value,axhline_label,title_txt, \
1297
1297
  x_end = df_end[c].idxmin() # 末端值的x坐标
1298
1298
 
1299
1299
  #y1=str(int(y_end)) if y_end >= 100 else str(round(y_end,2))
1300
- y1=str(int(y_end)) if abs(y_end) >= 100 else str(round(y_end,2)) if abs(y_end) >= 10 else str(round(y_end,3))
1300
+ y1=str(round(y_end,2)) if abs(y_end) >= 100 else str(round(y_end,2)) if abs(y_end) >= 10 else str(round(y_end,3))
1301
1301
  plt.annotate(text=' '+y1,
1302
1302
  xy=(x_end, y_end),
1303
1303
  xytext=(x_end, y_end),fontsize=annotate_size,
@@ -1471,7 +1471,7 @@ def draw_lines2(df0,y_label,x_label,axhline_value,axhline_label,title_txt, \
1471
1471
  #y1=round(y+high_low*0.01,2)
1472
1472
  y1=y+high_low*0.01
1473
1473
  #s='%.0f' if y >= 100 else '%.2f'
1474
- s='%.0f' if abs(y) >= 100 else '%.2f' if abs(y) >= 10 else '%.3f'
1474
+ s='%.2f' if abs(y) >= 100 else '%.2f' if abs(y) >= 10 else '%.3f'
1475
1475
  #plt.text(x,y1,s % y,ha='center',va='bottom',color='red')
1476
1476
  plt.text(x,y1,s % y,ha='right',va='bottom',color=last_line_color)
1477
1477
  plt.scatter(x,y, color='red',marker='8',s=70)
@@ -1482,7 +1482,7 @@ def draw_lines2(df0,y_label,x_label,axhline_value,axhline_label,title_txt, \
1482
1482
  #y1=round(y-high_low*0.055,2) #标记位置对应y1的底部
1483
1483
  y1=y-high_low*0.050 #标记位置对应y1的底部
1484
1484
  #s='%.0f' if y >= 100 else '%.2f'
1485
- s='%.0f' if abs(y) >= 100 else '%.2f' if abs(y) >= 10 else '%.3f'
1485
+ s='%.2f' if abs(y) >= 100 else '%.2f' if abs(y) >= 10 else '%.3f'
1486
1486
  #plt.text(x,y1,s % y,ha='center',va='bottom',color='seagreen')
1487
1487
  plt.text(x,y1,s % y,ha='right',va='bottom',color=last_line_color)
1488
1488
  plt.scatter(x,y, color='seagreen',marker='8',s=70)
@@ -1513,7 +1513,7 @@ def draw_lines2(df0,y_label,x_label,axhline_value,axhline_label,title_txt, \
1513
1513
  x_end = df_end[c].idxmin() # 末端值的x坐标
1514
1514
 
1515
1515
  #y1=str(int(y_end)) if y_end >= 100 else str(round(y_end,2))
1516
- y1=str(int(y_end)) if abs(y_end) >= 100 else str(round(y_end,2)) if abs(y_end) >= 10 else str(round(y_end,3))
1516
+ y1=str(round(y_end,2)) if abs(y_end) >= 100 else str(round(y_end,2)) if abs(y_end) >= 10 else str(round(y_end,3))
1517
1517
  plt.annotate(text=y1,
1518
1518
  xy=(x_end, y_end),
1519
1519
  xytext=(x_end, y_end),fontsize=annotate_size,
siat/security_trend2.py CHANGED
@@ -500,7 +500,7 @@ def security_trend(ticker,indicator='Close',adjust='', \
500
500
  return df
501
501
 
502
502
 
503
- # 情形8:估值指标PE/PB/MV/ROE,仅针对股票,无需ticker_type====================
503
+ # 情形8:估值指标PE/PB/MV/ROE,仅针对股票/行业指数代码,无需ticker_type========
504
504
  if indicator_group3:
505
505
  df=security_valuation(tickers=tickers,indicators=measures,start=fromdate,end=todate, \
506
506
  preprocess=preprocess,scaling_option=scaling_option, \
siat/stock.py CHANGED
@@ -681,6 +681,10 @@ def security_indicator(ticker,indicator, \
681
681
  adjust=adjust, \
682
682
  todate=todate,source=source,ticker_type=ticker_type)
683
683
 
684
+ if not found == "Found":
685
+ print(" #Error(security_indicator): no security info found for",ticker)
686
+ return None
687
+
684
688
  # 去掉时区信息,避免日期时区冲突问题
685
689
  pricedf=df_index_timezone_remove(pricedf)
686
690
  """
@@ -1588,7 +1592,11 @@ def compare_security(tickers,measures,fromdate,todate, \
1588
1592
  source=source, \
1589
1593
  ticker_type=ticker_type, \
1590
1594
  graph=False)
1591
- pltdf1= df1tmp[[measure1]]
1595
+ if df_have_data(df1tmp)=="Found":
1596
+ pltdf1= df1tmp[[measure1]]
1597
+ else:
1598
+ print(" #Error(compare_security):no info found for",ticker1,"on",measure1)
1599
+ return None,None
1592
1600
 
1593
1601
  print(" Searching",ticker1,"for",measure2,"info ... ...")
1594
1602
  #复权价判断2
@@ -1604,7 +1612,11 @@ def compare_security(tickers,measures,fromdate,todate, \
1604
1612
  ticker_type=ticker_type, \
1605
1613
  graph=False)
1606
1614
 
1607
- pltdf2= df2tmp[[measure2]]
1615
+ if df_have_data(df2tmp)=="Found":
1616
+ pltdf2= df2tmp[[measure2]]
1617
+ else:
1618
+ print(" #Error(compare_security):no info found for",ticker1,"on",measure2)
1619
+ return None,None
1608
1620
 
1609
1621
  pltdf=pd.merge(pltdf1,pltdf2,left_index=True,right_index=True)
1610
1622
  pltdf['ticker']=ticker1
@@ -1635,14 +1647,22 @@ def compare_security(tickers,measures,fromdate,todate, \
1635
1647
  source=source, \
1636
1648
  ticker_type=ticker_type, \
1637
1649
  graph=False)
1638
- pltdf1=df1tmp[['ticker',measure1]]
1650
+ if df_have_data(df1tmp)=="Found":
1651
+ pltdf1=df1tmp[['ticker',measure1]]
1652
+ else:
1653
+ print(" #Error(compare_security):no info found for",ticker1,"on",measure1)
1654
+ return None,None
1639
1655
 
1640
1656
  df2tmp=security_indicator(ticker=ticker2,indicator=measure1,adjust=adjust, \
1641
1657
  fromdate=fromdate,todate=todate, \
1642
1658
  source=source, \
1643
1659
  ticker_type=ticker_type, \
1644
1660
  graph=False)
1645
- pltdf2=df2tmp[['ticker',measure1]]
1661
+ if df_have_data(df2tmp)=="Found":
1662
+ pltdf2=df2tmp[['ticker',measure1]]
1663
+ else:
1664
+ print(" #Error(compare_security):no info found for",ticker2,"on",measure1)
1665
+ return None,None
1646
1666
 
1647
1667
  #绘制双证券单指标对比图
1648
1668
  if graph:
siat/valuation.py CHANGED
@@ -718,11 +718,13 @@ if __name__=='__main__':
718
718
  tickers='光伏设备(申万)'
719
719
  tickers='中证500'
720
720
  tickers='801735.SW'
721
+ tickers='801853.SW'
721
722
 
722
723
  tickers=['PZU.PL','WIG.PL']
723
724
  tickers=['PZU.PL','JD','600519.SS','00700.HK','801735.SW','光伏设备(申万)','中证500']
724
725
 
725
726
  indicators='PE'
727
+ indicators='PB'
726
728
  indicators=['pe','pb']
727
729
  indicators=['pe','pb','mv']
728
730
  indicators='ROE'
@@ -802,8 +804,20 @@ def get_valuation(tickers,indicators,start,end):
802
804
  dft=get_stock_valuation_pl(t1,indicators1,start,end)
803
805
  if dft is not None: gotit=True
804
806
 
805
- # 申万指数代码?可能没有机会走到这里!
806
- if not gotit and (result and suffix in ['SW']) and not ROE_flag:
807
+ # 行业指数代码?
808
+ suffix_list=['SW','SI',#申万行业
809
+ 'GI',#谷歌
810
+ 'CSI',#中证
811
+ 'CNI',#国证
812
+ 'SH','SZ','BJ',#沪深京交易所
813
+ 'WI',#万得
814
+ 'HI',#恒生
815
+ 'SPI',#标普
816
+ 'MI',#MSCI
817
+ 'BO',#孟买
818
+ ]
819
+ if not gotit and (result and suffix in suffix_list) and not ROE_flag:
820
+
807
821
  #dft=get_index_valuation_funddb(t1,indicators1,start,end)
808
822
  indicator1=indicators1[0]
809
823
  dft0=industry_valuation_history_sw(industry=t1,
@@ -981,7 +995,7 @@ def security_valuation(tickers,indicators,start,end, \
981
995
  footnote1="注:市值金额:十亿,当地货币单位\n"
982
996
 
983
997
  todaydt = datetime.date.today()
984
- footnote9="数据来源: 综合baidu/stooq/funddb/swhysc,"+str(todaydt)
998
+ footnote9="数据来源: Baidu/Stooq/FundDB/SWHY,"+str(todaydt)
985
999
  footnote=footnote1+footnote9
986
1000
 
987
1001
  draw_lines(df2,y_label=ylabeltxt,x_label=footnote, \
@@ -1009,7 +1023,7 @@ def security_valuation(tickers,indicators,start,end, \
1009
1023
  footnote1="注:市值金额:十亿,当地货币单位\n"
1010
1024
 
1011
1025
  todaydt = datetime.date.today()
1012
- footnote9="数据来源: 综合baidu/stooq/funddb/swhysc,"+str(todaydt)
1026
+ footnote9="数据来源: Baidu/Stooq/FundDB/SWHY,"+str(todaydt)
1013
1027
  footnote=footnote1+footnote9
1014
1028
 
1015
1029
  df2_1.rename(columns={i1:ectranslate(i1)},inplace=True)
@@ -1043,7 +1057,7 @@ def security_valuation(tickers,indicators,start,end, \
1043
1057
  footnote1="注:市值金额:十亿,当地货币单位\n"
1044
1058
 
1045
1059
  todaydt = datetime.date.today()
1046
- footnote9="数据来源: 综合baidu/stooq/funddb/swhysc,"+str(todaydt)
1060
+ footnote9="数据来源: Baidu/Stooq/FundDB/SWHY,"+str(todaydt)
1047
1061
  footnote=footnote1+footnote9
1048
1062
 
1049
1063
  colname1=i; label1=t1
@@ -1078,7 +1092,7 @@ def security_valuation(tickers,indicators,start,end, \
1078
1092
  footnote1="注:市值金额:十亿,当地货币单位\n"
1079
1093
 
1080
1094
  todaydt = datetime.date.today()
1081
- footnote9="数据来源: 综合baidu/stooq/funddb/swhysc,"+str(todaydt)
1095
+ footnote9="数据来源: Baidu/Stooq/FundDB/SWHY,"+str(todaydt)
1082
1096
  footnote=footnote1+footnote9
1083
1097
 
1084
1098
  #ylabeltxt=i
@@ -1123,7 +1137,7 @@ def security_valuation(tickers,indicators,start,end, \
1123
1137
  footnote1="注:市值金额:十亿,当地货币单位\n"
1124
1138
 
1125
1139
  todaydt = datetime.date.today()
1126
- footnote9="数据来源: 综合baidu/stooq/funddb/swhysc,"+str(todaydt)
1140
+ footnote9="数据来源: Baidu/Stooq/FundDB/SWHY,"+str(todaydt)
1127
1141
  footnote=footnote1+footnote9
1128
1142
 
1129
1143
  #ylabeltxt=''
siat/valuation_china.py CHANGED
@@ -432,10 +432,11 @@ if __name__=='__main__':
432
432
  #==============================================================================
433
433
  if __name__=='__main__':
434
434
  industry='食品饮料'
435
-
436
435
  industry='生猪养殖'
437
-
438
436
  industry='国防军工'
437
+
438
+ industry='801853.SW'
439
+
439
440
  start='2021-1-1'
440
441
  end='2022-11-15'
441
442
  vtype='PE'
@@ -443,12 +444,18 @@ if __name__=='__main__':
443
444
  graph=True
444
445
  loc='best'
445
446
 
447
+ df=industry_valuation_history_sw_daily(industry,start,end,vtype)
448
+
446
449
  def industry_valuation_history_sw_daily(industry,start,end,vtype='PE', \
447
- graph=True,loc='best'):
450
+ graph=True,loc='best', \
451
+ error_message=True):
448
452
  """
449
453
  功能:绘制一个申万行业的日历史估值趋势,不支持二级三级行业分类
450
454
  vtype: PE, PB, dividend
451
455
 
456
+ *** 注意:必须安装插件ipywidgets
457
+ 如果出现下列错误信息:Error displaying widget: model not found
458
+ 先卸载再重新安装插件ipywidgets
452
459
  """
453
460
  #检查日期期间
454
461
  result,start1,end1=check_period(start,end)
@@ -469,14 +476,35 @@ def industry_valuation_history_sw_daily(industry,start,end,vtype='PE', \
469
476
  pos=vtypelist.index(vtypeu)
470
477
  vtypes=typelist[pos]
471
478
 
479
+ # 适配industry名称/代码
480
+ industry_split=industry.split('.')
481
+ split1=industry.split('.')[0]
482
+ split1_name=industry_sw_code(split1)
483
+
484
+ #industry情形1:无后缀,名称
485
+ if len(industry_split)==1 and not split1.isdigit():
486
+
487
+ if not split1_name is None: #是申万名称
488
+ sindustry=industry+'(申万)'
489
+ else: #不是申万名称
490
+ sindustry=industry
491
+ #industry情形2:数字
492
+ else:
493
+ if not split1_name is None: #是申万代码
494
+ sindustry=industry_sw_name(split1)+'(申万)'
495
+ else: #不是申万代码
496
+ index_val=ak.index_value_name_funddb()
497
+ sindustry=index_val[index_val['指数代码']==industry]['指数名称'].values[0]
498
+
472
499
  # 获取行业估值历史数据
473
500
  import akshare as ak
474
- sindustry=industry+'(申万)'
475
501
  try:
476
- # 不支持申万三级行业
502
+ # symbol:指数名称,申万行业名称需要加后缀(申万),仅支持申万一级行业和部分二级行业,不支持申万三级行业
503
+ # 支持的指数查看:ak.index_value_name_funddb()
477
504
  df = ak.index_value_hist_funddb(symbol=sindustry, indicator=vtypes)
478
505
  except:
479
- print(" #Warning(industry_valuation_history_sw_daily): failed to fetch industry info for",industry)
506
+ if error_message:
507
+ print(" #Warning(industry_valuation_history_sw_daily): failed to access index",sindustry)
480
508
  return None
481
509
 
482
510
  import pandas as pd
@@ -632,6 +660,7 @@ def industry_valuation_history_sw_weekly(industry,start,end,vtype='PE', \
632
660
 
633
661
  industry1=industry.split('.')[0]
634
662
  industry_name_flag=industry_code_flag=False
663
+ type_name=''
635
664
  try:
636
665
  type_name=sw_codes[sw_codes['name']==industry1]['type_name'].values[0]
637
666
  industry_name_flag=True
@@ -640,19 +669,20 @@ def industry_valuation_history_sw_weekly(industry,start,end,vtype='PE', \
640
669
  type_name=sw_codes[sw_codes['code']==industry1]['type_name'].values[0]
641
670
  industry_code_flag=True
642
671
  except:
643
- print(" #Error(industry_valuation_history_sw_weekly): Shenwan industry not found for",industry)
644
- return None
672
+ print(" #Warning(industry_valuation_history_sw_weekly): not a Shenwan index for",industry)
673
+ #return None
645
674
 
646
675
  if type_name=='三级行业':
647
- print(" #Error(industry_valuation_history_sw_weekly): currently does not support Shenwan 3rd_level industry",industry)
676
+ print(" #Warning(industry_valuation_history_sw_weekly): currently does not support Shenwan 3rd_level industry",industry)
648
677
  return None
649
678
 
650
- if not (type_name=='二级行业'):
679
+ if not (type_name in ['二级行业','风格指数']):
651
680
  df=industry_valuation_history_sw_daily(industry=industry,start=start,end=end,vtype=vtype, \
652
- graph=graph,loc=loc)
653
- return df
681
+ graph=graph,loc=loc,error_message=False)
682
+ if not (df is None):
683
+ return df
654
684
 
655
- # 获取行业估值历史周数据
685
+ # 获取行业估值历史周数据:啰嗦方法,需要反复下载,容易出ipywidgets引起的错误,需要安装之或卸载后重新安装
656
686
  import pandas as pd
657
687
  import akshare as ak
658
688
  df=None
@@ -717,6 +747,9 @@ def industry_valuation_history_sw_weekly(industry,start,end,vtype='PE', \
717
747
  if __name__=='__main__':
718
748
  industry='食品饮料'
719
749
  industry='白酒Ⅱ'
750
+ industry='绩优股指数'
751
+ industry='801853.SW'
752
+
720
753
  start='2023-10-1'
721
754
  end='2023-12-15'
722
755
  vtype='PE'
@@ -765,11 +798,12 @@ def industry_valuation_history_sw(industry,start,end,vtype='PE', \
765
798
  industry_name_flag=industry_code_flag=False
766
799
  try:
767
800
  type_name=sw_codes[sw_codes['name']==industry1]['type_name'].values[0]
768
- industry_name_flag=True
801
+ industry_name_flag=True; industry_name=industry1
769
802
  except:
770
803
  try:
771
804
  type_name=sw_codes[sw_codes['code']==industry1]['type_name'].values[0]
772
805
  industry_code_flag=True
806
+ industry_name=sw_codes[sw_codes['code']==industry1]['name'].values[0]
773
807
  except:
774
808
  print(" #Error(industry_valuation_history_sw): Shenwan industry not found for",industry)
775
809
  return None
@@ -778,12 +812,14 @@ def industry_valuation_history_sw(industry,start,end,vtype='PE', \
778
812
  print(" #Error(industry_valuation_history_sw): currently does not support Shenwan 3rd_level industry",industry)
779
813
  return None
780
814
 
781
- if not (type_name=='二级行业'):
815
+ #if not (type_name=='二级行业'):
816
+ if not (type_name in ['二级行业','风格指数']):
782
817
  df=industry_valuation_history_sw_daily(industry=industry,start=start,end=end,vtype=vtype, \
783
818
  graph=graph,loc=loc)
784
- return df
819
+ if not (df is None):
820
+ return df
785
821
 
786
- # 获取行业估值历史周数据
822
+ # 获取行业估值历史周数据:笨方法,反复下载。易出ipywidgets引起的错误,可卸载后重装
787
823
  import pandas as pd
788
824
  import akshare as ak
789
825
  start2=start1.strftime('%Y-%m-%d')
@@ -852,7 +888,7 @@ def industry_valuation_history_sw(industry,start,end,vtype='PE', \
852
888
  df2['平均值']=df2[vtypes].mean()
853
889
  df2['中位数']=df2[vtypes].median()
854
890
 
855
- titletxt="行业估值趋势:"+industry+','+vtypes
891
+ titletxt="行业估值趋势:"+industry_name+','+vtypes
856
892
 
857
893
  footnote0="注:申万行业分类指数,"
858
894
  footnote1=''
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: siat
3
- Version: 3.5.1
3
+ Version: 3.5.9
4
4
  Summary: Securities Investment Analysis Tools (siat)
5
5
  Home-page: https://pypi.org/project/siat/
6
6
  Author: Prof. WANG Dehong, International Business School, Beijing Foreign Studies University
@@ -9,7 +9,7 @@ siat/beta_adjustment.py,sha256=viJJE9O82SbA_VYuJtrs3HT0OWYhk4yvmoywskrAhaI,37287
9
9
  siat/beta_adjustment_china.py,sha256=QAVhTQxfV7NSakNPMfQtGMeRzEHVBC8JZQTqD5Owp2I,20802
10
10
  siat/beta_adjustment_test.py,sha256=nBhvQQfqxooCHjy5hL0a8V0ZC58BjuCZVFpqpWpHeF0,2467
11
11
  siat/blockchain.py,sha256=awF3GDtlwaJhku0a2kLuXOS8d3IzkjR_RyzlZWvD3L4,6032
12
- siat/bond.py,sha256=9dIj2MMGXByxHkqLuBpWhfEkcix9RzAtzQovLRQUCZA,103903
12
+ siat/bond.py,sha256=BswqLEiOWbsfYD6ZDVLrvgQRQu2qGVzMDnf8y7RHQLU,109140
13
13
  siat/bond_base.py,sha256=KBm0hOQSE6fruXd9eJztY9pXCN19iv7aCXZZcnVM4yY,37637
14
14
  siat/bond_china.py,sha256=eYv-nMoWSS5fZ4VxnuJ29QFY9GUS6meGiIc0Xjm1fQI,3038
15
15
  siat/bond_test.py,sha256=yUOFw7ddGU-kb1rJdnsjkJWziDNgUR7OLDA7F7Ub91A,5246
@@ -18,7 +18,7 @@ siat/capm_beta.py,sha256=cxXdRVBQBllhbfz1LeTJAIWvyRYhW54nhtNUXv4HwS0,29063
18
18
  siat/capm_beta2.py,sha256=lUuCPVSxebkA2yye1PXu1V2Jd2UKEwD_kIA25DCIDTs,29750
19
19
  siat/capm_beta_test.py,sha256=ImR0c5mc4hIl714XmHztdl7qg8v1E2lycKyiqnFj6qs,1745
20
20
  siat/cmat_commons.py,sha256=Nj9Kf0alywaztVoMVeVVL_EZk5jRERJy8R8kBw88_Tg,38116
21
- siat/common.py,sha256=4cQOWSaKFqiGgMVoub559lZcRRoNtz9r_gAPZ8x8pX8,155546
21
+ siat/common.py,sha256=PFo30Yu2Vua1GEr02joJj-Wej-e47dAAqwCAVHjj40A,159050
22
22
  siat/compare_cross.py,sha256=3iP9TH2h3w27F2ARZc7FjKcErYCzWRc-TPiymOyoVtw,24171
23
23
  siat/compare_cross_test.py,sha256=xra5XYmQGEtfIZL2h-GssdH2hLdFIhG3eoCrkDrL3gY,3473
24
24
  siat/concepts_iwencai.py,sha256=m1YEDtECRT6FqtzlKm91pt2I9d3Z_XoP59BtWdRdu8I,3061
@@ -53,14 +53,14 @@ siat/financials_test.py,sha256=HJ3CPo_Xckz2wXi3AEP6ZNWCF1Duc1pLi0Y10USiImc,23829
53
53
  siat/fred_test.py,sha256=KF50ssSbsfpa_kT6iuomD0vG4eXztAcOasZxg1OGX5w,1201
54
54
  siat/fund.py,sha256=wMDORsCBV8ZXfgwbtq-0bu3qqWY66dHnbqgllW0gWCo,24637
55
55
  siat/fund_china.pickle,sha256=x_nPPdwy7wzIhtZQOplgDyTSyyUdXy9lbNxWysq7N6k,2437771
56
- siat/fund_china.py,sha256=rPGnYSPkbZUqtBoJnxLZLIQ8MjD8vD3TovCMfletBP4,111839
56
+ siat/fund_china.py,sha256=jRAibZiHXAjUwlHoIiXK_moFhEYvVzl2Q0FhfYRZiFk,111907
57
57
  siat/fund_china_test.py,sha256=-Bh6m0J0GPpIbYXx-H2vpzJoNFI6pE2C2jVPa8DazgE,6649
58
58
  siat/fund_test.py,sha256=V4ADb8Gsp8gyeFTwcgRsJBpnUih_O-Q2V1ILc5oKjK8,1116
59
59
  siat/future_china.py,sha256=F-HsIf2Op8Z22RzTjet1g8COzldgnMjFNSXsAkeGyWo,17595
60
60
  siat/future_china_test.py,sha256=BrSzmDVaOHki6rntOtosmRn-6dkfOBuLulJNqh7MOpc,1163
61
61
  siat/global_index_test.py,sha256=hnFp3wqqzzL-kAP8mgxDZ54Bd5Ijf6ENi5YJlGBgcXw,2402
62
62
  siat/google_authenticator.py,sha256=ZUbZR8OW0IAKDbcYtlqGqIpZdERpFor9NccFELxg9yI,1637
63
- siat/grafix.py,sha256=irpjbeRTDorDOwkJYv6wArtrdM-KrU27I7CjeKuHWqM,87857
63
+ siat/grafix.py,sha256=9brQItikS7aHXO1mnwgEYCzfq1tjzOHWOCVgiFyaHNA,87873
64
64
  siat/grafix_test.py,sha256=kXvcpLgQNO7wd30g_bWljLj5UH7bIVI0_dUtXbfiKR0,3150
65
65
  siat/holding_risk.py,sha256=G3wpaewAKF9CwEqRpr4khyuDu9SU2EGyQUHdk7cmHOA,30693
66
66
  siat/holding_risk_test.py,sha256=FRlw_9wFG98BYcg_cSj95HX5WZ1TvkGaOUdXD7-V86s,474
@@ -102,10 +102,10 @@ siat/security_prices.py,sha256=M8Qflbd6cgIJAnXBn3Ifn2z8A0SWzw6Ns_VHn74v1O8,10803
102
102
  siat/security_prices_test.py,sha256=OEphoJ87NPKoNow1QA8EU_5MUYrJF-qKoWKNapVfZNI,10779
103
103
  siat/security_trend.py,sha256=o0vpWdrJkmODCP94X-Bvn-w7efHhj9HpUYBHtLl55D0,17240
104
104
  siat/security_trend2-20240620.py,sha256=QVnEcb7AyVbO77jVqfFsJffGXrX8pgJ9xCfoAKmWBPk,24854
105
- siat/security_trend2.py,sha256=1k8DWeEWecBG_RVz6Bvl5-YOxHsJvuFPg0B-uZFR4BM,26329
105
+ siat/security_trend2.py,sha256=JHrO5zDBYMLbpvotdaqaUcFrxm2di60kMVOdeom8t8A,26336
106
106
  siat/setup.py,sha256=up65rQGLmTBkhtaMLowjoQXYmIsnycnm4g1SYmeQS6o,1335
107
107
  siat/shenwan index history test.py,sha256=JCVAzOSEldHalhSFa3pqD8JI_8_djPMQOxpkuYU-Esg,1418
108
- siat/stock.py,sha256=rcL64oBPWPoPsLHsZUtHWyoe5FXBdT7VFgdB6ZoIbvY,154184
108
+ siat/stock.py,sha256=-vhAVxaEjoF3jlU2geAI3Y_OT9-IsEz21DFSOy68QCA,155054
109
109
  siat/stock_advice_linear.py,sha256=-twT7IGP-NEplkL1WPSACcNJjggRB2j4mlAQCkzOAuo,31655
110
110
  siat/stock_base.py,sha256=uISvbRyOGy8p9QREA96CVydgflBkn5L3OXOGKl8oanc,1312
111
111
  siat/stock_china.py,sha256=zyUyghIrkkkYWlHRRP7Hoblxzfp-jrck60pTJpwMahg,91553
@@ -135,13 +135,13 @@ siat/translate.py,sha256=12-Qx2sqwANobFsh2k5qyE_idjHs0j2g5cTlh9by7co,240806
135
135
  siat/translate_20240606.py,sha256=63IyHWEU3Uz9mjwyuAX3fqY4nUMdwh0ICQAgmgPXP7Y,215121
136
136
  siat/translate_241003_keep.py,sha256=un7Fqe1v35MXsja5exZgjmLzrZtt66NARZIGlyFuGGU,218747
137
137
  siat/universal_test.py,sha256=CDAOffW1Rvs-TcNN5giWVvHMlch1w4dp-w5SIV9jXL0,3936
138
- siat/valuation.py,sha256=NKfeZMdDJOW42oLVHob6eSVBXUqlN1OCnnzwyGAst8c,48855
139
- siat/valuation_china.py,sha256=EkZQaVkoBjM0c4MCNbaX-bMnlG0e3FXeaWczZDnkptU,67784
138
+ siat/valuation.py,sha256=WCqL5zYkZ_Y3MLeoWXTu3G1CknwGdYzhpszbT6cEoYk,49255
139
+ siat/valuation_china.py,sha256=CVp1IwIsF3Om0J29RGkyxZLt4n9Ug-ua_RKhLwL9fUQ,69624
140
140
  siat/valuation_market_china_test.py,sha256=gbJ0ioauuo4koTPH6WKUkqcXiQPafnbhU5eKJ6lpdLA,1571
141
141
  siat/var_model_validation.py,sha256=R0caWnuZarrRg9939hxh3vJIIpIyPfvelYmzFNZtPbo,14910
142
142
  siat/yf_name.py,sha256=9U_XfEeMlS3TrCrO3Bww21nuFgghbnO-cqDJMhQWqew,16193
143
- siat-3.5.1.dist-info/LICENSE,sha256=NTEMMROY9_4U1szoKC3N2BLHcDd_o5uTgqdVH8tbApw,1071
144
- siat-3.5.1.dist-info/METADATA,sha256=g069GGhSmTRj8wW-XpeH9Tqq22oCF3DwLD--R2DGDys,8009
145
- siat-3.5.1.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
146
- siat-3.5.1.dist-info/top_level.txt,sha256=r1cVyL7AIKqeAmEJjNR8FMT20OmEzufDstC2gv3NvEY,5
147
- siat-3.5.1.dist-info/RECORD,,
143
+ siat-3.5.9.dist-info/LICENSE,sha256=NTEMMROY9_4U1szoKC3N2BLHcDd_o5uTgqdVH8tbApw,1071
144
+ siat-3.5.9.dist-info/METADATA,sha256=oEnRGAyy2ZxYebqnrDoiTgQE0OIEmVyc8kAtcOSExkA,8009
145
+ siat-3.5.9.dist-info/WHEEL,sha256=yQN5g4mg4AybRjkgi-9yy4iQEFibGQmlz78Pik5Or-A,92
146
+ siat-3.5.9.dist-info/top_level.txt,sha256=r1cVyL7AIKqeAmEJjNR8FMT20OmEzufDstC2gv3NvEY,5
147
+ siat-3.5.9.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.43.0)
2
+ Generator: bdist_wheel (0.41.2)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
File without changes