siat 3.5.1__py3-none-any.whl → 3.5.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- siat/common.py +119 -0
- siat/fund_china.py +5 -2
- siat/security_trend2.py +1 -1
- siat/stock.py +20 -4
- siat/valuation.py +21 -7
- siat/valuation_china.py +54 -18
- {siat-3.5.1.dist-info → siat-3.5.2.dist-info}/METADATA +1 -1
- {siat-3.5.1.dist-info → siat-3.5.2.dist-info}/RECORD +11 -11
- {siat-3.5.1.dist-info → siat-3.5.2.dist-info}/LICENSE +0 -0
- {siat-3.5.1.dist-info → siat-3.5.2.dist-info}/WHEEL +0 -0
- {siat-3.5.1.dist-info → siat-3.5.2.dist-info}/top_level.txt +0 -0
siat/common.py
CHANGED
@@ -4236,7 +4236,126 @@ def list_intersection(lists=[],numberPerLine=5,printout=True,return_result=False
|
|
4236
4236
|
else: return
|
4237
4237
|
|
4238
4238
|
#==============================================================================
|
4239
|
+
if __name__ == '__main__':
|
4240
|
+
hpr=3.17
|
4241
|
+
years=20
|
4242
|
+
|
4243
|
+
annual_return1(hpr,years)
|
4244
|
+
|
4245
|
+
def annual_return1(hpr,years):
|
4246
|
+
"""
|
4247
|
+
功能:计算年均复合增长率,1个
|
4248
|
+
"""
|
4249
|
+
#text1="Holding period return for "+str(years)+" years: "+str(hpr*100)+'%'
|
4250
|
+
text1=str(years)+"年的持有期收益率:"+str(round(hpr*100,3))+'%'
|
4251
|
+
print(text1,end=',')
|
4252
|
+
|
4253
|
+
#text2="Annualized compound return:"
|
4254
|
+
text2="年均复合收益率:"+str(round((pow(1+hpr,1/years)-1)*100,3))+'%'
|
4255
|
+
print(text2)
|
4256
|
+
|
4257
|
+
return
|
4258
|
+
|
4259
|
+
if __name__ == '__main__':
|
4260
|
+
hpr=3.17
|
4261
|
+
hpr=[3.17,2.5]
|
4262
|
+
years=20
|
4263
|
+
|
4264
|
+
annual_return(hpr,years)
|
4265
|
+
|
4266
|
+
def annual_return(hpr,years):
|
4267
|
+
"""
|
4268
|
+
功能:hpr可为多个
|
4269
|
+
"""
|
4270
|
+
if isinstance(hpr,float) or isinstance(hpr,int):
|
4271
|
+
hpr=[hpr]
|
4272
|
+
|
4273
|
+
for h in hpr:
|
4274
|
+
annual_return1(h,years)
|
4275
|
+
|
4276
|
+
return
|
4277
|
+
|
4278
|
+
if __name__ == '__main__':
|
4279
|
+
df=security_trend(['801811.SW','801813.SW'],
|
4280
|
+
indicator='Exp Adj Ret%',
|
4281
|
+
start='L5Y',
|
4282
|
+
annotate=True,annotate_value=True)
|
4283
|
+
|
4284
|
+
df_annual_return(df)
|
4285
|
+
|
4286
|
+
def df_annual_return(df):
|
4287
|
+
"""
|
4288
|
+
功能:计算df1中每列的年复合收益率
|
4289
|
+
"""
|
4290
|
+
|
4291
|
+
#计算年数
|
4292
|
+
date1=df.index[0]
|
4293
|
+
date2=df.index[-1]
|
4294
|
+
delta=date2-date1
|
4295
|
+
years=round(delta.days/365,2)
|
4296
|
+
months=int(delta.days/30)
|
4297
|
+
|
4298
|
+
#计算每列的年均复合增长率
|
4299
|
+
collist=list(df)
|
4300
|
+
for c in collist:
|
4301
|
+
hpr=df[c][-1]
|
4302
|
+
hpr1=hpr/100
|
4303
|
+
annual_rate=str(round((pow(1+hpr1,1/years)-1)*100,3))+'%'
|
4304
|
+
|
4305
|
+
if years >=1:
|
4306
|
+
text=c+": "+str(years)+"年持有期收益率"+str(round(hpr,3))+'%,年均复合收益率'+annual_rate
|
4307
|
+
else:
|
4308
|
+
text=c+": "+str(months)+"个月持有期收益率"+str(round(hpr,3))+'%,年均复合收益率'+annual_rate
|
4309
|
+
print(text)
|
4310
|
+
|
4311
|
+
return
|
4312
|
+
|
4239
4313
|
#==============================================================================
|
4314
|
+
|
4315
|
+
|
4316
|
+
if __name__ == '__main__':
|
4317
|
+
df=security_trend("600519.SS",graph=False)
|
4318
|
+
option="save"
|
4319
|
+
|
4320
|
+
df_save(df,file="moutai")
|
4321
|
+
mt=df_restore(file="moutai")
|
4322
|
+
|
4323
|
+
def df_save(df,file="df"):
|
4324
|
+
"""
|
4325
|
+
功能:保存df数据,适用于那些需要大量时间获取的df,以便使用时可以恢复
|
4326
|
+
"""
|
4327
|
+
|
4328
|
+
if ".pkl" in file:
|
4329
|
+
file_name=file
|
4330
|
+
else:
|
4331
|
+
file_name=file+'.pkl'
|
4332
|
+
|
4333
|
+
df.to_pickle(file_name)
|
4334
|
+
print(" Data is saved in",file_name)
|
4335
|
+
|
4336
|
+
return
|
4337
|
+
|
4338
|
+
def df_restore(file):
|
4339
|
+
"""
|
4340
|
+
功能:从文件保存df数据,适用于那些需要大量时间获取的df
|
4341
|
+
"""
|
4342
|
+
|
4343
|
+
import pandas as pd
|
4344
|
+
|
4345
|
+
if ".pkl" in file:
|
4346
|
+
file_name=file
|
4347
|
+
else:
|
4348
|
+
file_name=file+'.pkl'
|
4349
|
+
|
4350
|
+
try:
|
4351
|
+
df=pd.read_pickle(file_name)
|
4352
|
+
print(" Data is restored from",file_name)
|
4353
|
+
except:
|
4354
|
+
print(" #Warning(df_dump): file not found for",file_name)
|
4355
|
+
df=None
|
4356
|
+
return df
|
4357
|
+
|
4358
|
+
|
4240
4359
|
#==============================================================================
|
4241
4360
|
#==============================================================================
|
4242
4361
|
#==============================================================================
|
siat/fund_china.py
CHANGED
@@ -762,7 +762,7 @@ def get_oef_rank_china():
|
|
762
762
|
df3['基金类型']=df3['基金类型'].astype(str)
|
763
763
|
df3['净值日期']=nvdate
|
764
764
|
|
765
|
-
print("Successfully retrieved",len(df3),"
|
765
|
+
print("Successfully retrieved",len(df3),"OEF products on",nvdate)
|
766
766
|
|
767
767
|
return df3
|
768
768
|
|
@@ -864,7 +864,10 @@ def oef_rank_china2(df,fund_type='全部类型',rank=5,indicator='单位净值')
|
|
864
864
|
titletxt="中国开放式基金排名:累计净值"
|
865
865
|
|
866
866
|
if indicator == '手续费':
|
867
|
-
|
867
|
+
try:
|
868
|
+
df['手续费'] = df['手续费'].astype(str)
|
869
|
+
df.sort_values(by=['手续费'],ascending=False,inplace=True)
|
870
|
+
except: pass
|
868
871
|
#dfprint=df[['基金简称','基金代码','基金类型','手续费','申购状态','赎回状态']]
|
869
872
|
dfprint=df[['基金简称','基金代码','基金类型','手续费','单位净值']]
|
870
873
|
#print(texttranslate("\n===== 中国开放式基金排名:手续费 ====="))
|
siat/security_trend2.py
CHANGED
@@ -500,7 +500,7 @@ def security_trend(ticker,indicator='Close',adjust='', \
|
|
500
500
|
return df
|
501
501
|
|
502
502
|
|
503
|
-
# 情形8:估值指标PE/PB/MV/ROE
|
503
|
+
# 情形8:估值指标PE/PB/MV/ROE,仅针对股票/行业指数代码,无需ticker_type========
|
504
504
|
if indicator_group3:
|
505
505
|
df=security_valuation(tickers=tickers,indicators=measures,start=fromdate,end=todate, \
|
506
506
|
preprocess=preprocess,scaling_option=scaling_option, \
|
siat/stock.py
CHANGED
@@ -1588,7 +1588,11 @@ def compare_security(tickers,measures,fromdate,todate, \
|
|
1588
1588
|
source=source, \
|
1589
1589
|
ticker_type=ticker_type, \
|
1590
1590
|
graph=False)
|
1591
|
-
|
1591
|
+
if df_have_data(df1tmp)=="Found":
|
1592
|
+
pltdf1= df1tmp[[measure1]]
|
1593
|
+
else:
|
1594
|
+
print(" #Error(compare_security):no info found for",ticker1,"on",measure1)
|
1595
|
+
return None,None
|
1592
1596
|
|
1593
1597
|
print(" Searching",ticker1,"for",measure2,"info ... ...")
|
1594
1598
|
#复权价判断2
|
@@ -1604,7 +1608,11 @@ def compare_security(tickers,measures,fromdate,todate, \
|
|
1604
1608
|
ticker_type=ticker_type, \
|
1605
1609
|
graph=False)
|
1606
1610
|
|
1607
|
-
|
1611
|
+
if df_have_data(df2tmp)=="Found":
|
1612
|
+
pltdf2= df2tmp[[measure2]]
|
1613
|
+
else:
|
1614
|
+
print(" #Error(compare_security):no info found for",ticker1,"on",measure2)
|
1615
|
+
return None,None
|
1608
1616
|
|
1609
1617
|
pltdf=pd.merge(pltdf1,pltdf2,left_index=True,right_index=True)
|
1610
1618
|
pltdf['ticker']=ticker1
|
@@ -1635,14 +1643,22 @@ def compare_security(tickers,measures,fromdate,todate, \
|
|
1635
1643
|
source=source, \
|
1636
1644
|
ticker_type=ticker_type, \
|
1637
1645
|
graph=False)
|
1638
|
-
|
1646
|
+
if df_have_data(df1tmp)=="Found":
|
1647
|
+
pltdf1=df1tmp[['ticker',measure1]]
|
1648
|
+
else:
|
1649
|
+
print(" #Error(compare_security):no info found for",ticker1,"on",measure1)
|
1650
|
+
return None,None
|
1639
1651
|
|
1640
1652
|
df2tmp=security_indicator(ticker=ticker2,indicator=measure1,adjust=adjust, \
|
1641
1653
|
fromdate=fromdate,todate=todate, \
|
1642
1654
|
source=source, \
|
1643
1655
|
ticker_type=ticker_type, \
|
1644
1656
|
graph=False)
|
1645
|
-
|
1657
|
+
if df_have_data(df2tmp)=="Found":
|
1658
|
+
pltdf2=df2tmp[['ticker',measure1]]
|
1659
|
+
else:
|
1660
|
+
print(" #Error(compare_security):no info found for",ticker2,"on",measure1)
|
1661
|
+
return None,None
|
1646
1662
|
|
1647
1663
|
#绘制双证券单指标对比图
|
1648
1664
|
if graph:
|
siat/valuation.py
CHANGED
@@ -718,11 +718,13 @@ if __name__=='__main__':
|
|
718
718
|
tickers='光伏设备(申万)'
|
719
719
|
tickers='中证500'
|
720
720
|
tickers='801735.SW'
|
721
|
+
tickers='801853.SW'
|
721
722
|
|
722
723
|
tickers=['PZU.PL','WIG.PL']
|
723
724
|
tickers=['PZU.PL','JD','600519.SS','00700.HK','801735.SW','光伏设备(申万)','中证500']
|
724
725
|
|
725
726
|
indicators='PE'
|
727
|
+
indicators='PB'
|
726
728
|
indicators=['pe','pb']
|
727
729
|
indicators=['pe','pb','mv']
|
728
730
|
indicators='ROE'
|
@@ -802,8 +804,20 @@ def get_valuation(tickers,indicators,start,end):
|
|
802
804
|
dft=get_stock_valuation_pl(t1,indicators1,start,end)
|
803
805
|
if dft is not None: gotit=True
|
804
806
|
|
805
|
-
#
|
806
|
-
|
807
|
+
# 行业指数代码?
|
808
|
+
suffix_list=['SW','SI',#申万行业
|
809
|
+
'GI',#谷歌
|
810
|
+
'CSI',#中证
|
811
|
+
'CNI',#国证
|
812
|
+
'SH','SZ','BJ',#沪深京交易所
|
813
|
+
'WI',#万得
|
814
|
+
'HI',#恒生
|
815
|
+
'SPI',#标普
|
816
|
+
'MI',#MSCI
|
817
|
+
'BO',#孟买
|
818
|
+
]
|
819
|
+
if not gotit and (result and suffix in suffix_list) and not ROE_flag:
|
820
|
+
|
807
821
|
#dft=get_index_valuation_funddb(t1,indicators1,start,end)
|
808
822
|
indicator1=indicators1[0]
|
809
823
|
dft0=industry_valuation_history_sw(industry=t1,
|
@@ -981,7 +995,7 @@ def security_valuation(tickers,indicators,start,end, \
|
|
981
995
|
footnote1="注:市值金额:十亿,当地货币单位\n"
|
982
996
|
|
983
997
|
todaydt = datetime.date.today()
|
984
|
-
footnote9="数据来源:
|
998
|
+
footnote9="数据来源: Baidu/Stooq/FundDB/SWHY,"+str(todaydt)
|
985
999
|
footnote=footnote1+footnote9
|
986
1000
|
|
987
1001
|
draw_lines(df2,y_label=ylabeltxt,x_label=footnote, \
|
@@ -1009,7 +1023,7 @@ def security_valuation(tickers,indicators,start,end, \
|
|
1009
1023
|
footnote1="注:市值金额:十亿,当地货币单位\n"
|
1010
1024
|
|
1011
1025
|
todaydt = datetime.date.today()
|
1012
|
-
footnote9="数据来源:
|
1026
|
+
footnote9="数据来源: Baidu/Stooq/FundDB/SWHY,"+str(todaydt)
|
1013
1027
|
footnote=footnote1+footnote9
|
1014
1028
|
|
1015
1029
|
df2_1.rename(columns={i1:ectranslate(i1)},inplace=True)
|
@@ -1043,7 +1057,7 @@ def security_valuation(tickers,indicators,start,end, \
|
|
1043
1057
|
footnote1="注:市值金额:十亿,当地货币单位\n"
|
1044
1058
|
|
1045
1059
|
todaydt = datetime.date.today()
|
1046
|
-
footnote9="数据来源:
|
1060
|
+
footnote9="数据来源: Baidu/Stooq/FundDB/SWHY,"+str(todaydt)
|
1047
1061
|
footnote=footnote1+footnote9
|
1048
1062
|
|
1049
1063
|
colname1=i; label1=t1
|
@@ -1078,7 +1092,7 @@ def security_valuation(tickers,indicators,start,end, \
|
|
1078
1092
|
footnote1="注:市值金额:十亿,当地货币单位\n"
|
1079
1093
|
|
1080
1094
|
todaydt = datetime.date.today()
|
1081
|
-
footnote9="数据来源:
|
1095
|
+
footnote9="数据来源: Baidu/Stooq/FundDB/SWHY,"+str(todaydt)
|
1082
1096
|
footnote=footnote1+footnote9
|
1083
1097
|
|
1084
1098
|
#ylabeltxt=i
|
@@ -1123,7 +1137,7 @@ def security_valuation(tickers,indicators,start,end, \
|
|
1123
1137
|
footnote1="注:市值金额:十亿,当地货币单位\n"
|
1124
1138
|
|
1125
1139
|
todaydt = datetime.date.today()
|
1126
|
-
footnote9="数据来源:
|
1140
|
+
footnote9="数据来源: Baidu/Stooq/FundDB/SWHY,"+str(todaydt)
|
1127
1141
|
footnote=footnote1+footnote9
|
1128
1142
|
|
1129
1143
|
#ylabeltxt=''
|
siat/valuation_china.py
CHANGED
@@ -432,10 +432,11 @@ if __name__=='__main__':
|
|
432
432
|
#==============================================================================
|
433
433
|
if __name__=='__main__':
|
434
434
|
industry='食品饮料'
|
435
|
-
|
436
435
|
industry='生猪养殖'
|
437
|
-
|
438
436
|
industry='国防军工'
|
437
|
+
|
438
|
+
industry='801853.SW'
|
439
|
+
|
439
440
|
start='2021-1-1'
|
440
441
|
end='2022-11-15'
|
441
442
|
vtype='PE'
|
@@ -443,12 +444,18 @@ if __name__=='__main__':
|
|
443
444
|
graph=True
|
444
445
|
loc='best'
|
445
446
|
|
447
|
+
df=industry_valuation_history_sw_daily(industry,start,end,vtype)
|
448
|
+
|
446
449
|
def industry_valuation_history_sw_daily(industry,start,end,vtype='PE', \
|
447
|
-
graph=True,loc='best'
|
450
|
+
graph=True,loc='best', \
|
451
|
+
error_message=True):
|
448
452
|
"""
|
449
453
|
功能:绘制一个申万行业的日历史估值趋势,不支持二级三级行业分类
|
450
454
|
vtype: PE, PB, dividend
|
451
455
|
|
456
|
+
*** 注意:必须安装插件ipywidgets
|
457
|
+
如果出现下列错误信息:Error displaying widget: model not found
|
458
|
+
先卸载再重新安装插件ipywidgets
|
452
459
|
"""
|
453
460
|
#检查日期期间
|
454
461
|
result,start1,end1=check_period(start,end)
|
@@ -469,14 +476,35 @@ def industry_valuation_history_sw_daily(industry,start,end,vtype='PE', \
|
|
469
476
|
pos=vtypelist.index(vtypeu)
|
470
477
|
vtypes=typelist[pos]
|
471
478
|
|
479
|
+
# 适配industry名称/代码
|
480
|
+
industry_split=industry.split('.')
|
481
|
+
split1=industry.split('.')[0]
|
482
|
+
split1_name=industry_sw_code(split1)
|
483
|
+
|
484
|
+
#industry情形1:无后缀,名称
|
485
|
+
if len(industry_split)==1 and not split1.isdigit():
|
486
|
+
|
487
|
+
if not split1_name is None: #是申万名称
|
488
|
+
sindustry=industry+'(申万)'
|
489
|
+
else: #不是申万名称
|
490
|
+
sindustry=industry
|
491
|
+
#industry情形2:数字
|
492
|
+
else:
|
493
|
+
if not split1_name is None: #是申万代码
|
494
|
+
sindustry=industry_sw_name(split1)+'(申万)'
|
495
|
+
else: #不是申万代码
|
496
|
+
index_val=ak.index_value_name_funddb()
|
497
|
+
sindustry=index_val[index_val['指数代码']==industry]['指数名称'].values[0]
|
498
|
+
|
472
499
|
# 获取行业估值历史数据
|
473
500
|
import akshare as ak
|
474
|
-
sindustry=industry+'(申万)'
|
475
501
|
try:
|
476
|
-
#
|
502
|
+
# symbol:指数名称,申万行业名称需要加后缀(申万),仅支持申万一级行业和部分二级行业,不支持申万三级行业
|
503
|
+
# 支持的指数查看:ak.index_value_name_funddb()
|
477
504
|
df = ak.index_value_hist_funddb(symbol=sindustry, indicator=vtypes)
|
478
505
|
except:
|
479
|
-
|
506
|
+
if error_message:
|
507
|
+
print(" #Warning(industry_valuation_history_sw_daily): failed to access index",sindustry)
|
480
508
|
return None
|
481
509
|
|
482
510
|
import pandas as pd
|
@@ -632,6 +660,7 @@ def industry_valuation_history_sw_weekly(industry,start,end,vtype='PE', \
|
|
632
660
|
|
633
661
|
industry1=industry.split('.')[0]
|
634
662
|
industry_name_flag=industry_code_flag=False
|
663
|
+
type_name=''
|
635
664
|
try:
|
636
665
|
type_name=sw_codes[sw_codes['name']==industry1]['type_name'].values[0]
|
637
666
|
industry_name_flag=True
|
@@ -640,19 +669,20 @@ def industry_valuation_history_sw_weekly(industry,start,end,vtype='PE', \
|
|
640
669
|
type_name=sw_codes[sw_codes['code']==industry1]['type_name'].values[0]
|
641
670
|
industry_code_flag=True
|
642
671
|
except:
|
643
|
-
print(" #
|
644
|
-
return None
|
672
|
+
print(" #Warning(industry_valuation_history_sw_weekly): not a Shenwan index for",industry)
|
673
|
+
#return None
|
645
674
|
|
646
675
|
if type_name=='三级行业':
|
647
|
-
print(" #
|
676
|
+
print(" #Warning(industry_valuation_history_sw_weekly): currently does not support Shenwan 3rd_level industry",industry)
|
648
677
|
return None
|
649
678
|
|
650
|
-
if not (type_name
|
679
|
+
if not (type_name in ['二级行业','风格指数']):
|
651
680
|
df=industry_valuation_history_sw_daily(industry=industry,start=start,end=end,vtype=vtype, \
|
652
|
-
|
653
|
-
|
681
|
+
graph=graph,loc=loc,error_message=False)
|
682
|
+
if not (df is None):
|
683
|
+
return df
|
654
684
|
|
655
|
-
#
|
685
|
+
# 获取行业估值历史周数据:啰嗦方法,需要反复下载,容易出ipywidgets引起的错误,需要安装之或卸载后重新安装
|
656
686
|
import pandas as pd
|
657
687
|
import akshare as ak
|
658
688
|
df=None
|
@@ -717,6 +747,9 @@ def industry_valuation_history_sw_weekly(industry,start,end,vtype='PE', \
|
|
717
747
|
if __name__=='__main__':
|
718
748
|
industry='食品饮料'
|
719
749
|
industry='白酒Ⅱ'
|
750
|
+
industry='绩优股指数'
|
751
|
+
industry='801853.SW'
|
752
|
+
|
720
753
|
start='2023-10-1'
|
721
754
|
end='2023-12-15'
|
722
755
|
vtype='PE'
|
@@ -765,11 +798,12 @@ def industry_valuation_history_sw(industry,start,end,vtype='PE', \
|
|
765
798
|
industry_name_flag=industry_code_flag=False
|
766
799
|
try:
|
767
800
|
type_name=sw_codes[sw_codes['name']==industry1]['type_name'].values[0]
|
768
|
-
industry_name_flag=True
|
801
|
+
industry_name_flag=True; industry_name=industry1
|
769
802
|
except:
|
770
803
|
try:
|
771
804
|
type_name=sw_codes[sw_codes['code']==industry1]['type_name'].values[0]
|
772
805
|
industry_code_flag=True
|
806
|
+
industry_name=sw_codes[sw_codes['code']==industry1]['name'].values[0]
|
773
807
|
except:
|
774
808
|
print(" #Error(industry_valuation_history_sw): Shenwan industry not found for",industry)
|
775
809
|
return None
|
@@ -778,12 +812,14 @@ def industry_valuation_history_sw(industry,start,end,vtype='PE', \
|
|
778
812
|
print(" #Error(industry_valuation_history_sw): currently does not support Shenwan 3rd_level industry",industry)
|
779
813
|
return None
|
780
814
|
|
781
|
-
if not (type_name=='二级行业'):
|
815
|
+
#if not (type_name=='二级行业'):
|
816
|
+
if not (type_name in ['二级行业','风格指数']):
|
782
817
|
df=industry_valuation_history_sw_daily(industry=industry,start=start,end=end,vtype=vtype, \
|
783
818
|
graph=graph,loc=loc)
|
784
|
-
|
819
|
+
if not (df is None):
|
820
|
+
return df
|
785
821
|
|
786
|
-
#
|
822
|
+
# 获取行业估值历史周数据:笨方法,反复下载。易出ipywidgets引起的错误,可卸载后重装
|
787
823
|
import pandas as pd
|
788
824
|
import akshare as ak
|
789
825
|
start2=start1.strftime('%Y-%m-%d')
|
@@ -852,7 +888,7 @@ def industry_valuation_history_sw(industry,start,end,vtype='PE', \
|
|
852
888
|
df2['平均值']=df2[vtypes].mean()
|
853
889
|
df2['中位数']=df2[vtypes].median()
|
854
890
|
|
855
|
-
titletxt="行业估值趋势:"+
|
891
|
+
titletxt="行业估值趋势:"+industry_name+','+vtypes
|
856
892
|
|
857
893
|
footnote0="注:申万行业分类指数,"
|
858
894
|
footnote1=''
|
@@ -18,7 +18,7 @@ siat/capm_beta.py,sha256=cxXdRVBQBllhbfz1LeTJAIWvyRYhW54nhtNUXv4HwS0,29063
|
|
18
18
|
siat/capm_beta2.py,sha256=lUuCPVSxebkA2yye1PXu1V2Jd2UKEwD_kIA25DCIDTs,29750
|
19
19
|
siat/capm_beta_test.py,sha256=ImR0c5mc4hIl714XmHztdl7qg8v1E2lycKyiqnFj6qs,1745
|
20
20
|
siat/cmat_commons.py,sha256=Nj9Kf0alywaztVoMVeVVL_EZk5jRERJy8R8kBw88_Tg,38116
|
21
|
-
siat/common.py,sha256=
|
21
|
+
siat/common.py,sha256=rWOQWvkkmLiOwj5XAagLLP-ii7VJNKYPSK5rimCUTfo,158534
|
22
22
|
siat/compare_cross.py,sha256=3iP9TH2h3w27F2ARZc7FjKcErYCzWRc-TPiymOyoVtw,24171
|
23
23
|
siat/compare_cross_test.py,sha256=xra5XYmQGEtfIZL2h-GssdH2hLdFIhG3eoCrkDrL3gY,3473
|
24
24
|
siat/concepts_iwencai.py,sha256=m1YEDtECRT6FqtzlKm91pt2I9d3Z_XoP59BtWdRdu8I,3061
|
@@ -53,7 +53,7 @@ siat/financials_test.py,sha256=HJ3CPo_Xckz2wXi3AEP6ZNWCF1Duc1pLi0Y10USiImc,23829
|
|
53
53
|
siat/fred_test.py,sha256=KF50ssSbsfpa_kT6iuomD0vG4eXztAcOasZxg1OGX5w,1201
|
54
54
|
siat/fund.py,sha256=wMDORsCBV8ZXfgwbtq-0bu3qqWY66dHnbqgllW0gWCo,24637
|
55
55
|
siat/fund_china.pickle,sha256=x_nPPdwy7wzIhtZQOplgDyTSyyUdXy9lbNxWysq7N6k,2437771
|
56
|
-
siat/fund_china.py,sha256=
|
56
|
+
siat/fund_china.py,sha256=ocqQnDHdnQWnRmSQ0KTBC5FoBwKtualKZprtdMlPe_A,111907
|
57
57
|
siat/fund_china_test.py,sha256=-Bh6m0J0GPpIbYXx-H2vpzJoNFI6pE2C2jVPa8DazgE,6649
|
58
58
|
siat/fund_test.py,sha256=V4ADb8Gsp8gyeFTwcgRsJBpnUih_O-Q2V1ILc5oKjK8,1116
|
59
59
|
siat/future_china.py,sha256=F-HsIf2Op8Z22RzTjet1g8COzldgnMjFNSXsAkeGyWo,17595
|
@@ -102,10 +102,10 @@ siat/security_prices.py,sha256=M8Qflbd6cgIJAnXBn3Ifn2z8A0SWzw6Ns_VHn74v1O8,10803
|
|
102
102
|
siat/security_prices_test.py,sha256=OEphoJ87NPKoNow1QA8EU_5MUYrJF-qKoWKNapVfZNI,10779
|
103
103
|
siat/security_trend.py,sha256=o0vpWdrJkmODCP94X-Bvn-w7efHhj9HpUYBHtLl55D0,17240
|
104
104
|
siat/security_trend2-20240620.py,sha256=QVnEcb7AyVbO77jVqfFsJffGXrX8pgJ9xCfoAKmWBPk,24854
|
105
|
-
siat/security_trend2.py,sha256=
|
105
|
+
siat/security_trend2.py,sha256=JHrO5zDBYMLbpvotdaqaUcFrxm2di60kMVOdeom8t8A,26336
|
106
106
|
siat/setup.py,sha256=up65rQGLmTBkhtaMLowjoQXYmIsnycnm4g1SYmeQS6o,1335
|
107
107
|
siat/shenwan index history test.py,sha256=JCVAzOSEldHalhSFa3pqD8JI_8_djPMQOxpkuYU-Esg,1418
|
108
|
-
siat/stock.py,sha256=
|
108
|
+
siat/stock.py,sha256=8zOIiPDlzLCqHqvyLOLzmaAt6B1QOSW24r7giRc2jKc,154911
|
109
109
|
siat/stock_advice_linear.py,sha256=-twT7IGP-NEplkL1WPSACcNJjggRB2j4mlAQCkzOAuo,31655
|
110
110
|
siat/stock_base.py,sha256=uISvbRyOGy8p9QREA96CVydgflBkn5L3OXOGKl8oanc,1312
|
111
111
|
siat/stock_china.py,sha256=zyUyghIrkkkYWlHRRP7Hoblxzfp-jrck60pTJpwMahg,91553
|
@@ -135,13 +135,13 @@ siat/translate.py,sha256=12-Qx2sqwANobFsh2k5qyE_idjHs0j2g5cTlh9by7co,240806
|
|
135
135
|
siat/translate_20240606.py,sha256=63IyHWEU3Uz9mjwyuAX3fqY4nUMdwh0ICQAgmgPXP7Y,215121
|
136
136
|
siat/translate_241003_keep.py,sha256=un7Fqe1v35MXsja5exZgjmLzrZtt66NARZIGlyFuGGU,218747
|
137
137
|
siat/universal_test.py,sha256=CDAOffW1Rvs-TcNN5giWVvHMlch1w4dp-w5SIV9jXL0,3936
|
138
|
-
siat/valuation.py,sha256=
|
139
|
-
siat/valuation_china.py,sha256=
|
138
|
+
siat/valuation.py,sha256=WCqL5zYkZ_Y3MLeoWXTu3G1CknwGdYzhpszbT6cEoYk,49255
|
139
|
+
siat/valuation_china.py,sha256=CVp1IwIsF3Om0J29RGkyxZLt4n9Ug-ua_RKhLwL9fUQ,69624
|
140
140
|
siat/valuation_market_china_test.py,sha256=gbJ0ioauuo4koTPH6WKUkqcXiQPafnbhU5eKJ6lpdLA,1571
|
141
141
|
siat/var_model_validation.py,sha256=R0caWnuZarrRg9939hxh3vJIIpIyPfvelYmzFNZtPbo,14910
|
142
142
|
siat/yf_name.py,sha256=9U_XfEeMlS3TrCrO3Bww21nuFgghbnO-cqDJMhQWqew,16193
|
143
|
-
siat-3.5.
|
144
|
-
siat-3.5.
|
145
|
-
siat-3.5.
|
146
|
-
siat-3.5.
|
147
|
-
siat-3.5.
|
143
|
+
siat-3.5.2.dist-info/LICENSE,sha256=NTEMMROY9_4U1szoKC3N2BLHcDd_o5uTgqdVH8tbApw,1071
|
144
|
+
siat-3.5.2.dist-info/METADATA,sha256=aR703O3uk2D33oAxA_vW9ozjcvFBQG2LrUBIbJK2EUA,8009
|
145
|
+
siat-3.5.2.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
|
146
|
+
siat-3.5.2.dist-info/top_level.txt,sha256=r1cVyL7AIKqeAmEJjNR8FMT20OmEzufDstC2gv3NvEY,5
|
147
|
+
siat-3.5.2.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|