siat 3.4.2__py3-none-any.whl → 3.4.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
siat/__init__.py CHANGED
@@ -23,7 +23,7 @@ try:
23
23
  import pkg_resources
24
24
  current_version=pkg_resources.get_distribution("siat").version
25
25
  current_list=current_version.split('.')
26
- print("Successfully imported siat version",current_version)
26
+ print("Successfully enabled siat version",current_version)
27
27
 
28
28
  if check_newer_version:
29
29
  import luddite
@@ -38,11 +38,11 @@ try:
38
38
 
39
39
  if not newest:
40
40
  #print("The latest version of siat is",latest_version,'\n')
41
- print("Now there is a newer version of siat",latest_version,'\n')
41
+ print("There is a newer version of siat",latest_version,'\n')
42
42
  print("*** How to upgrade siat?")
43
- print("Upgrade directly from official source? use command: upgrade_siat()")
44
- print("Upgrade from Tsinghua? use command: upgrade_siat(alternative='tsinghua')")
45
- print("Upgrade from Alibaba? use command: upgrade_siat(alternative='alibaba')")
43
+ print("Upgrade from official website? Command: upgrade_siat()")
44
+ print("Upgrade from Tsinghua? Command: upgrade_siat(alternative='tsinghua')")
45
+ print("Upgrade from Alibaba? Command: upgrade_siat(alternative='alibaba')")
46
46
 
47
47
  except:
48
48
  pass
siat/financials_china.py CHANGED
@@ -56,6 +56,8 @@ if __name__=='__main__':
56
56
  ticker='601398.SS'
57
57
  ticker='600791.SS'
58
58
 
59
+ ticker="601375.SS"
60
+
59
61
  akfs=get_fin_stmt_ak(ticker)
60
62
 
61
63
  def get_fin_stmt_ak(ticker):
@@ -218,16 +220,35 @@ def get_fin_stmt_ak(ticker):
218
220
  fs4['预收款项']=fs4['预收账款']
219
221
 
220
222
  if not ('实收资本(或股本)' in fslist):
221
- fs4['实收资本(或股本)']=fs4['股本']
223
+ if '股本' in fslist:
224
+ fs4['实收资本(或股本)']=fs4['股本']
225
+ if '实收资本净额' in fslist:
226
+ fs4['实收资本(或股本)']=fs4['实收资本净额']
227
+
222
228
 
223
229
  if not ('流动资产合计' in fslist):
224
- fs4['流动资产合计']=fs4['资产总计']-fs4['固定资产合计']-fs4['无形资产']-fs4['商誉']-fs4['递延税款借项']-fs4['其他资产']
230
+ if '其他资产' in fslist:
231
+ fs4['流动资产合计']=fs4['资产总计']-fs4['固定资产合计']-fs4['无形资产']-fs4['商誉']-fs4['递延税款借项']-fs4['其他资产']
232
+ else:
233
+ fs4['流动资产合计']=fs4['资产总计']-fs4['固定资产合计']-fs4['无形资产']-fs4['商誉']-fs4['递延税款借项']
225
234
 
226
235
  if not ('速动资产合计' in fslist):
236
+ if not('存货' in fslist) and ('存货净额' in fslist):
237
+ fs4['存货']=fs4['存货净额']
238
+
227
239
  fs4['速动资产合计']=fs4['流动资产合计']-fs4['存货']
228
240
 
229
241
  if not ('流动负债合计' in fslist):
230
- fs4['流动负债合计']=fs4['负债合计']-fs4['应付债券']-fs4['递延所得税负债']-fs4['其他负债']
242
+ if not ('应付债券' in fslist) and ('应付债券款' in fslist):
243
+ fs4['应付债券']=fs4['应付债券款']
244
+
245
+ if not ('递延所得税负债' in fslist) and ('递延税款贷项' in fslist):
246
+ fs4['递延所得税负债']=fs4['递延税款贷项']
247
+
248
+ if '其他负债' in fslist:
249
+ fs4['流动负债合计']=fs4['负债合计']-fs4['应付债券']-fs4['递延所得税负债']-fs4['其他负债']
250
+ else:
251
+ fs4['流动负债合计']=fs4['负债合计']-fs4['应付债券']-fs4['递延所得税负债']
231
252
 
232
253
  #银行利润表
233
254
  if not ('营业总收入' in fslist):
siat/financials_china2.py CHANGED
@@ -138,7 +138,9 @@ def get_fin_stmt_ak_multi(tickers,fsdates):
138
138
 
139
139
  if not ('所得税费用' in entry_list) and ('减:所得税' in entry_list):
140
140
  dfs['所得税费用']=dfs['减:所得税']
141
- dfs['实际所得税率%']=dfs.apply(lambda x:round(x['所得税费用']/x['利润总额']*100,2),axis=1)
141
+ if '所得税费用' in list(dfs):
142
+ dfs['实际所得税率%']=dfs.apply(lambda x:round(x['所得税费用']/x['利润总额']*100,2),axis=1)
143
+
142
144
  dfs['净利润率%']=dfs.apply(lambda x:round(x['净利润']/x['营业总收入']*100,2),axis=1)
143
145
 
144
146
  #dfs['流通股股数']=dfs.apply(lambda x:round(x['净利润']/x['基本每股收益'],0),axis=1)
@@ -1345,7 +1347,7 @@ def asset_liab_structure_china(tickers,fsdates,facecolor='papayawhip',font_size=
1345
1347
  print(" Conducting asset-liability analysis ...")
1346
1348
  print(" Focus on:",ticker_name(comparator,'stock'))
1347
1349
  #print(" Comparee :",ticker_name(comparee))
1348
- print(" Peers :",end='')
1350
+ print(" Peers:",end='')
1349
1351
  if comparee != []:
1350
1352
  print_list(ticker_name(comparee,'stock'))
1351
1353
  else:
@@ -1586,7 +1588,7 @@ def income_cost_structure_china(tickers,fsdates,facecolor='papayawhip',font_size
1586
1588
  print(" Conducting income-cost analysis ...")
1587
1589
  print(" Focus on:",ticker_name(comparator,'stock'))
1588
1590
  #print(" Comparee :",ticker_name(comparee))
1589
- print(" Peers :",end='')
1591
+ print(" Peers:",end='')
1590
1592
  if comparee != []:
1591
1593
  print_list(ticker_name(comparee,'stock'))
1592
1594
  else:
@@ -1794,7 +1796,7 @@ def cash_flow_structure_china(tickers,fsdates,facecolor='papayawhip',font_size='
1794
1796
  comparee=tickers[1:]
1795
1797
  print(" Conducting cash flow analysis ...")
1796
1798
  print(" Focus on:",ticker_name(comparator,'stock'))
1797
- print(" Peers :",end='')
1799
+ print(" Peers:",end='')
1798
1800
  if comparee != []:
1799
1801
  print_list(ticker_name(comparee,'stock'))
1800
1802
  else:
siat/market_china.py CHANGED
@@ -975,9 +975,13 @@ def market_detail_china2(category='price',
975
975
  nowstr0=str(dt.datetime.now())
976
976
  nowstr=nowstr0[:19]
977
977
 
978
+ #检查语言环境
979
+ lang=check_language()
980
+
978
981
  # 前置空格个数
979
982
  heading=' '*1
980
- df.rename(columns={'项目':'Item','上海证券交易所':'Shanghai SE','深圳证券交易所':'Shenzhen SE','北京证券交易所':'Beijing SE'},inplace=True)
983
+ if lang == "English":
984
+ df.rename(columns={'项目':'Item','上海证券交易所':'Shanghai SE','深圳证券交易所':'Shenzhen SE','北京证券交易所':'Beijing SE'},inplace=True)
981
985
 
982
986
  if category1=='PRICE':
983
987
  titletxt=text_lang("中国三大股票交易所横向对比:股价与涨跌","China Stock Exchanges: Differences in Price")
@@ -997,19 +1001,20 @@ def market_detail_china2(category='price',
997
1001
 
998
1002
  footnote=ft0+ft1+ft2+ft3+ft4+ft5+ft6+ft7+ft8+ft9+ft10
999
1003
 
1000
- itme_list=['Tradeable stocks',
1001
- 'Stock Price Level',
1002
- '.....Prev close mean',
1003
- '.....Today open mean',
1004
- '.....Current price mean',
1005
- 'Stock Price Up-down',
1006
- '.....Current change%',
1007
- '.....Last 5 min change%',
1008
- 'Today vs. Prev',
1009
- '.....Amplitude%',
1010
- '.....Change% mean',
1011
- '.....Change mean(RMB)']
1012
- df['Item']=itme_list
1004
+ if lang == "English":
1005
+ itme_list=['Tradeable stocks',
1006
+ 'Stock Price Level',
1007
+ '.....Prev close mean',
1008
+ '.....Today open mean',
1009
+ '.....Current price mean',
1010
+ 'Stock Price Up-down',
1011
+ '.....Current change%',
1012
+ '.....Last 5 min change%',
1013
+ 'Today vs. Prev',
1014
+ '.....Amplitude%',
1015
+ '.....Change% mean',
1016
+ '.....Change mean(RMB)']
1017
+ df['Item']=itme_list
1013
1018
 
1014
1019
  df_display_CSS(df,titletxt=titletxt,footnote=footnote,facecolor=facecolor, \
1015
1020
  first_col_align='left',second_col_align='right', \
@@ -1035,14 +1040,15 @@ def market_detail_china2(category='price',
1035
1040
 
1036
1041
  footnote=ft0+ft1+ft2+ft3+ft4+ft5+ft6 + ft9+ft10
1037
1042
 
1038
- itme_list=['Tradeable stocks',
1039
- 'Volume Level Today',
1040
- '.....Volume mean(million)',
1041
- '.....Amount mean(100 millions)',
1042
- '.....Turnover rate mean %',
1043
- 'Today vs. Prev',
1044
- '.....Volume ratio(times)']
1045
- df['Item']=itme_list
1043
+ if lang == "English":
1044
+ itme_list=['Tradeable stocks',
1045
+ 'Volume Level Today',
1046
+ '.....Volume mean(million)',
1047
+ '.....Amount mean(100 millions)',
1048
+ '.....Turnover rate mean %',
1049
+ 'Today vs. Prev',
1050
+ '.....Volume ratio(times)']
1051
+ df['Item']=itme_list
1046
1052
 
1047
1053
  df_display_CSS(df,titletxt=titletxt,footnote=footnote,facecolor=facecolor, \
1048
1054
  first_col_align='left',second_col_align='right', \
@@ -1066,18 +1072,19 @@ def market_detail_china2(category='price',
1066
1072
 
1067
1073
  footnote=ft0+ft1+ft2+ft3+ft4 + ft9+ft10
1068
1074
 
1069
- itme_list=['Tradeable stocks',
1070
- 'MRQ Investment Return',
1071
- '.....MRQ change% mean',
1072
- '.....MRQ change% median',
1073
- '.....MRQ change% std',
1074
- '.....MRQ rising stock%',
1075
- 'YTD Investment Return',
1076
- '.....YTD change% mean',
1077
- '.....YTD change% median',
1078
- '.....YTD change% std',
1079
- '.....YTD rising stock%']
1080
- df['Item']=itme_list
1075
+ if lang == "English":
1076
+ itme_list=['Tradeable stocks',
1077
+ 'MRQ Investment Return',
1078
+ '.....MRQ change% mean',
1079
+ '.....MRQ change% median',
1080
+ '.....MRQ change% std',
1081
+ '.....MRQ rising stock%',
1082
+ 'YTD Investment Return',
1083
+ '.....YTD change% mean',
1084
+ '.....YTD change% median',
1085
+ '.....YTD change% std',
1086
+ '.....YTD rising stock%']
1087
+ df['Item']=itme_list
1081
1088
 
1082
1089
  df_display_CSS(df,titletxt=titletxt,footnote=footnote,facecolor=facecolor, \
1083
1090
  first_col_align='left',second_col_align='right', \
@@ -1102,28 +1109,29 @@ def market_detail_china2(category='price',
1102
1109
 
1103
1110
  footnote=ft0+ft1+ft2+ft3+ft4+ft5 + ft9+ft10
1104
1111
 
1105
- itme_list=['Tradeable stocks',
1106
- 'Total Market Cap (TMC)',
1107
- '.....Whole Market TMC(trillion)',
1108
- '.....Stock TMC mean(billion)',
1109
- '.....Stock TMC median(billion)',
1110
- '.....Stock TMC std/mean',
1111
- 'Outstanding Market Cap (OMC)',
1112
- '.....Whole Market OMC(trillion)',
1113
- '.....Whole Market outstanding %',
1114
- '.....Stock OMC mean(billion)',
1115
- '.....Stock OMC median(billion)',
1116
- '.....Stock OMC std/mean',
1117
- 'Valuation: P/E',
1118
- '.....Stock P/E mean',
1119
- '.....Stock P/E median',
1120
- '.....Stock P/E std/mean',
1121
- 'Valuation: P/B',
1122
- '.....Stock P/B mean',
1123
- '.....Stock P/B median',
1124
- '.....Stock P/B std/mean']
1125
-
1126
- df['Item']=itme_list
1112
+ if lang == "English":
1113
+ itme_list=['Tradeable stocks',
1114
+ 'Total Market Cap (TMC)',
1115
+ '.....Whole Market TMC(trillion)',
1116
+ '.....Stock TMC mean(billion)',
1117
+ '.....Stock TMC median(billion)',
1118
+ '.....Stock TMC std/mean',
1119
+ 'Outstanding Market Cap (OMC)',
1120
+ '.....Whole Market OMC(trillion)',
1121
+ '.....Whole Market outstanding %',
1122
+ '.....Stock OMC mean(billion)',
1123
+ '.....Stock OMC median(billion)',
1124
+ '.....Stock OMC std/mean',
1125
+ 'Valuation: P/E',
1126
+ '.....Stock P/E mean',
1127
+ '.....Stock P/E median',
1128
+ '.....Stock P/E std/mean',
1129
+ 'Valuation: P/B',
1130
+ '.....Stock P/B mean',
1131
+ '.....Stock P/B median',
1132
+ '.....Stock P/B std/mean']
1133
+
1134
+ df['Item']=itme_list
1127
1135
 
1128
1136
 
1129
1137
  df_display_CSS(df,titletxt=titletxt,footnote=footnote,facecolor=facecolor, \
siat/stock.py CHANGED
@@ -474,10 +474,10 @@ def stock_price(ticker,fromdate,todate,adj=False, \
474
474
  lang=check_language()
475
475
  if lang == 'English':
476
476
  titletxt=texttranslate("Security Price Trend:")+tickername
477
- footnote=texttranslate("Source: sina/stooq/yahoo,")+str(today)
477
+ footnote=texttranslate("Data source: Sina/Stooq/Yahoo/EM, ")+str(today)
478
478
  else:
479
479
  titletxt=texttranslate("证券价格走势图:")+tickername
480
- footnote=texttranslate("数据来源:新浪/东方财富/stooq/yahoo,")+str(today)
480
+ footnote=texttranslate("数据来源:Sina/EM/Stooq/Yahoo,")+str(today)
481
481
 
482
482
  pricetype='Close'
483
483
  import pandas as pd
@@ -706,7 +706,7 @@ def security_indicator(ticker,indicator, \
706
706
  titletxt1=text_lang("证券趋势分析:","Security Trend: ")
707
707
  titletxt=titletxt1+ticker_name(ticker,ticker_type=ticker_type)
708
708
  import datetime; todaydt = datetime.date.today()
709
- sourcetxt=text_lang("数据来源:新浪/东方财富/stooq/雅虎财经,","Data source: Sina/EM/Stooq/Yahoo, ")
709
+ sourcetxt=text_lang("数据来源:Sina/EM/Stooq/Yahoo,","Data source: Sina/EM/Stooq/Yahoo, ")
710
710
  footnote=sourcetxt+str(todaydt)
711
711
  collabel=ectranslate(indicator)
712
712
 
@@ -995,7 +995,7 @@ def stock_price_volatility(ticker,fromdate,todate,type="Weekly Price Volatility"
995
995
 
996
996
  titletxt=texttranslate("证券价格波动风险走势图:")+ticker_name(ticker)
997
997
  import datetime; today = datetime.date.today()
998
- footnote=texttranslate("数据来源:新浪/东方财富/stooq,")+str(today)
998
+ footnote=texttranslate("数据来源:Sina/EM/Stooq/Yahoo,")+str(today)
999
999
  collabel=ectranslate(type)
1000
1000
  ylabeltxt=ectranslate(type)
1001
1001
  pltdf=erdf[erdf.index >= fromdate]
@@ -1111,7 +1111,7 @@ def stock_ret_volatility(ticker,fromdate,todate,type="Weekly Ret Volatility%",da
1111
1111
 
1112
1112
  titletxt=texttranslate("证券收益率波动风险走势图:")+ticker_name(ticker)
1113
1113
  import datetime; today = datetime.date.today()
1114
- footnote=texttranslate("数据来源:新浪/东方财富/stooq,")+str(today)
1114
+ footnote=texttranslate("数据来源:Sina/EM/Stooq/Yahoo,")+str(today)
1115
1115
  collabel=ectranslate(type)
1116
1116
  ylabeltxt=ectranslate(type)
1117
1117
  pltdf=erdf[erdf.index >= fromdate]
@@ -1230,7 +1230,7 @@ def ret_lpsd(ticker,fromdate,todate,type="Weekly Ret Volatility%",datatag=False,
1230
1230
 
1231
1231
  titletxt=texttranslate("证券收益率波动损失风险走势图:")+ticker_name(ticker)
1232
1232
  import datetime; today = datetime.date.today()
1233
- footnote=texttranslate("数据来源:新浪/东方财富/stooq,")+str(today)
1233
+ footnote=texttranslate("数据来源:Sina/EM/Stooq/Yahoo,")+str(today)
1234
1234
  collabel=ectranslate(type)
1235
1235
  ylabeltxt=ectranslate(type)
1236
1236
  pltdf=erdf[erdf.index >= fromdate]
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: siat
3
- Version: 3.4.2
3
+ Version: 3.4.3
4
4
  Summary: Securities Investment Analysis Tools (siat)
5
5
  Home-page: https://pypi.org/project/siat/
6
6
  Author: Prof. WANG Dehong, International Business School, Beijing Foreign Studies University
@@ -1,5 +1,5 @@
1
1
  siat/__init__ -20240701.py,sha256=gP5uajXnJesnH5SL0ZPwq_Qhv59AG1bs4qwZv26Fo2Y,2894
2
- siat/__init__.py,sha256=NJn2HSa0cdet21YFoJs5nafHgrM3H3J3wdtFYi1KzfM,2065
2
+ siat/__init__.py,sha256=sJP_LlLfNAssg5ZCPxxkVMi2v6h5x3WcSco3KBN5CsE,2040
3
3
  siat/allin.py,sha256=mGm28SxvGGiNAsg6RleiqgyFQvrpgQZERYqpPkdDzPw,2851
4
4
  siat/alpha_vantage_test.py,sha256=tKr-vmuFH3CZAqwmISz6jzjPHzV1JJl3sPfZdz8aTfM,747
5
5
  siat/assets_liquidity.py,sha256=o_UZdLs693uNWPEQB2OzxDH0mdWimOmq4qe_vx1pue0,28987
@@ -41,8 +41,8 @@ siat/financial_statements_test.py,sha256=FLhx8JD-tVVWSBGux6AMz1jioXX4U4bp9DmgFHY
41
41
  siat/financials.py,sha256=mbEZSNeHMMFcnPUryQWvdmNlWQvpnOG9eItgS7IVw3k,80458
42
42
  siat/financials2 - 副本.py,sha256=dKlNjIfKeoSy055fQ6E6TUj9HEoO5Ney9grD84J5kfk,14389
43
43
  siat/financials2.py,sha256=7mnsTncKsgwFu8PP4refh5C5iMIO9P0KOMSF87ZyncY,45736
44
- siat/financials_china.py,sha256=CJHMZAWwE0dTYqCL_ffgpbt_UkuJ26InAM0j7CpLGUg,190406
45
- siat/financials_china2.py,sha256=8qOHl617G_54GlqVJIUfXCitJy0pkEDRil30tpkuHJ0,92665
44
+ siat/financials_china.py,sha256=BkfY8A3YH2_NRyqIwGZ3MA1dq75VGhMaTqE0SAlbYrk,191413
45
+ siat/financials_china2.py,sha256=UgLKLoRbWkKLdpQYBN6pkK55DLoBRdEFminkUuU56qI,92718
46
46
  siat/financials_china2_test.py,sha256=Erz5k4LyOplBBvYls2MypuqHpVNJ3daiLdyeJezNPu0,2722
47
47
  siat/financials_china2_test2.py,sha256=C8CuYTMHN4Mhp-sTu-Bmg0zMXRCaYV6ezGDoYartRYQ,3507
48
48
  siat/financials_china2_test3.py,sha256=UXYSA80DNSPRhHpovc2MA9JkpILWMAQaRatbWCHBNPs,3118
@@ -66,7 +66,7 @@ siat/holding_risk.py,sha256=G3wpaewAKF9CwEqRpr4khyuDu9SU2EGyQUHdk7cmHOA,30693
66
66
  siat/holding_risk_test.py,sha256=FRlw_9wFG98BYcg_cSj95HX5WZ1TvkGaOUdXD7-V86s,474
67
67
  siat/local_debug_test.py,sha256=CDAOffW1Rvs-TcNN5giWVvHMlch1w4dp-w5SIV9jXL0,3936
68
68
  siat/luchy_draw.py,sha256=8Ue-NKnvSVqINPY1eXat0NJat5MR-gex_K62aOYFdmA,20486
69
- siat/market_china.py,sha256=EOO-RvdnzJThTrgNHWW3TlWhx4k4rfdjbooOnQsYdQU,50299
69
+ siat/market_china.py,sha256=W39wwOG9qr0-NQuOXH8gIKEyA6OiThiju8KHOV-G73o,50732
70
70
  siat/markowitz.py,sha256=DsfS6vG9TAfdJP4GgN-CCArujPi84XjD23CWbxaA2o4,97627
71
71
  siat/markowitz2-20240620.py,sha256=irZAPnjaatFsKQmFRMENP-cO6bEUl2narYtkU5NKTWI,108019
72
72
  siat/markowitz2.py,sha256=LK2pDEtE5PUmBtCHmCcRs8FlPqZKmhFXiuLIL4JeQa8,121991
@@ -105,7 +105,7 @@ siat/security_trend2-20240620.py,sha256=QVnEcb7AyVbO77jVqfFsJffGXrX8pgJ9xCfoAKmW
105
105
  siat/security_trend2.py,sha256=lUMab8HilXIUPo_z9ZkztMiZ5kf3jAbbCwPPkYbQ1TI,25288
106
106
  siat/setup.py,sha256=up65rQGLmTBkhtaMLowjoQXYmIsnycnm4g1SYmeQS6o,1335
107
107
  siat/shenwan index history test.py,sha256=JCVAzOSEldHalhSFa3pqD8JI_8_djPMQOxpkuYU-Esg,1418
108
- siat/stock.py,sha256=uubLm3Qd1N02FI6nBnB9CvQrY_rJV8RfQI-_4zxIfog,152436
108
+ siat/stock.py,sha256=ouP2nnjYqgzAol0ljQHnnMPfG63U0NrEdME75w2J_ps,152394
109
109
  siat/stock_advice_linear.py,sha256=-twT7IGP-NEplkL1WPSACcNJjggRB2j4mlAQCkzOAuo,31655
110
110
  siat/stock_base.py,sha256=uISvbRyOGy8p9QREA96CVydgflBkn5L3OXOGKl8oanc,1312
111
111
  siat/stock_china.py,sha256=zyUyghIrkkkYWlHRRP7Hoblxzfp-jrck60pTJpwMahg,91553
@@ -139,7 +139,7 @@ siat/valuation_china.py,sha256=EkZQaVkoBjM0c4MCNbaX-bMnlG0e3FXeaWczZDnkptU,67784
139
139
  siat/valuation_market_china_test.py,sha256=gbJ0ioauuo4koTPH6WKUkqcXiQPafnbhU5eKJ6lpdLA,1571
140
140
  siat/var_model_validation.py,sha256=R0caWnuZarrRg9939hxh3vJIIpIyPfvelYmzFNZtPbo,14910
141
141
  siat/yf_name.py,sha256=H1EM8YYXA8nQHIqsJlso0I3HKPiJLT3QujO4gRVQXWs,13945
142
- siat-3.4.2.dist-info/METADATA,sha256=f_VyzH3bJZHoBhz45fW6KnNGf2wyC6QYP5XKgSEBUQQ,7309
143
- siat-3.4.2.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
144
- siat-3.4.2.dist-info/top_level.txt,sha256=r1cVyL7AIKqeAmEJjNR8FMT20OmEzufDstC2gv3NvEY,5
145
- siat-3.4.2.dist-info/RECORD,,
142
+ siat-3.4.3.dist-info/METADATA,sha256=BdluGvWZfaW-u4lZ4vOXaiYFqvURkobsftROJxS5Fh8,7309
143
+ siat-3.4.3.dist-info/WHEEL,sha256=yQN5g4mg4AybRjkgi-9yy4iQEFibGQmlz78Pik5Or-A,92
144
+ siat-3.4.3.dist-info/top_level.txt,sha256=r1cVyL7AIKqeAmEJjNR8FMT20OmEzufDstC2gv3NvEY,5
145
+ siat-3.4.3.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.38.4)
2
+ Generator: bdist_wheel (0.41.2)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5