siat 3.2.15__py3-none-any.whl → 3.2.17__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
siat/grafix.py CHANGED
@@ -1121,7 +1121,7 @@ def draw_lines(df0,y_label,x_label,axhline_value,axhline_label,title_txt, \
1121
1121
 
1122
1122
  #插值平滑
1123
1123
  if smooth:
1124
- print(" Rendering graphics ...")
1124
+ #print(" Rendering graphics ...")
1125
1125
  try:
1126
1126
  df=df_smooth_manual(df0,resample_freq=resample_freq)
1127
1127
  except:
@@ -0,0 +1,122 @@
1
+ Metadata-Version: 2.1
2
+ Name: siat
3
+ Version: 3.2.17
4
+ Summary: Securities Investment Analysis Tools (siat)
5
+ Home-page: https://pypi.org/project/siat/
6
+ Author: Prof. WANG Dehong, International Business School, Beijing Foreign Studies University
7
+ Author-email: wdehong2000@163.com
8
+ License: Copyright (C) WANG Dehong, 2024. For educational purpose only!
9
+ Description-Content-Type: text/markdown
10
+ Requires-Dist: pandas-datareader
11
+ Requires-Dist: yfinance
12
+ Requires-Dist: tqdm
13
+ Requires-Dist: plotly-express
14
+ Requires-Dist: akshare
15
+ Requires-Dist: urllib3
16
+ Requires-Dist: mplfinance
17
+ Requires-Dist: statsmodels
18
+ Requires-Dist: yahoo-earnings-calendar
19
+ Requires-Dist: yahooquery
20
+ Requires-Dist: pypinyin
21
+ Requires-Dist: seaborn
22
+ Requires-Dist: numpy
23
+ Requires-Dist: scipy
24
+ Requires-Dist: pandas
25
+ Requires-Dist: scikit-learn
26
+ Requires-Dist: baostock
27
+ Requires-Dist: pyproject.toml
28
+ Requires-Dist: pathlib
29
+ Requires-Dist: ruamel-yaml
30
+ Requires-Dist: prettytable
31
+ Requires-Dist: graphviz
32
+ Requires-Dist: luddite
33
+ Requires-Dist: pendulum
34
+
35
+ *** What is siat?
36
+ siat is a Python plug-in, which stands for security investment analysis toolkit. It is specially designed for teaching and learning purposes on security investment in universities for undergraduate and postgraduate programs.
37
+
38
+ *** What sort of securities does siat support?
39
+ 1. Public company profile: world-wide
40
+ 2. Stock & stock market index: world-wide
41
+ 3. Stock valuation: primarily in China (mainland and HK) and the U.S.
42
+ 4. Stock option chain: primarily in the U.S.
43
+ 5. Bond: primarily in China and the U.S.
44
+ 6. Markowitz portfolio: with all the supported stocks and bonds
45
+ 7. Fund: primarily in China and the U.S.
46
+ 8. Futures: primarily in China and the U.S.
47
+ 9. Options: primarily in China and the U.S.
48
+ 10. Digital currency: world-wide (some may be restricted by data sources)
49
+ 11. Balance sheet: in China (full function) and world-wide (basic function)
50
+ 12. Income statement: in China mainland (full function) and world-wide (basic function)
51
+ 13. Cash flow statement: in China mainland (full function) and world-wide (basic function)
52
+ 14. Du Pont Identity: world-wide
53
+ 15. Sector trend and valuation: primarily in China
54
+
55
+ *** What sort of analysis does siat support?
56
+ 1. Trend analysis
57
+ 2. Panel comparation
58
+ 3. Return analysis: rolling returns, holding period returns
59
+ 4. Risk analysis: rolling volatility, holding period volatility, LPSD
60
+ 5. Technical analysis: more than 15 indicators
61
+ 6. Risk-adjusted return: sharpe, sortino, treynor, Jensen alpha
62
+ 7. Portfolio optimization: four risk-adjusted returns
63
+ 8. CAPM beta trend
64
+ 9. Beta adjustments: simple adjustment, Scholes-Williams, Dimson
65
+ 10. Beta leverage: Hamada Model
66
+ 11. Fama-French three-factor model
67
+ 12. Fama-French-Carhart four-factor model
68
+ 13. Fama-French five-factor model
69
+ 14. Future pricing
70
+ 15. Option pricing: European style, American style, with/without dividends
71
+ 16. VaR & ES: variance-covariance, historic simulation, Monte Carlo, multiple periods
72
+ 17. Liquidity risk: Roll spread, Amihud, Pastor-Stambaugh
73
+ 18. ESG: basic function
74
+
75
+ *** Do I have to download data first before using siat?
76
+ NO!
77
+ siat will search the internet data sources for all the required data during analysis.
78
+ The main data sources siat uses:
79
+ 1. Yahoo Finance
80
+ 2. Sina Finance
81
+ 3. East Money
82
+ 4. Stooq (Polish)
83
+ 5. FRED
84
+ 6. OECD
85
+ 7. IMF
86
+ 8. Shanghai Stock Exchange
87
+ 9. Shenzhen Stock Exchange
88
+ 10. Tokyo Stock Exchange
89
+ 11. HKEX
90
+ 12. Sustainalytics
91
+ Thanks the above websites for their valuable data supply!
92
+
93
+ *** How is siat version numbered?
94
+ siat version format: X.Y.Z
95
+ X is the major version number.
96
+ If the major number X changes, it means a primary upgrade, usually there are some big changes in the architecure. However, user's habits will remain for most of the cases.
97
+
98
+ Y is the revision number.
99
+ If the revision number Y changes, it usually indicates some new functions have been compiled into the package.
100
+
101
+ Z is the build number.
102
+ A build number Z change usually reveals a new compilation over the package for the purpose of debug only.
103
+
104
+ *** When to upgrade siat?
105
+ If you have been using the existing copy very well, there is no need to follow up the newest version. However, if you do find
106
+ some bugs in using siat, most of the time it is a quick solution to upgrade siat as well as the dependent modules that siat relies on.
107
+
108
+ *** How to upgrade siat?
109
+ It is strongly recommended to use siat in Jupyter Notebook or Jupyter Lab. In Jupyter, there is an easy way to directly upgrade siat and its relevent modules together in the following command:
110
+ upgrade_siat()
111
+
112
+ If Jupyter prompts that pip command not found during the upgrade, it usually means that you need tick the checkbox
113
+ "Add Python to your path" or something like this during Anaconda installation. If you forget to tick the checkbox, you may need to remedy the situation case by case. In some of the situations, the following command may work in Anaconda Prompt, but not for all the cases:
114
+ python -m ensurepip
115
+
116
+ *** Are there detailed case studies on using siat?
117
+ YES, hundreds of video case studies in the author's channel (most in Chinese, some in English).
118
+ https://space.bilibili.com/284812153
119
+ Welcome to follow the channel!
120
+
121
+ *** How to report a bug and look for help?
122
+ Write to the author, Prof. WANG Dehong, wdehong2000@163.com
@@ -59,7 +59,7 @@ siat/future_china.py,sha256=F-HsIf2Op8Z22RzTjet1g8COzldgnMjFNSXsAkeGyWo,17595
59
59
  siat/future_china_test.py,sha256=BrSzmDVaOHki6rntOtosmRn-6dkfOBuLulJNqh7MOpc,1163
60
60
  siat/global_index_test.py,sha256=hnFp3wqqzzL-kAP8mgxDZ54Bd5Ijf6ENi5YJlGBgcXw,2402
61
61
  siat/google_authenticator.py,sha256=ZUbZR8OW0IAKDbcYtlqGqIpZdERpFor9NccFELxg9yI,1637
62
- siat/grafix.py,sha256=r-tQUxxBW-O53oPUFFHO7-lnDPO0TlK78d6nsEtxSDI,85008
62
+ siat/grafix.py,sha256=afR5QAJvPVCxuIx_UQPXj3FJRuW5GZBVjdBnRhQQpWE,85009
63
63
  siat/grafix_test.py,sha256=kXvcpLgQNO7wd30g_bWljLj5UH7bIVI0_dUtXbfiKR0,3150
64
64
  siat/holding_risk.py,sha256=G3wpaewAKF9CwEqRpr4khyuDu9SU2EGyQUHdk7cmHOA,30693
65
65
  siat/holding_risk_test.py,sha256=FRlw_9wFG98BYcg_cSj95HX5WZ1TvkGaOUdXD7-V86s,474
@@ -136,7 +136,7 @@ siat/valuation.py,sha256=NKfeZMdDJOW42oLVHob6eSVBXUqlN1OCnnzwyGAst8c,48855
136
136
  siat/valuation_china.py,sha256=EkZQaVkoBjM0c4MCNbaX-bMnlG0e3FXeaWczZDnkptU,67784
137
137
  siat/valuation_market_china_test.py,sha256=gbJ0ioauuo4koTPH6WKUkqcXiQPafnbhU5eKJ6lpdLA,1571
138
138
  siat/var_model_validation.py,sha256=R0caWnuZarrRg9939hxh3vJIIpIyPfvelYmzFNZtPbo,14910
139
- siat-3.2.15.dist-info/METADATA,sha256=Lg5ljKUff8t8KMtyF1O8I5qyW9rIkehKAsdq1xTQkzg,1469
140
- siat-3.2.15.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
141
- siat-3.2.15.dist-info/top_level.txt,sha256=r1cVyL7AIKqeAmEJjNR8FMT20OmEzufDstC2gv3NvEY,5
142
- siat-3.2.15.dist-info/RECORD,,
139
+ siat-3.2.17.dist-info/METADATA,sha256=k7iUE_E1jYmbGSIifvc5IlN0mVhrvM273Ogc9nCNDtc,5342
140
+ siat-3.2.17.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
141
+ siat-3.2.17.dist-info/top_level.txt,sha256=r1cVyL7AIKqeAmEJjNR8FMT20OmEzufDstC2gv3NvEY,5
142
+ siat-3.2.17.dist-info/RECORD,,
@@ -1,41 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: siat
3
- Version: 3.2.15
4
- Summary: Securities Investment Analysis Tools (siat)
5
- Home-page: https://pypi.org/project/siat/
6
- Author: Prof. WANG Dehong, International Business School, Beijing Foreign Studies University
7
- Author-email: wdehong2000@163.com
8
- License: Copyright (C) WANG Dehong, 2024. For educational purpose only!
9
- Requires-Dist: pandas-datareader
10
- Requires-Dist: yfinance
11
- Requires-Dist: tqdm
12
- Requires-Dist: plotly-express
13
- Requires-Dist: akshare
14
- Requires-Dist: urllib3
15
- Requires-Dist: mplfinance
16
- Requires-Dist: statsmodels
17
- Requires-Dist: yahoo-earnings-calendar
18
- Requires-Dist: yahooquery
19
- Requires-Dist: pypinyin
20
- Requires-Dist: seaborn
21
- Requires-Dist: numpy
22
- Requires-Dist: scipy
23
- Requires-Dist: pandas
24
- Requires-Dist: scikit-learn
25
- Requires-Dist: baostock
26
- Requires-Dist: pyproject.toml
27
- Requires-Dist: pathlib
28
- Requires-Dist: ruamel-yaml
29
- Requires-Dist: prettytable
30
- Requires-Dist: graphviz
31
- Requires-Dist: luddite
32
- Requires-Dist: pendulum
33
-
34
-
35
- Security Investment Analysis Toolkit (siat) is designed to use for making case studies in learning security investment,
36
- where cases can be replayed, updated and re-created in different securities,
37
- different time lines and different measurements.
38
- The plug-in is only licensed for teaching and learning purposes, not for commercial use.
39
- The author is not responsible for any results of applying this plug-in in real
40
- investment activities.
41
-
File without changes