siat 3.0.4__py3-none-any.whl → 3.0.10__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -547,7 +547,7 @@ def compare_1ticker_mrar(ticker,start,end,rar=['sharpe','sortino','treynor','alp
547
547
  regression_period=regression_period[0]
548
548
 
549
549
  tname=ticker_name(ticker,ticker_type)
550
- print(" Starting to retrive and calculate different rar for",tname,"\b, please wait ......")
550
+ print(" Starting to retrive and calculate different rar for",tname,"\b, please wait ......\n")
551
551
 
552
552
  #预处理ticker_type
553
553
  ticker_type=ticker_type_preprocess_mticker_mixed(ticker,ticker_type)
@@ -590,7 +590,7 @@ def compare_1ticker_mrar(ticker,start,end,rar=['sharpe','sortino','treynor','alp
590
590
 
591
591
  footnote3=''
592
592
  if 'treynor' in rar or 'alpha' in rar:
593
- footnote3="贝塔系数基于日收益率,回归期间"+str(regression_period)+"个自然日"
593
+ footnote3="贝塔系数回归期间"+str(regression_period)+"个自然日"
594
594
 
595
595
  import datetime; todaydt = datetime.date.today()
596
596
  footnote4="数据来源: 综合新浪/stooq/Yahoo,"+str(todaydt)+"统计"
@@ -628,10 +628,11 @@ def compare_1ticker_mrar(ticker,start,end,rar=['sharpe','sortino','treynor','alp
628
628
  elif sortby=='trailing':
629
629
  sortby_txt='按推荐标记+短期均值走势降序排列'
630
630
 
631
- title_txt='***** 风险调整收益评估:'+tname+','+sortby_txt+' *****'
631
+ #title_txt='***** 风险调整收益评估:'+tname+','+sortby_txt+' *****'
632
+ title_txt='风险调整收益评估:'+tname+','+sortby_txt
632
633
 
633
634
  footnote6='期间范围:'+str(start)+'至'+str(end)+";近期范围:近"+str(trailing)+"个交易日。趋势变化率阈值:"+str(trend_threshhold)+"。"
634
- footnote7="近期趋势和星号为多项因素综合研判,最多五颗星星"
635
+ footnote7="近期优先趋势和星号为多项因素综合研判,最多五颗星"
635
636
  footnotey=footnote6+footnote7+'\n'+footnotex
636
637
 
637
638
  recommenddf=descriptive_statistics2(df1,title_txt,footnotey,decimals=4, \
@@ -690,7 +691,7 @@ def compare_mticker_1rar(ticker,start,end,rar='sharpe', \
690
691
  RF=RF[0]
691
692
  if isinstance(regression_period,list):
692
693
  regression_period=regression_period[0]
693
- print(" Starting to retrive and calculate",rar,"\b, please wait ......")
694
+ print(" Starting to retrive and calculate",rar,"\b, please wait ......\n")
694
695
 
695
696
  #预处理ticker_type
696
697
  ticker_type_list=ticker_type_preprocess_mticker_mixed(ticker,ticker_type)
@@ -736,7 +737,7 @@ def compare_mticker_1rar(ticker,start,end,rar='sharpe', \
736
737
 
737
738
  footnote3=''
738
739
  if rar.lower() in ['treynor','alpha']:
739
- footnote3="贝塔系数基于日收益率,回归期间"+str(regression_period)+"个自然日"
740
+ footnote3="贝塔系数回归期间"+str(regression_period)+"个自然日"
740
741
 
741
742
  import datetime; todaydt = datetime.date.today()
742
743
  footnote4="数据来源: 综合新浪/stooq/Yahoo,"+str(todaydt)+"统计"
@@ -768,10 +769,11 @@ def compare_mticker_1rar(ticker,start,end,rar='sharpe', \
768
769
  elif sortby=='trailing':
769
770
  sortby_txt='按推荐标记+短期均值走势降序排列'
770
771
 
771
- title_txt='***** 风险调整收益评估:基于'+ectranslate(rar)+','+sortby_txt+' *****'
772
+ #title_txt='***** 风险调整收益评估:基于'+ectranslate(rar)+','+sortby_txt+' *****'
773
+ title_txt='风险调整收益评估:基于'+ectranslate(rar)+','+sortby_txt
772
774
 
773
775
  footnote6='期间范围:'+str(start)+'至'+str(end)+";近期范围:近"+str(trailing)+"个交易日。趋势变化率阈值:"+str(trend_threshhold)
774
- footnote7="近期趋势和星号为风险调整收益指标数值加趋势等多项因素综合研判,最多五颗星星"
776
+ footnote7="近期优先趋势和星号为风险调整收益指标数值加趋势等多项因素综合研判,最多五颗星"
775
777
  footnotey=footnote6+'\n'+footnote7+'\n'+footnotex
776
778
 
777
779
  #删除含有Nan的行,否则可能引起近期优先加权平均计算结果市场出现Nan
@@ -864,17 +866,22 @@ def compare_mticker_mrar(ticker,start,end,rar=['sharpe','alpha','sortino','treyn
864
866
  sortby_txt='中位数值优先'
865
867
  elif sortby=='trailing':
866
868
  sortby_txt='短期均值走势优先'
867
-
868
- titletxt='===风险调整收益综合对比:'+sortby_txt+'==='
869
- print("\n"+titletxt)
870
869
 
871
870
  df1=df.copy()
872
871
  df1.reset_index(drop=True,inplace=True)
873
872
  df1.index=df1.index + 1
874
873
 
875
- df2= df1.style.set_properties(**{'text-align':'center'})
874
+ # 处理表格标题
875
+ #titletxt='===风险调整收益综合对比:'+sortby_txt+'==='
876
+ titletxt='风险调整收益综合对比:'+sortby_txt
877
+ #print("\n"+titletxt)
878
+ df2=df1.style.set_caption(titletxt).set_table_styles(
879
+ [{'selector':'caption',
880
+ 'props':[('color','black'),('font-size','16px'),('font-weight','bold')]}])
881
+
882
+ df3= df2.set_properties(**{'text-align':'center'})
876
883
  from IPython.display import display
877
- display(df2)
884
+ display(df3)
878
885
 
879
886
  """
880
887
  print(df1.to_string(justify='left'))
@@ -912,7 +919,7 @@ def compare_mticker_mrar(ticker,start,end,rar=['sharpe','alpha','sortino','treyn
912
919
  """
913
920
 
914
921
  #脚注
915
- footnote1="注:风险调整收益基于"+ectranslate(ret_type)+","
922
+ footnote1="风险调整收益基于"+ectranslate(ret_type)+","
916
923
  if RF !=0:
917
924
  footnote2="年化无风险利率"+str(round(RF*100,4))+'%'
918
925
  else:
@@ -920,7 +927,7 @@ def compare_mticker_mrar(ticker,start,end,rar=['sharpe','alpha','sortino','treyn
920
927
 
921
928
  footnote3=''
922
929
  if 'treynor' in rar or 'alpha' in rar:
923
- footnote3="贝塔系数基于日收益率,回归期间"+str(regression_period)+"个自然日"
930
+ footnote3="贝塔系数回归期间"+str(regression_period)+"个自然日"
924
931
 
925
932
  import datetime; todaydt = datetime.date.today()
926
933
  footnote4="数据来源: 综合新浪/stooq/Yahoo,"+str(todaydt)+"统计"
@@ -929,7 +936,8 @@ def compare_mticker_mrar(ticker,start,end,rar=['sharpe','alpha','sortino','treyn
929
936
  else:
930
937
  footnotex=footnote1+footnote2+'\n'+footnote4
931
938
 
932
- print("\n"+footnotex)
939
+ #print("\n"+footnotex)
940
+ print(footnotex)
933
941
 
934
942
  return df
935
943
 
@@ -983,7 +991,7 @@ def compare_1ticker_1rar_mret(ticker,start,end,rar='sharpe', \
983
991
  RF=RF[0]
984
992
  if isinstance(regression_period,list):
985
993
  regression_period=regression_period[0]
986
- print(" Starting to retrive and calculate",rar,"for",ticker_name(ticker,ticker_type),"on different types of return, please wait ......")
994
+ print(" Starting to retrive and calculate",rar,"for",ticker_name(ticker,ticker_type),"on different types of return, please wait ......\n")
987
995
 
988
996
  df=pd.DataFrame()
989
997
  for t in ret_type:
@@ -1024,7 +1032,7 @@ def compare_1ticker_1rar_mret(ticker,start,end,rar='sharpe', \
1024
1032
 
1025
1033
  footnote3=''
1026
1034
  if rar.lower() in ['treynor','alpha']:
1027
- footnote3="贝塔系数基于日收益率,回归期间"+str(regression_period)+"个自然日"
1035
+ footnote3="贝塔系数回归期间"+str(regression_period)+"个自然日"
1028
1036
 
1029
1037
  import datetime; todaydt = datetime.date.today()
1030
1038
  footnote4="数据来源: 综合新浪/stooq/Yahoo,"+str(todaydt)+"统计"
@@ -1057,10 +1065,11 @@ def compare_1ticker_1rar_mret(ticker,start,end,rar='sharpe', \
1057
1065
  elif sortby=='trailing':
1058
1066
  sortby_txt='按推荐标记+短期均值走势降序排列'
1059
1067
 
1060
- title_txt='***** 风险调整收益评估:'+'基于'+ectranslate(rar)+','+ticker_name(ticker,ticker_type)+','+sortby_txt+' *****'
1068
+ #title_txt='***** 风险调整收益评估:'+'基于'+ectranslate(rar)+','+ticker_name(ticker,ticker_type)+','+sortby_txt+' *****'
1069
+ title_txt='风险调整收益评估:'+'基于'+ectranslate(rar)+','+ticker_name(ticker,ticker_type)+','+sortby_txt
1061
1070
 
1062
1071
  footnote6='期间范围:'+str(start)+'至'+str(end)+";近期范围:近"+str(trailing)+"个交易日。趋势变化率阈值:"+str(trend_threshhold)+"。"
1063
- footnote7="近期趋势和星号为多项因素综合研判,最多五颗星星"
1072
+ footnote7="近期优先趋势和星号为多项因素综合研判,最多五颗星"
1064
1073
  footnotey=footnote6+footnote7+'\n'+footnotex
1065
1074
 
1066
1075
  #删除含有Nan的行
@@ -1125,7 +1134,7 @@ def compare_1ticker_1rar_1ret_mRF(ticker,start,end,rar='sharpe', \
1125
1134
  RF=[RF]
1126
1135
  if isinstance(regression_period,list):
1127
1136
  regression_period=regression_period[0]
1128
- print(" Starting to retrive and calculate",rar,"for",ticker_name(ticker,ticker_type),"on different RF, please wait ......")
1137
+ print(" Starting to retrive and calculate",rar,"for",ticker_name(ticker,ticker_type),"on different RF, please wait ......\n")
1129
1138
 
1130
1139
  df=pd.DataFrame()
1131
1140
  for t in RF:
@@ -1163,7 +1172,7 @@ def compare_1ticker_1rar_1ret_mRF(ticker,start,end,rar='sharpe', \
1163
1172
 
1164
1173
  footnote3=""
1165
1174
  if rar.lower() in ['treynor','alpha']:
1166
- footnote3="贝塔系数基于日收益率,回归期间"+str(regression_period)+"个自然日"
1175
+ footnote3="贝塔系数回归期间"+str(regression_period)+"个自然日"
1167
1176
 
1168
1177
  import datetime; todaydt = datetime.date.today()
1169
1178
  footnote4="数据来源: 综合新浪/stooq/Yahoo,"+str(todaydt)+"统计"
@@ -1196,10 +1205,11 @@ def compare_1ticker_1rar_1ret_mRF(ticker,start,end,rar='sharpe', \
1196
1205
  elif sortby=='trailing':
1197
1206
  sortby_txt='按推荐标记+短期均值走势降序排列'
1198
1207
 
1199
- title_txt='***** 风险调整收益评估:'+'基于'+ectranslate(rar)+','+ticker_name(ticker,ticker_type)+','+sortby_txt+' *****'
1208
+ #title_txt='***** 风险调整收益评估:'+'基于'+ectranslate(rar)+','+ticker_name(ticker,ticker_type)+','+sortby_txt+' *****'
1209
+ title_txt='风险调整收益评估:'+'基于'+ectranslate(rar)+','+ticker_name(ticker,ticker_type)+','+sortby_txt
1200
1210
 
1201
1211
  footnote6='期间范围:'+str(start)+'至'+str(end)+";近期范围:近"+str(trailing)+"个交易日。趋势变化率阈值:"+str(trend_threshhold)+"。"
1202
- footnote7="近期趋势和星号为多项因素综合研判,最多五颗星星"
1212
+ footnote7="近期优先趋势和星号为多项因素综合研判,最多五颗星"
1203
1213
  footnotey=footnote6+footnote7+'\n'+footnotex
1204
1214
 
1205
1215
  #删除含有Nan的行
siat/stock_technical.py CHANGED
@@ -2444,11 +2444,16 @@ def security_technical2(ticker,start='default',end='default', \
2444
2444
  technical=['MACD'],indicator='Close', \
2445
2445
  graph=['ALL'],printout=False, \
2446
2446
  loc1='best',loc2='best', \
2447
- ticker_type='auto'):
2447
+ ticker_type='auto', \
2448
+
2449
+ facecolor='papayawhip'):
2448
2450
  """
2451
+
2449
2452
  功能:计算和绘制证券技术分析指标的简易图,仅供进一步探索使用,仅用于单个证券(股债基)
2450
- 支持的指标:
2451
- RSI、OBV、MACD、KDJ、SAR、VOL、PSY、ARBR、CR、EMV、BOLL、TRIX、DMA、BIAS、CCI、W%R、ROC、DMI
2453
+ 支持的探索指标:仅供探索使用
2454
+ OBV、SAR、VOL、PSY、ARBR、CR、EMV、TRIX、DMA、BIAS、CCI、W%R、ROC、DMI
2455
+ 支持的其他指标:不如单独的指令功能强
2456
+ MACD、RSI、KDJ、BOLL
2452
2457
  """
2453
2458
  #检查证券代码
2454
2459
  if not isinstance(ticker,str):
@@ -2496,17 +2501,32 @@ def security_technical2(ticker,start='default',end='default', \
2496
2501
  df=calc_technical(price,fromdate,todate, \
2497
2502
  RSI_days=RSI_days, \
2498
2503
  OBV_days=OBV_days, \
2504
+
2499
2505
  MA_days=MA_days, \
2500
- MACD_fastperiod=MACD_fastperiod,MACD_slowperiod=MACD_slowperiod,MACD_signalperiod=MACD_signalperiod, \
2501
- KDJ_fastk_period=KDJ_fastk_period,KDJ_slowk_period=KDJ_slowk_period,KDJ_slowk_matype=KDJ_slowk_matype, \
2502
- KDJ_slowd_period=KDJ_slowd_period,KDJ_slowd_matype=KDJ_slowd_matype, \
2503
- VOL_fastperiod=VOL_fastperiod,VOL_slowperiod=VOL_slowperiod, \
2506
+ MACD_fastperiod=MACD_fastperiod, \
2507
+ MACD_slowperiod=MACD_slowperiod, \
2508
+ MACD_signalperiod=MACD_signalperiod, \
2509
+
2510
+ KDJ_fastk_period=KDJ_fastk_period, \
2511
+ KDJ_slowk_period=KDJ_slowk_period, \
2512
+ KDJ_slowk_matype=KDJ_slowk_matype, \
2513
+ KDJ_slowd_period=KDJ_slowd_period, \
2514
+ KDJ_slowd_matype=KDJ_slowd_matype, \
2515
+
2516
+ VOL_fastperiod=VOL_fastperiod, \
2517
+ VOL_slowperiod=VOL_slowperiod, \
2518
+
2504
2519
  PSY_days=PSY_days, \
2505
2520
  ARBR_days=ARBR_days, \
2506
2521
  CR_day=CR_day,CR_madays=CR_madays, \
2507
2522
  EMV_day=EMV_day,EMV_madays=EMV_madays, \
2508
- BULL_days=BULL_days,BULL_nbdevup=BULL_nbdevup,BULL_nbdevdn=BULL_nbdevdn,BULL_matype=BULL_matype, \
2509
- DMA_fastperiod=DMA_fastperiod,DMA_slowperiod=DMA_slowperiod,DMA_madays=DMA_madays, \
2523
+
2524
+ BULL_days=BULL_days,BULL_nbdevup=BULL_nbdevup, \
2525
+ BULL_nbdevdn=BULL_nbdevdn,BULL_matype=BULL_matype, \
2526
+
2527
+ DMA_fastperiod=DMA_fastperiod, \
2528
+ DMA_slowperiod=DMA_slowperiod,DMA_madays=DMA_madays, \
2529
+
2510
2530
  TRIX_day=TRIX_day,TRIX_madays=TRIX_madays, \
2511
2531
  BIAS_days=BIAS_days, \
2512
2532
  CCI_days=CCI_days, \
@@ -2589,10 +2609,13 @@ def security_technical2(ticker,start='default',end='default', \
2589
2609
  tech_line_collist.sort()
2590
2610
  df1=df[tech_line_collist+[indicator]]
2591
2611
 
2592
- #绘图
2612
+ #绘图----------------------------------------------------------------------
2593
2613
  import matplotlib.pyplot as plt
2614
+
2594
2615
  fig = plt.figure()
2595
2616
  ax = fig.add_subplot(111)
2617
+ #plt.gca().set_facecolor('whitesmoke')
2618
+ plt.gca().set_facecolor(facecolor) #放在这里生效,放尾部不生效
2596
2619
 
2597
2620
  line0=False; line30=False; line50=False; line80=False
2598
2621
  for l in tech_line_collist:
@@ -2633,8 +2656,6 @@ def security_technical2(ticker,start='default',end='default', \
2633
2656
  plt.title(titletxt,fontweight='bold',fontsize=title_txt_size)
2634
2657
 
2635
2658
  plt.gcf().autofmt_xdate()
2636
- #plt.gca().set_facecolor('whitesmoke')
2637
- #plt.figure(facecolor='whitesmoke')
2638
2659
 
2639
2660
  plt.show(); plt.close()
2640
2661
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: siat
3
- Version: 3.0.4
3
+ Version: 3.0.10
4
4
  Summary: Securities Investment Analysis Tools (siat)
5
5
  Home-page: https://pypi.org/project/siat/
6
6
  Author: Prof. WANG Dehong, International Business School, Beijing Foreign Studies University
@@ -1,5 +1,5 @@
1
1
  siat/__init__.py,sha256=2c0GKq4KaxA0vfdvMeyCPiNR6wODmH6CGj8n5UDOywY,2182
2
- siat/allin.py,sha256=9fgRnER16lotAxUbiLMiOo0fZaNFLgUDUsUcHbZ3WG0,2676
2
+ siat/allin.py,sha256=f1VWxZLvPLR57ilk9GOziZMWjyAYOYLXbvQI4z38r50,2708
3
3
  siat/alpha_vantage_test.py,sha256=tKr-vmuFH3CZAqwmISz6jzjPHzV1JJl3sPfZdz8aTfM,747
4
4
  siat/assets_liquidity.py,sha256=deAJ60YcqMUgrXY7jy7BfzLutoy4uOEtfXqqMSujCRo,28889
5
5
  siat/assets_liquidity_test.py,sha256=UWk6HIUlizU7LQZ890fGx8LwU1jMMrIZswg8cFUJWZ8,1285
@@ -17,7 +17,7 @@ siat/capm_beta.py,sha256=cxXdRVBQBllhbfz1LeTJAIWvyRYhW54nhtNUXv4HwS0,29063
17
17
  siat/capm_beta2.py,sha256=u6CjWoarNyLORIVHlFcFa_r8RrqdWuWn66VDZbZrCzc,23610
18
18
  siat/capm_beta_test.py,sha256=ImR0c5mc4hIl714XmHztdl7qg8v1E2lycKyiqnFj6qs,1745
19
19
  siat/cmat_commons.py,sha256=Nj9Kf0alywaztVoMVeVVL_EZk5jRERJy8R8kBw88_Tg,38116
20
- siat/common.py,sha256=WXbUoK0p0CM6lX15y2FAcloy_fQCZNpUzqdfGRaXW8U,133687
20
+ siat/common.py,sha256=pWwWF_LIsjU7le21E-0aIQyiLIzaUWPluef-i1-nNWg,134264
21
21
  siat/compare_cross.py,sha256=3iP9TH2h3w27F2ARZc7FjKcErYCzWRc-TPiymOyoVtw,24171
22
22
  siat/compare_cross_test.py,sha256=xra5XYmQGEtfIZL2h-GssdH2hLdFIhG3eoCrkDrL3gY,3473
23
23
  siat/concepts_iwencai.py,sha256=m1YEDtECRT6FqtzlKm91pt2I9d3Z_XoP59BtWdRdu8I,3061
@@ -32,7 +32,7 @@ siat/economy_test.py,sha256=6vjNlPz7W125pJb7simCddobSEp3jmLIMvVkLRZ7zW8,13339
32
32
  siat/esg.py,sha256=PRgZo6rwlldAG9qNRnFWX0fnLdPHXIPVQOIFOJ2azmQ,19016
33
33
  siat/esg_test.py,sha256=Z9m6GUt8O7oHZSEG9aDYpGdvvrv2AiRJdHTiU6jqmZ0,2944
34
34
  siat/exchange_bond_china.pickle,sha256=mGy55toxgUrNL2rdf8lIVeSDz9wyHk6x7hierKxTklI,1255244
35
- siat/fama_french.py,sha256=jZNadEB_DoNU3DFxropMtc4Sls_llAHDV45ZlHTQg-4,48012
35
+ siat/fama_french.py,sha256=aUTC-67t_CEPbLk4u79woW_zfZ7OCP6Fo4z5EdWCSkQ,48051
36
36
  siat/fama_french_test.py,sha256=M4O23lBKsJxhWHRluwCb3l7HSEn3OFTjzGMpehcevRg,4678
37
37
  siat/financial_base.py,sha256=5u298_1OSlgLnDmhXxqvo4WgMM0JKSa_4jBYF-Ilx38,41097
38
38
  siat/financial_statements.py,sha256=Ek18eKHflxZ01evOIwnfH1KZ_M2g8Vr8SxkL1om-K7U,25391
@@ -65,7 +65,8 @@ siat/holding_risk.py,sha256=X3vL_2rU0zpjiiRtStWxWOXZrAJ323huSsZK3jGgABc,30633
65
65
  siat/holding_risk_test.py,sha256=FRlw_9wFG98BYcg_cSj95HX5WZ1TvkGaOUdXD7-V86s,474
66
66
  siat/local_debug_test.py,sha256=CDAOffW1Rvs-TcNN5giWVvHMlch1w4dp-w5SIV9jXL0,3936
67
67
  siat/market_china.py,sha256=nabx24qm7N51OafTrwUw542pNeFJ3JaQ1wqyv-nLN5I,37883
68
- siat/markowitz.py,sha256=7ixvyzrC6beFPGuqMsgvHKBfYBmm57JTID8NctFw_c4,97115
68
+ siat/markowitz.py,sha256=c06gCRhMABnrb30F-npJsKVv8nFfEoNNR3bzrkMCyGg,97406
69
+ siat/markowitz2.py,sha256=lgLTvv7u1OirWyQ9gR2_jWtXfqHo2Q92tPUjE0nNTYs,99515
69
70
  siat/markowitz_ccb_test.py,sha256=xBkkoaNHdq9KSUrNuHGgKTdNYUvgi84kNYcf719eoyE,1593
70
71
  siat/markowitz_ef_test.py,sha256=wjNlICkgRIqnonPeSIHo4Mu2GRtb9dr21wDt2kMNEcI,4032
71
72
  siat/markowitz_old.py,sha256=Lf7O_4QWT8RsdkHiUyc_7kKY3eZjKDtFR89Fz3pwYnY,33046
@@ -84,7 +85,7 @@ siat/option_sina_api_test.py,sha256=dn-k_wrQnAaNKHoROvWJEc7lqlU0bwiV2Aa4usWAFGM,
84
85
  siat/proxy_test.py,sha256=erQJrmGs2X46z8Gb1h-7GYQ0rTUcaR8dxHExWoBz2eM,2610
85
86
  siat/quandl_test.py,sha256=EcPoXnLuqzPl5dKyVEZi3j3PJZFpsnU_iNPhLWC9p-A,1552
86
87
  siat/risk_adjusted_return.py,sha256=L5FoeOFzvItT03gNBTCaIo32hUvncOJkbchtHOveSBM,54929
87
- siat/risk_adjusted_return2.py,sha256=MdNrqDaw2IbjitkZrjrqbOQJJkfI2sLvce6gmAAKmrc,56991
88
+ siat/risk_adjusted_return2.py,sha256=BRg3yLPk00YPMZzZEvhJ8nQxqtFy2d7b3Cpai5fp0iQ,57641
88
89
  siat/risk_adjusted_return_test.py,sha256=m_VHL5AtT74cJv5i7taTeTfnkX48y0AFJk5phawyYWg,3416
89
90
  siat/risk_evaluation.py,sha256=I6B3gty-t--AkDCO0tKF-291YfpnF-IkXcFjqNKCt9I,76286
90
91
  siat/risk_evaluation_test.py,sha256=YEXM96gKzTfwN4U61AS4Rr1tV7KgUvn4rRC6f3iMw9s,3731
@@ -111,7 +112,7 @@ siat/stock_list_china_test.py,sha256=gv14UwMMvkZqtb6G7DCTSuehIwVHuVwu7w60p6gyHoo
111
112
  siat/stock_prices_kneighbors.py,sha256=WfZvo5EyeBsm-T37zDj7Sl9dPSRq5Bx4JxIJ9IUum6s,36738
112
113
  siat/stock_prices_linear.py,sha256=-OUKRr27L2aStQgJSlJOrJ4gay_G7P-m-7t7cU2Yoqk,13991
113
114
  siat/stock_profile.py,sha256=B3eIwzEmiCqiCaxIlhfdEPsQBoW1PFOe1hkiY3mVF6Y,26038
114
- siat/stock_technical.py,sha256=7F1wQXWkQYM-UrfsYa_Ch1U30mHT1oQjfKfTiPJ8XIo,111826
115
+ siat/stock_technical.py,sha256=pbSKsVq_hGUE9YAeA7NgMl7QYTwmFjkfribY09EnY8I,112519
115
116
  siat/stock_test.py,sha256=E9YJAvOw1VEGJSDI4IZuEjl0tGoisOIlN-g9UqA_IZE,19475
116
117
  siat/stooq.py,sha256=dOc_S5HLrYg48YAKTCs1eX8UTJOOkPM8qLL2KupqlLY,2470
117
118
  siat/temp.py,sha256=gbJ0ioauuo4koTPH6WKUkqcXiQPafnbhU5eKJ6lpdLA,1571
@@ -131,7 +132,7 @@ siat/valuation.py,sha256=uKjPVD-oOUjUaF5QaQ1WK32kjLTOAPA2SZY2mpZ_aH0,47370
131
132
  siat/valuation_china.py,sha256=Tde2LzPDQy3Z7xOQQDw4ckQMPdROp_z0-GjFE6Z5_lI,67639
132
133
  siat/valuation_market_china_test.py,sha256=gbJ0ioauuo4koTPH6WKUkqcXiQPafnbhU5eKJ6lpdLA,1571
133
134
  siat/var_model_validation.py,sha256=f-oDewg7bPzyNanz_Y_jLH68NowAA3gXFehW_weKGG0,14898
134
- siat-3.0.4.dist-info/METADATA,sha256=Uzjt2YU8lGPaWMwIiL-2VuCwf7lM3jnTQyAu3TkUvQw,1447
135
- siat-3.0.4.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
136
- siat-3.0.4.dist-info/top_level.txt,sha256=r1cVyL7AIKqeAmEJjNR8FMT20OmEzufDstC2gv3NvEY,5
137
- siat-3.0.4.dist-info/RECORD,,
135
+ siat-3.0.10.dist-info/METADATA,sha256=YHGJ1WXNckB8eemE2Gt2_FMBOH_cOM5kXdNExd7UD_Y,1448
136
+ siat-3.0.10.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
137
+ siat-3.0.10.dist-info/top_level.txt,sha256=r1cVyL7AIKqeAmEJjNR8FMT20OmEzufDstC2gv3NvEY,5
138
+ siat-3.0.10.dist-info/RECORD,,
File without changes