siat 3.0.20__py3-none-any.whl → 3.0.30__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
siat/common.py CHANGED
@@ -1613,7 +1613,7 @@ if __name__=='__main__':
1613
1613
 
1614
1614
  def print_progress_percent2(current,total_list,steps=5,leading_blanks=4):
1615
1615
  """
1616
- 功能:打印进度百分比
1616
+ 功能:打印进度百分比,注意需要放在循环体的开始处,不能放在循环体的末尾!
1617
1617
  current:当前完成
1618
1618
  total:需要完成的列表
1619
1619
  steps:分成几个进度点显示
@@ -1643,7 +1643,7 @@ def print_progress_percent2(current,total_list,steps=5,leading_blanks=4):
1643
1643
  pct=pct_list[pos]
1644
1644
 
1645
1645
  if pct=="100%":
1646
- print("100% completing")
1646
+ print("100% completing last job ...")
1647
1647
  else:
1648
1648
  print(pct,end=' ')
1649
1649
 
@@ -1729,12 +1729,22 @@ def printInLine_md(aList,numberPerLine=5,colalign='left'):
1729
1729
  groupedList=groupedList+[tmpList]
1730
1730
 
1731
1731
  #装入df
1732
- cols=[' ']*numberPerLine
1732
+ #cols=[' ']*numberPerLine
1733
+ cols=[i+1 for i in range(numberPerLine)]
1734
+
1733
1735
  import pandas as pd
1734
1736
  df=pd.DataFrame(groupedList,columns=cols)
1737
+
1738
+ """
1735
1739
  alignlist=[colalign]*numberPerLine
1736
1740
  print(df.to_markdown(index=False,tablefmt='plain',colalign=alignlist))
1737
-
1741
+ """
1742
+ df_display_CSS(df,titletxt='',footnote='',facecolor='papayawhip',decimals=2, \
1743
+ first_col_align='left',second_col_align='left', \
1744
+ last_col_align='left',other_col_align='left', \
1745
+ titile_font_size='18px',heading_font_size='17px', \
1746
+ data_font_size='17px')
1747
+
1738
1748
  return
1739
1749
 
1740
1750
  #==============================================================================
@@ -3755,35 +3765,74 @@ def df_display_CSS(df,titletxt='',footnote='',facecolor='papayawhip',decimals=2,
3755
3765
  return
3756
3766
 
3757
3767
  #==============================================================================
3758
- def upgrade_siat():
3768
+ if __name__=='__main__':
3769
+ upgrade_siat()
3770
+
3771
+ def upgrade_siat(module_list=['siat','akshare','pandas','pandas_datareader', \
3772
+ 'yfinance','yahooquery','urllib3','twine','mplfinance'], \
3773
+ pipcmd="pip install --upgrade"):
3759
3774
  """
3760
3775
  功能:一次性升级siat及其相关插件
3761
3776
 
3762
- 注意:在Spyder中可用,但在Jupyter中不能用,可能是路径问题!
3777
+ 注意:pip的路径问题!
3763
3778
  """
3764
- #系统路径
3779
+ print(" Try upgrading siat and related modules, please wait ... ...")
3780
+ #获取系统目录
3765
3781
  import sys
3766
- python_dir=sys.path
3782
+ syspath=sys.path
3783
+
3784
+ #判断目录分隔符号
3785
+ win_sep='\\'; win_flag=False
3786
+ mac_sep='//'; mac_flag=False
3767
3787
 
3768
- #插件列表
3769
- pip_list=['siat','akshare','pandas','pandas_datareader','yfinance','yahooquery']
3770
- pip_cmd='pip install --upgrade '
3788
+ sp_list=syspath[0].split(win_sep)
3789
+ if len(sp_list) > 1:
3790
+ win_flag=True
3791
+
3792
+ sp_list=syspath[0].split(mac_sep)
3793
+ if len(sp_list) > 1:
3794
+ win_flag=True
3771
3795
 
3796
+ if win_flag:
3797
+ sep_flag=win_sep
3798
+ else:
3799
+ sep_flag=mac_sep
3800
+
3801
+ #寻找anaconda3的安装目录
3802
+ for sp in syspath:
3803
+ sp_list=sp.split(sep_flag)
3804
+ if sp_list[-1] == 'anaconda3': break
3805
+
3806
+ #生成pip命令字符串前半段,仅缺插件名
3807
+ cmdstr=sp+sep_flag+'Scripts'+sep_flag+pipcmd+' '
3808
+
3809
+ #逐个升级插件
3772
3810
  import subprocess
3773
- for p in pip_list:
3774
- print(" Upgrading",p,"\b, please wait ... ...")
3775
- command = pip_cmd + p
3776
- #result = subprocess.run(command, shell=True, text=True, capture_output=True)
3777
- result = subprocess.run(command.split(' '), stdout=subprocess.PIPE, stderr=subprocess.PIPE)
3778
-
3779
- if result.returncode == 0:
3780
- print(' Successfully upgraded', p)
3781
- else:
3782
- print(' Upgrade failed:', result.returncode)
3783
- print(' Error message:', result.stderr)
3811
+ fail_list=[]
3812
+ for m in module_list:
3813
+ #print("Upgrading",m,"... ...",end='')
3814
+ print_progress_percent2(m,module_list,steps=5,leading_blanks=2)
3815
+
3816
+ cmdstr1=cmdstr+m
3817
+ #print(cmdstr1)
3818
+ #proc=subprocess.run(cmdstr1.split(' '),stdout=subprocess.PIPE)
3819
+ proc=subprocess.run(cmdstr1.split(' '))
3820
+ rcode=proc.returncode
3821
+ if rcode !=0: fail_list=fail_list+[m]
3822
+
3823
+ """
3824
+ if rcode==0: result='done✓'
3825
+ else: result='FAILed❌, try again manually'
3826
+ print(result)
3827
+ """
3784
3828
 
3829
+ if len(fail_list) == 0:
3830
+ print(" All specified modules are successfully upgraded!")
3831
+ else:
3832
+ print(" All specified modules are successfully upgraded except",end='')
3833
+ print_list(fail_list,leading_blanks=1)
3834
+
3785
3835
  return
3786
-
3787
3836
  #==============================================================================
3788
3837
  #==============================================================================
3789
3838
  #==============================================================================
siat/financials_china2.py CHANGED
@@ -1308,11 +1308,12 @@ def asset_liab_structure_china(tickers,fsdates,facecolor='papayawhip'):
1308
1308
  print(" Solution: check ticker spelling and try at least 10 minutes later")
1309
1309
  return
1310
1310
 
1311
- title_head=ticker_name(comparator,'stock')+"资产负债分析:"
1311
+ #title_head=ticker_name(comparator,'stock')+"资产负债分析:"
1312
+ title_head=ticker_name(comparator,'stock')+":"
1312
1313
 
1313
1314
  ### 资产负债表的主要项目
1314
1315
  #资产变动趋势2
1315
- title_txt=title_head+"主要资产项目"
1316
+ title_txt=title_head+"主要资产项目,"+fsdate
1316
1317
  items2=["货币资金","应收账款","存货","长期股权投资","固定资产净额","资产总计"]
1317
1318
 
1318
1319
  notes1="注1:货币资金包括库存现金、银行存款和其他货币资金三个部分"
@@ -1323,12 +1324,12 @@ def asset_liab_structure_china(tickers,fsdates,facecolor='papayawhip'):
1323
1324
  dfp2=fs_item_analysis_1(df,ticker,fsdate,items2,title_txt,notes,facecolor=facecolor)
1324
1325
 
1325
1326
  #负债变动趋势
1326
- title_txt=title_head+"主要负债项目"
1327
+ title_txt=title_head+"主要负债项目,"+fsdate
1327
1328
  items3=["短期借款","长期借款","应付账款","预收款项","应交税费","应付职工薪酬","负债合计"]
1328
1329
  dfp3=fs_item_analysis_1(df,ticker,fsdate,items3,title_txt,facecolor=facecolor)
1329
1330
 
1330
1331
  #所有者权益变动趋势
1331
- title_txt=title_head+"主要权益项目"
1332
+ title_txt=title_head+"主要权益项目,"+fsdate
1332
1333
  items4=["实收资本(或股本)","资本公积","盈余公积","未分配利润","所有者权益合计"]
1333
1334
 
1334
1335
  notes1="注1:实收资本(或股本,Paid-in Capital)指企业实际收到的投资人投入的资本"
@@ -1353,7 +1354,7 @@ def asset_liab_structure_china(tickers,fsdates,facecolor='papayawhip'):
1353
1354
 
1354
1355
  ### 货币资金与应收项目
1355
1356
  #资产变动趋势1:"货币资金","应收票据","应收账款"
1356
- title_txt=title_head+"货币资金与应收项目"
1357
+ title_txt=title_head+"货币资金与应收项目,"+fsdate
1357
1358
  items1=["货币资金","应收票据","应收账款"]
1358
1359
  dfp1=fs_item_analysis_1(df,ticker,fsdate,items1,title_txt,facecolor=facecolor)
1359
1360
 
@@ -1371,7 +1372,8 @@ def asset_liab_structure_china(tickers,fsdates,facecolor='papayawhip'):
1371
1372
 
1372
1373
  #应收账款占比同行对比
1373
1374
  items7=['应收账款','资产总计','应收账款占比%']
1374
- title_txt=title_head+"应收账款占比同行对比"
1375
+ #title_txt=title_head+"应收账款占比同行对比"
1376
+ title_txt="应收账款占比同行对比:"+fsdate
1375
1377
  dfp7=fs_item_analysis_7(df,tickers,fsdate,items7,title_txt,facecolor=facecolor)
1376
1378
 
1377
1379
  ### 存货
@@ -1390,7 +1392,8 @@ def asset_liab_structure_china(tickers,fsdates,facecolor='papayawhip'):
1390
1392
 
1391
1393
  #存货占比与行业对比
1392
1394
  items11=['存货','资产总计','存货占比%']
1393
- title_txt=title_head+"存货占比情况同行对比"
1395
+ #title_txt=title_head+"存货占比情况同行对比"
1396
+ title_txt="存货占比情况同行对比:"+fsdate
1394
1397
  dfp11=fs_item_analysis_7(df,tickers,fsdate,items11,title_txt,facecolor=facecolor)
1395
1398
 
1396
1399
  ### 偿债能力
@@ -1407,7 +1410,8 @@ def asset_liab_structure_china(tickers,fsdates,facecolor='papayawhip'):
1407
1410
  dfp14=fs_item_analysis_5(df,ticker,fsdates1,title_txt,facecolor=facecolor)
1408
1411
 
1409
1412
  #资产负债率同行比较
1410
- title_txt=title_head+"资产负债率同行比较"
1413
+ #title_txt=title_head+"资产负债率同行比较"
1414
+ title_txt="资产负债率同行比较:"+fsdate
1411
1415
  items15=['资产总计','资产负债率%','流动比率%','速动比率%']
1412
1416
  dfp15=fs_item_analysis_8(df,tickers,fsdate,items15,title_txt,facecolor=facecolor)
1413
1417
 
@@ -1490,15 +1494,15 @@ def income_cost_structure_china(tickers,fsdates,facecolor='papayawhip'):
1490
1494
  #print(" Possible reasons: no access to data source or invalid tickers")
1491
1495
  return
1492
1496
 
1493
- title_head=ticker_name(comparator,'stock')+"收入成本分析:"
1497
+ title_head=ticker_name(comparator,'stock')+""
1494
1498
 
1495
1499
  #收入成本总体变动趋势
1496
- title_txt=title_head+"主要项目及其变动趋势"
1500
+ title_txt=title_head+"主要利润表项目,"+fsdate
1497
1501
  items1=["营业总收入","营业总成本","营业成本","毛利润","营业利润","营业外收支","税前利润","所得税费用","净利润","归母净利润"]
1498
1502
  dfp1=fs_item_analysis_1(df,ticker,fsdate,items1,title_txt,facecolor=facecolor)
1499
1503
 
1500
1504
  #成本变动趋势
1501
- title_txt=title_head+"主要成本费用及其变动趋势"
1505
+ title_txt=title_head+"主要成本费用项目,"+fsdate
1502
1506
  print('')
1503
1507
  """
1504
1508
  items2=["营业总成本","营业成本","营业税金及附加","销售费用","管理费用","研发费用",
@@ -1551,7 +1555,8 @@ def income_cost_structure_china(tickers,fsdates,facecolor='papayawhip'):
1551
1555
  notes="注:管理费用是行政管理部门为组织生产/经营活动发生的各种费用"
1552
1556
  dfp7=fs_item_analysis_2(df,ticker,fsdates1,items7,title_txt,notes,facecolor=facecolor)
1553
1557
 
1554
- title_txt=title_head+"三项费用率同行对比"
1558
+ #title_txt=title_head+"三项费用率同行对比"
1559
+ title_txt="三项费用率同行对比:"+fsdate
1555
1560
  items14=['营业总收入','销售费用率%','管理费用率%','研发费用率%']
1556
1561
 
1557
1562
  notes1="注1:销售费用率 = 销售费用 / 营业总收入"
@@ -1583,7 +1588,8 @@ def income_cost_structure_china(tickers,fsdates,facecolor='papayawhip'):
1583
1588
  dfp11=fs_item_analysis_6(df,ticker,fsdates2,items13,title_txt,facecolor=facecolor)
1584
1589
 
1585
1590
  #同行比较
1586
- title_txt=title_head+"利润率同行对比"
1591
+ #title_txt=title_head+"利润率同行对比"
1592
+ title_txt="利润率同行对比:"+fsdate
1587
1593
  #items15=['营业利润','营业利润率%','税前利润率%','实际所得税率%','净利润','净利润率%']
1588
1594
  #items15=['毛利润率%','营业利润率%','税前利润率%','净利润率%']
1589
1595
  items15=['净利润率%','税前利润率%','营业利润率%','毛利润率%']
@@ -1667,10 +1673,10 @@ def cash_flow_structure_china(tickers,fsdates,facecolor='papayawhip'):
1667
1673
  #print(" Possible reasons: no access to data source or invalid tickers")
1668
1674
  return
1669
1675
 
1670
- title_head=ticker_name(comparator,'stock')+"现金流分析:"
1676
+ title_head=ticker_name(comparator,'stock')+""
1671
1677
 
1672
1678
  #总体变动趋势
1673
- title_txt=title_head+"主要项目及其变动趋势"
1679
+ title_txt=title_head+"主要现金流项目,"+fsdate
1674
1680
  items1=["经营活动现金流净额","经营活动现金流入","经营活动现金流出",
1675
1681
  "投资活动现金流净额","投资活动现金流入","投资活动现金流出",
1676
1682
  "筹资活动现金流净额","筹资活动现金流入","筹资活动现金流出",
@@ -1694,7 +1700,7 @@ def cash_flow_structure_china(tickers,fsdates,facecolor='papayawhip'):
1694
1700
  dfp12=fs_item_analysis_6(df,ticker,fsdates2,items12,title_txt,facecolor=facecolor)
1695
1701
 
1696
1702
  #同行比较
1697
- title_txt=title_head+"现金收入能力同行比较"
1703
+ title_txt=title_head+"现金收入能力同行比较,"+fsdate
1698
1704
  items16=['销售现金比率%','现金购销比率%','营业现金回笼率%']
1699
1705
 
1700
1706
  notes1="注1:销售现金比率 = 经营活动现金流入 / 营业总收入"
@@ -1703,7 +1709,7 @@ def cash_flow_structure_china(tickers,fsdates,facecolor='papayawhip'):
1703
1709
  notes=notes1+'\n'+notes2+'\n'+notes3
1704
1710
  dfp12=fs_item_analysis_8(df,tickers,fsdate,items16,title_txt,notes,facecolor=facecolor)
1705
1711
 
1706
- title_txt=title_head+"现金偿债能力同行比较"
1712
+ title_txt=title_head+"现金偿债能力同行比较,"+fsdate
1707
1713
  items14=['短期现金偿债能力%','长期现金偿债能力%']
1708
1714
 
1709
1715
  notes1="注1:短期现金偿债能力 = 经营活动现金流净额 / 流动负债合计"
@@ -1711,7 +1717,7 @@ def cash_flow_structure_china(tickers,fsdates,facecolor='papayawhip'):
1711
1717
  notes=notes1+'\n'+notes2
1712
1718
  dfp12=fs_item_analysis_8(df,tickers,fsdate,items14,title_txt,notes,facecolor=facecolor)
1713
1719
 
1714
- title_txt=title_head+"现金支付能力同行比较"
1720
+ title_txt=title_head+"现金支付能力同行比较,"+fsdate
1715
1721
  items15=['现金支付股利能力(元)','现金综合支付能力%','支付给职工的现金比率%']
1716
1722
 
1717
1723
  notes1="注1:现金支付股利能力 = 经营活动现金流净额 / 流通股股数"
@@ -1720,7 +1726,7 @@ def cash_flow_structure_china(tickers,fsdates,facecolor='papayawhip'):
1720
1726
  notes=notes1+'\n'+notes2+'\n'+notes3
1721
1727
  dfp12=fs_item_analysis_8(df,tickers,fsdate,items15,title_txt,notes,facecolor=facecolor)
1722
1728
 
1723
- title_txt=title_head+"财务指标含金量同行比较"
1729
+ title_txt=title_head+"财务指标含金量同行比较,"+fsdate
1724
1730
  items17=['盈利现金比率%','现金流入流出比率%','资产现金回收率%']
1725
1731
 
1726
1732
  notes1="注1:盈利现金比率 = 经营活动现金流净额 / 净利润"
@@ -1786,7 +1792,7 @@ def fs_analysis_china(tickers,fsdates=[],analysis_type='balance sheet', \
1786
1792
  category='profile',business_period='recent', \
1787
1793
  printout=False,gview=False, \
1788
1794
  loc1='upper left',loc2='upper right', \
1789
- facecolor='whitesmoke'):
1795
+ facecolor='papayawhip'):
1790
1796
  """
1791
1797
  【功能】财务报表分析,仅适用于中国A股,注意不适用于港股和美股(含中概股)
1792
1798
 
siat/sector_china.py CHANGED
@@ -760,9 +760,10 @@ if __name__=='__main__':
760
760
 
761
761
  print_industry_sw(itype='I',numberPerLine=5,colalign='right')
762
762
 
763
- def print_industry_sw(itype='I',numberPerLine=4,colalign='left'):
763
+ def print_industry_sw(itype='I',numberPerLine=5,colalign='left'):
764
764
  """
765
- 按照类别打印申万行业列表,名称(代码),每行5个
765
+ 功能:按照类别打印申万行业列表,名称(代码)
766
+ 行业分级itype:F="市场表征", I="一级行业", T="二级行业", 3="三级行业", S="风格指数"
766
767
  """
767
768
  df=industry_sw_list()
768
769
  df1=df[df['type']==itype]
@@ -776,8 +777,8 @@ def print_industry_sw(itype='I',numberPerLine=4,colalign='left'):
776
777
  ilist=list(df1['name_code'])
777
778
  print("\n*** 申万行业分类:"+iname+",共计"+str(len(ilist))+'个行业(板块)')
778
779
 
779
- if itype=='3':
780
- numberPerLine=4
780
+ if itype=='T': numberPerLine=4
781
+ if itype=='3': numberPerLine=3
781
782
 
782
783
  printInLine_md(ilist,numberPerLine=numberPerLine,colalign=colalign)
783
784
 
@@ -2075,7 +2076,7 @@ def industry_stock_sw(industry='801270.SW',top=5,printout=False):
2075
2076
  clist1=clist1+[c+'.SZ']
2076
2077
  """
2077
2078
  if printout:
2078
- title_txt="申万行业指数成分股排名与权重:"+industry_sw_name(industry)+'('+industry+'.SW)'
2079
+ title_txt="申万行业成分股:"+industry_sw_name(industry)+'('+industry+'.SW)'
2079
2080
  import datetime as dt; today=str(dt.date.today())
2080
2081
  footnote="*** 成分股总数:"+str(cdf_total)+",数据来源:申万宏源,"+str(today)
2081
2082
  df_directprint(cdf1,title_txt,footnote)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: siat
3
- Version: 3.0.20
3
+ Version: 3.0.30
4
4
  Summary: Securities Investment Analysis Tools (siat)
5
5
  Home-page: https://pypi.org/project/siat/
6
6
  Author: Prof. WANG Dehong, International Business School, Beijing Foreign Studies University
@@ -17,7 +17,7 @@ siat/capm_beta.py,sha256=cxXdRVBQBllhbfz1LeTJAIWvyRYhW54nhtNUXv4HwS0,29063
17
17
  siat/capm_beta2.py,sha256=hta-X1iWPjNbG1YYIVlQF-YvKA8An3KuEyLmUEZ3hH8,25562
18
18
  siat/capm_beta_test.py,sha256=ImR0c5mc4hIl714XmHztdl7qg8v1E2lycKyiqnFj6qs,1745
19
19
  siat/cmat_commons.py,sha256=Nj9Kf0alywaztVoMVeVVL_EZk5jRERJy8R8kBw88_Tg,38116
20
- siat/common.py,sha256=egDH2ihlNYMC8hAMQq2JRrJH8_52VenHTYeMBPnVJdI,139936
20
+ siat/common.py,sha256=_g7uJlrAcyui22MTZ9mcylpKbO7edQlQotR9lpWcUY8,141536
21
21
  siat/compare_cross.py,sha256=3iP9TH2h3w27F2ARZc7FjKcErYCzWRc-TPiymOyoVtw,24171
22
22
  siat/compare_cross_test.py,sha256=xra5XYmQGEtfIZL2h-GssdH2hLdFIhG3eoCrkDrL3gY,3473
23
23
  siat/concepts_iwencai.py,sha256=m1YEDtECRT6FqtzlKm91pt2I9d3Z_XoP59BtWdRdu8I,3061
@@ -41,7 +41,7 @@ siat/financials.py,sha256=mbEZSNeHMMFcnPUryQWvdmNlWQvpnOG9eItgS7IVw3k,80458
41
41
  siat/financials2 - 副本.py,sha256=dKlNjIfKeoSy055fQ6E6TUj9HEoO5Ney9grD84J5kfk,14389
42
42
  siat/financials2.py,sha256=c5-QHu4VJn6f67mzX_t4cJc99rE3PmlChHC9VCNdYwY,42332
43
43
  siat/financials_china.py,sha256=ffikW5pgL0omDq0C8_7wKih-1nYfcVX1u23UAb1bp4U,188137
44
- siat/financials_china2.py,sha256=fkt9JCLS3nYWGrWFeQa9co1gv1H0PPe2pEw9jdRuoeU,82492
44
+ siat/financials_china2.py,sha256=-lelBcwtpew4h1-l0-QtThaOOhjudbn089FkVbQ2Hx0,82874
45
45
  siat/financials_china2_test.py,sha256=Erz5k4LyOplBBvYls2MypuqHpVNJ3daiLdyeJezNPu0,2722
46
46
  siat/financials_china2_test2.py,sha256=C8CuYTMHN4Mhp-sTu-Bmg0zMXRCaYV6ezGDoYartRYQ,3507
47
47
  siat/financials_china2_test3.py,sha256=UXYSA80DNSPRhHpovc2MA9JkpILWMAQaRatbWCHBNPs,3118
@@ -91,7 +91,7 @@ siat/risk_evaluation.py,sha256=I6B3gty-t--AkDCO0tKF-291YfpnF-IkXcFjqNKCt9I,76286
91
91
  siat/risk_evaluation_test.py,sha256=YEXM96gKzTfwN4U61AS4Rr1tV7KgUvn4rRC6f3iMw9s,3731
92
92
  siat/risk_free_rate.py,sha256=ZMr4cHikPvXvywr54gGqiI3Nvb69am6tq3zj2hwzANE,12384
93
93
  siat/risk_free_rate_test.py,sha256=CpmhUf8aEAEZeNu4gvWP2Mz2dLoIgBX5bI41vfUBEr8,4285
94
- siat/sector_china.py,sha256=IMrbgrYgv5y_ZiVK92AbWiup6eFwcC_u_Pib1srk_z0,104462
94
+ siat/sector_china.py,sha256=W8HUsBacNbILRzDLn6JLdBZ4eCAGmnVZl7nO4BcxUUs,104578
95
95
  siat/sector_china_test.py,sha256=1wq7ef8Bb_L8F0h0W6FvyBrIcBTEbrTV7hljtpj49U4,5843
96
96
  siat/security_price.py,sha256=2oHskgiw41KMGfqtnA0i2YjNNV6cYgtlUK0j3YeuXWs,29185
97
97
  siat/security_price2.py,sha256=kuYh0V5cqclkM6MjZUd-N361fv3oxGVVerYINuTzZrE,24622
@@ -132,7 +132,7 @@ siat/valuation.py,sha256=NKfeZMdDJOW42oLVHob6eSVBXUqlN1OCnnzwyGAst8c,48855
132
132
  siat/valuation_china.py,sha256=Tde2LzPDQy3Z7xOQQDw4ckQMPdROp_z0-GjFE6Z5_lI,67639
133
133
  siat/valuation_market_china_test.py,sha256=gbJ0ioauuo4koTPH6WKUkqcXiQPafnbhU5eKJ6lpdLA,1571
134
134
  siat/var_model_validation.py,sha256=f-oDewg7bPzyNanz_Y_jLH68NowAA3gXFehW_weKGG0,14898
135
- siat-3.0.20.dist-info/METADATA,sha256=ovHOM235JnIy97atHOdoHLFImQgA_5mlE0OP_8dEGZk,1448
136
- siat-3.0.20.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
137
- siat-3.0.20.dist-info/top_level.txt,sha256=r1cVyL7AIKqeAmEJjNR8FMT20OmEzufDstC2gv3NvEY,5
138
- siat-3.0.20.dist-info/RECORD,,
135
+ siat-3.0.30.dist-info/METADATA,sha256=REvoWcCLwcvUXlqUsNnBTAZmHdyO_B_bUGGdeneQTpM,1448
136
+ siat-3.0.30.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
137
+ siat-3.0.30.dist-info/top_level.txt,sha256=r1cVyL7AIKqeAmEJjNR8FMT20OmEzufDstC2gv3NvEY,5
138
+ siat-3.0.30.dist-info/RECORD,,
File without changes