siat 2.13.43__py3-none-any.whl → 2.14.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
siat/capm_beta2.py ADDED
@@ -0,0 +1,615 @@
1
+ # -*- coding: utf-8 -*-
2
+ """
3
+ 本模块功能:CAPM beta
4
+ 所属工具包:证券投资分析工具SIAT
5
+ SIAT:Security Investment Analysis Tool
6
+ 创建日期:2024年3月22日
7
+ 最新修订日期:2024年3月22日
8
+ 作者:王德宏 (WANG Dehong, Peter)
9
+ 作者单位:北京外国语大学国际商学院
10
+ 作者邮件:wdehong2000@163.com
11
+ 版权所有:王德宏
12
+ 用途限制:仅限研究与教学使用,不可商用!
13
+ 特别声明:作者不对使用本工具进行证券投资导致的任何损益负责!
14
+ """
15
+
16
+ #==============================================================================
17
+ #关闭所有警告
18
+ import warnings; warnings.filterwarnings('ignore')
19
+ #==============================================================================
20
+ from siat.common import *
21
+ from siat.translate import *
22
+ from siat.security_prices import *
23
+ from siat.grafix import *
24
+
25
+ import pandas as pd
26
+ import numpy as np
27
+ #==============================================================================
28
+ #==============================================================================
29
+ #==============================================================================
30
+ if __name__=='__main__':
31
+ ticker="600519.SS"
32
+
33
+ def get_market_index_code(ticker):
34
+ """
35
+ 功能:基于股票ticker确定其所在市场的大盘指数代码
36
+ """
37
+
38
+ _,_,suffix=split_prefix_suffix(ticker.upper())
39
+
40
+ if suffix in ['SS']:
41
+ mktidx='000001.SS' #上证综合指数
42
+ elif suffix in ['SZ']:
43
+ mktidx='399001.SZ'
44
+ elif suffix in ['BJ']:
45
+ mktidx='899050.BJ' #北证50指数
46
+ elif suffix in ['CN']:
47
+ mktidx='000300.SS' #沪深300指数
48
+ elif suffix in ['HK']:
49
+ mktidx='^HSI' #恒生指数
50
+ elif suffix in ['TW']:
51
+ mktidx='^TWII' #台湾加权指数
52
+ elif suffix in ['SI']:
53
+ mktidx='^STI' #新加坡海峡时报指数
54
+ elif suffix in ['T']:
55
+ mktidx='^N225' #日经225指数
56
+ elif suffix in ['KS']:
57
+ mktidx='^KS11' #韩国综合指数
58
+ elif suffix in ['NS','BO']:
59
+ mktidx='^SNX' #孟买敏感指数
60
+ elif suffix =='':
61
+ mktidx='^SPX' #标普500指数
62
+ elif suffix in ['L','UK']:
63
+ mktidx='^FTSE' #英国富时100指数
64
+ elif suffix in ['DE']:
65
+ mktidx='^DAX' #德国DAX30指数
66
+ elif suffix in ['F']:
67
+ mktidx='^CAC' #法国CAC40指数
68
+ else:
69
+ mktidx='^SPX' #标普500指数
70
+
71
+ return mktidx
72
+
73
+ #==============================================================================
74
+ if __name__=='__main__':
75
+ ticker="600519.SS"
76
+ ticker={'Market':('US','^SPX','中概教培组合'),'EDU':0.7,'TAL':0.3}
77
+
78
+ start2='2022-10-31'
79
+ end='2024-3-23'
80
+ ret_type='Annual Ret%'
81
+ RF=0.01759
82
+ regtrddays=252
83
+
84
+ mktidx='auto'; source='auto'
85
+
86
+ reg_result,dretdf3=regression_capm(ticker,start2,end,ret_type,RF,regtrddays)
87
+
88
+ def regression_capm(ticker,start2,end,ret_type='Annual Ret%',RF=0,regtrddays=252, \
89
+ mktidx='auto',source='auto'):
90
+ """
91
+ 功能:进行CAPM回归,R-Rf=beta*(Rm-Rf),无截距项回归
92
+ x为(Rm-Rf),y为R-Rf,均为日收益率,默认回归样本长度一年(365日历日或252交易日)
93
+ 返回:beta系数
94
+ 注意:回归基于传统的日收益率,而非滚动收益率
95
+ """
96
+ DEBUG=False
97
+
98
+ #抓取股价,计算股票日收益率
99
+ if DEBUG:
100
+ print("*** DEBUG:",ticker,start2,end)
101
+ #pricedf=get_price(ticker,start2,end,source=source)
102
+ pricedf=get_price_security(ticker,start2,end,source=source)
103
+ if pricedf is None:
104
+ print(" #Error(regression_capm): info of security",ticker_name(ticker),"not found or inaccessible")
105
+ return None,None
106
+
107
+ #计算股票滚动收益率
108
+ pricedf1=calc_daily_return(pricedf)
109
+
110
+ #抓取大盘指数,计算指数日收益率
111
+ """
112
+ if 'auto' in mktidx.lower():
113
+ mktidx=get_market_index_code(ticker)
114
+ """
115
+ if isinstance(ticker,dict):
116
+ _,mktidx,pftickerlist,_=decompose_portfolio(ticker)
117
+ if 'auto' in mktidx.lower():
118
+ mktidx=get_market_index_code(pftickerlist[0])
119
+ else:
120
+ if 'auto' in mktidx.lower():
121
+ mktidx=get_market_index_code(ticker)
122
+
123
+ marketdf=get_price(mktidx,start2,end,source=source)
124
+ if marketdf is None:
125
+ print(" #Error(regression_capm): info of market index",mktidx,"not found or inaccessible")
126
+ return None,None
127
+
128
+ marketdf1=calc_daily_return(marketdf)
129
+
130
+ #合并股票和大盘指数日收益率
131
+ dretdf1=pd.merge(marketdf1,pricedf1,how='inner',left_index=True,right_index=True)
132
+
133
+ #准备CAPM回归文件
134
+ ret_type_lower=ret_type.lower()
135
+ dretname='Daily Ret'
136
+ #计算日无风险利率
137
+ RF_daily=RF / 365
138
+ if '%' in ret_type_lower:
139
+ dretname='Daily Ret%'
140
+ RF_daily=RF_daily * 100
141
+
142
+ dretx=dretname+'_x' #指数日收益率
143
+ drety=dretname+'_y' #股票日收益率
144
+ dretdf2=dretdf1[[dretx,drety]]
145
+ dretdf2.dropna(inplace=True)
146
+
147
+ #计算股票和指数收益率的风险溢价R-RF
148
+ dretdfcols=list(dretdf2)
149
+ for c in dretdfcols:
150
+ dretdf2[c]=dretdf2[c].apply(lambda x: x-RF_daily)
151
+ dretdf2=dretdf2.reset_index()
152
+ #dretdf2.rename(columns={'index':'Date'},inplace=True)
153
+ if 'Date' not in list(dretdf2):
154
+ dretdf2['Date']=dretdf2['index']
155
+
156
+ #CAPM回归,计算贝塔系数
157
+ dretnum=len(dretdf2)
158
+ if regtrddays >= dretnum:
159
+ regtrddays=dretnum - 31 *2
160
+
161
+ import statsmodels.api as sm
162
+ reg_result=pd.DataFrame(columns=('Date','beta'))
163
+ for i in range(dretnum):
164
+ i2=dretnum-i
165
+ i1=i2-regtrddays
166
+ if i1 < 0: break
167
+
168
+ regdf=dretdf2[i1:i2]
169
+ lastdate=regdf.tail(1)['Date'].values[0]
170
+
171
+ X=regdf[dretx] #无截距项回归
172
+ Y=regdf[drety]
173
+ model = sm.OLS(Y,X) #定义回归模型R-Rf=beta(Rm-Rf),X可为多元矩阵
174
+ results = model.fit() #进行OLS回归
175
+ beta=results.params[0] #提取回归系数
176
+
177
+ row=pd.Series({'Date':lastdate,'beta':beta})
178
+ try:
179
+ reg_result=reg_result.append(row,ignore_index=True)
180
+ except:
181
+ reg_result=reg_result._append(row,ignore_index=True)
182
+
183
+ reg_result.set_index(['Date'],inplace=True)
184
+ reg_result.sort_index(inplace=True) #按日期升序排列
185
+
186
+ dretdf3=dretdf2.set_index(['Date'])
187
+ if 'index' in list(dretdf3):
188
+ del dretdf3['index']
189
+
190
+ return reg_result,dretdf3
191
+
192
+ #==============================================================================
193
+ if __name__=='__main__':
194
+ ticker="600519.SS"
195
+ ticker={'Market':('US','^SPX','中概教培组合'),'EDU':0.5,'TAL':0.3,'TEDU':0.2}
196
+
197
+ start="2024-1-1"
198
+ end="2024-3-23"
199
+ RF=0.01759
200
+ regtrddays=252
201
+ mktidx='auto'; source='auto'
202
+
203
+ beta1=get_capm_beta(ticker,start,end,RF,regtrddays)
204
+ beta1.plot()
205
+
206
+ def get_capm_beta(ticker,start,end,RF=0,regtrddays=252,mktidx='auto',source='auto'):
207
+ """
208
+ 功能:套壳函数regression_capm,仅返回滚动的贝塔系数,基于日收益率
209
+ 滚动窗口长度为regtrddays,默认为一年的交易日
210
+ 注意函数regression_capm没有向前调整日期,需要本函数内进行调整。
211
+ """
212
+ start2=date_adjust(start,adjust=-365/252 * regtrddays -31*2)
213
+
214
+ reg_result,_=regression_capm(ticker=ticker,start2=start2,end=end, \
215
+ ret_type="Annual Ret%",RF=RF, \
216
+ regtrddays=regtrddays,mktidx=mktidx,source=source)
217
+
218
+ startpd=pd.to_datetime(date_adjust(start,adjust=-7))
219
+ endpd=pd.to_datetime(end)
220
+ reg_result2=reg_result[(reg_result.index >= startpd) & (reg_result.index <= endpd)]
221
+
222
+ return reg_result2
223
+
224
+ #==============================================================================
225
+ #==============================================================================
226
+ if __name__=='__main__':
227
+ ticker=["600519.SS","000858.SZ"]
228
+ ticker={'Market':('US','^SPX','中概教培组合'),'EDU':0.5,'TAL':0.3,'TEDU':0.2}
229
+
230
+ start="2024-1-1"
231
+ end="2024-3-23"
232
+ RF=0.01759
233
+ regression_period=365
234
+
235
+ graph=True; axhline_value=1; axhline_label=''
236
+ printout=False
237
+ annotate=False
238
+ mktidx='auto'
239
+ source='auto'
240
+
241
+ betas=compare_mticker_1beta(ticker,start,end)
242
+
243
+ def compare_mticker_1beta(ticker,start,end, \
244
+ RF=0,regression_period=365, \
245
+ graph=True,axhline_value=1,axhline_label='', \
246
+ annotate=False,mktidx='auto',source='auto'):
247
+ """
248
+ 功能:多只股票,对比其贝塔系数
249
+ """
250
+
251
+ import os,sys
252
+ class HiddenPrints:
253
+ def __enter__(self):
254
+ self._original_stdout = sys.stdout
255
+ sys.stdout = open(os.devnull, 'w')
256
+
257
+ def __exit__(self, exc_type, exc_val, exc_tb):
258
+ sys.stdout.close()
259
+ sys.stdout = self._original_stdout
260
+
261
+ #转换字符串和列表,避免下面的循环出错
262
+ if isinstance(ticker,str) or isinstance(ticker,dict):
263
+ ticker=[ticker]
264
+ if isinstance(RF,list):
265
+ RF=RF[0]
266
+ if isinstance(regression_period,list):
267
+ regression_period=regression_period[0]
268
+ print(" Starting to retrive and calculate capm beta, please wait ......")
269
+
270
+ #计算日历日regression_period对应的交易日数
271
+ regtrddays=int(252 / 365 * regression_period)
272
+
273
+ df=pd.DataFrame()
274
+ for t in ticker:
275
+ #关闭print输出
276
+ with HiddenPrints():
277
+ df_tmp=get_capm_beta(t,start,end,RF,regtrddays,mktidx,source)
278
+
279
+ if df_tmp is None:
280
+ break
281
+ else:
282
+ dft=df_tmp[['beta']]
283
+ dft.rename(columns={'beta':ticker_name(t)},inplace=True)
284
+
285
+ if len(df)==0: #第一个
286
+ df=dft
287
+ else:
288
+ df=pd.merge(df,dft,how='outer',left_index=True,right_index=True)
289
+
290
+ if len(df)==0:
291
+ print(" #Error(compare_mticker_1beta): beta data not available for",t,"between",start,end)
292
+ return None
293
+
294
+ #仅用于绘图和制表
295
+ df1=df.copy()
296
+ for c in list(df1):
297
+ #是否绘制水平线
298
+ if df1[c].max() > axhline_value and df1[c].min() < axhline_value:
299
+ axhline_label='零线'
300
+ #df1.rename(columns={c:codetranslate(c)},inplace=True)
301
+
302
+ #共同脚注
303
+ footnote1="注:"
304
+ if RF !=0:
305
+ footnote2="年化无风险利率为"+str(round(RF*100,4))+'%。'
306
+ else:
307
+ footnote2="假设年化无风险利率为零。"
308
+
309
+ footnote3="贝塔系数基于日收益率,回归期间跨度为"+str(regression_period)+"个自然日。"
310
+
311
+ import datetime; todaydt = datetime.date.today()
312
+ footnote4="数据来源: 综合新浪/stooq/Yahoo,"+str(todaydt)+"统计"
313
+ if footnote3 !='':
314
+ footnotex=footnote1+footnote2+footnote3+'\n'+footnote4
315
+ else:
316
+ footnotex=footnote1+footnote2+footnote3+footnote4
317
+
318
+ #绘图
319
+ if graph:
320
+ title_txt="CAPM贝塔系数"
321
+ y_label="贝塔系数"
322
+
323
+ draw_lines(df1,y_label,x_label=footnotex, \
324
+ axhline_value=axhline_value,axhline_label=axhline_label, \
325
+ title_txt=title_txt,data_label=False,annotate=annotate)
326
+
327
+ return df
328
+
329
+ #==============================================================================
330
+ if __name__=='__main__':
331
+ ticker="600519.SS"
332
+ ticker="000858.SZ"
333
+ ticker={'Market':('China','000300.SS','白酒组合'),'600519.SS':0.2,'000858.SZ':0.3,'600809.SS':0.5}
334
+
335
+ start="2024-3-11"
336
+ end="2024-3-23"
337
+ RF=[0,0.01759,0.05]
338
+ regression_period=365
339
+
340
+ graph=True; axhline_value=1; axhline_label=''
341
+ annotate=False
342
+ mktidx='auto'
343
+ source='auto'
344
+
345
+ betas=compare_1ticker_mRF(ticker,start,end,RF)
346
+
347
+ def compare_1ticker_mRF(ticker,start,end, \
348
+ RF=[0,0.02,0.05], \
349
+ regression_period=365, \
350
+ graph=True,axhline_value=1,axhline_label='', \
351
+ annotate=False,mktidx='auto',source='auto'):
352
+ """
353
+ 功能:一只股票,不同的无风险收益率
354
+ """
355
+
356
+ import os,sys
357
+ class HiddenPrints:
358
+ def __enter__(self):
359
+ self._original_stdout = sys.stdout
360
+ sys.stdout = open(os.devnull, 'w')
361
+
362
+ def __exit__(self, exc_type, exc_val, exc_tb):
363
+ sys.stdout.close()
364
+ sys.stdout = self._original_stdout
365
+
366
+ #转换字符串和列表,避免下面的循环出错
367
+ if isinstance(ticker,list):
368
+ ticker=ticker[0]
369
+ if isinstance(RF,float):
370
+ RF=[RF]
371
+ if isinstance(regression_period,list):
372
+ regression_period=regression_period[0]
373
+ print(" Starting to retrive and calculate capm beta on different RF, please wait ......")
374
+
375
+ #计算日历日regression_period对应的交易日数
376
+ regtrddays=int(252 / 365 * regression_period)
377
+
378
+ df=pd.DataFrame()
379
+ for t in RF:
380
+ #关闭print输出
381
+ with HiddenPrints():
382
+ df_tmp=get_capm_beta(ticker,start,end,t,regtrddays,mktidx,source)
383
+
384
+ if df_tmp is None:
385
+ break
386
+ else:
387
+ dft=df_tmp[['beta']]
388
+ dft.rename(columns={'beta':"基于无风险利率"+str(round(t*100,4))+'%'},inplace=True)
389
+
390
+ if len(df)==0: #第一个
391
+ df=dft
392
+ else:
393
+ df=pd.merge(df,dft,how='outer',left_index=True,right_index=True)
394
+
395
+ if len(df)==0:
396
+ print(" #Error(compare_1ticker_mRF): data not available for",ticker,"between",start,end)
397
+ return None
398
+
399
+ #仅用于绘图和制表
400
+ df1=df.copy()
401
+ for c in list(df1):
402
+ #是否绘制水平线
403
+ if df1[c].max() > axhline_value and df1[c].min() < axhline_value:
404
+ axhline_label='零线'
405
+ #df1.rename(columns={c:"基于无风险利率"+c},inplace=True)
406
+
407
+ #去掉提前的数据
408
+ start1=pd.to_datetime(date_adjust(start,adjust=-2))
409
+ df1=df1[df1.index >= start1]
410
+
411
+ #共同脚注
412
+ footnote1="注:"
413
+ footnote2=""
414
+
415
+ footnote3="贝塔系数基于日收益率,回归期间跨度为"+str(regression_period)+"个自然日。"
416
+
417
+ import datetime; todaydt = datetime.date.today()
418
+ footnote4="数据来源: 综合新浪/stooq/Yahoo,"+str(todaydt)+"统计"
419
+ if footnote3 !='':
420
+ footnotex=footnote1+footnote3+'\n'+footnote4
421
+ else:
422
+ footnotex=footnote4
423
+
424
+ #绘图
425
+ if graph:
426
+ title_txt="CAPM贝塔系数:"+ticker_name(ticker)
427
+ y_label="贝塔系数"
428
+
429
+ draw_lines(df1,y_label,x_label=footnotex, \
430
+ axhline_value=axhline_value,axhline_label=axhline_label, \
431
+ title_txt=title_txt,data_label=False,annotate=annotate)
432
+
433
+ return df
434
+
435
+ #==============================================================================
436
+ if __name__=='__main__':
437
+ ticker="600519.SS"
438
+ ticker={'Market':('China','000300.SS','白酒组合'),'600519.SS':0.2,'000858.SZ':0.3,'600809.SS':0.5}
439
+
440
+ start="2024-1-1"
441
+ end="2024-3-15"
442
+ RF=0.01759
443
+ regression_period=[365,183,730]
444
+
445
+ graph=True; axhline_value=1; axhline_label=''
446
+ annotate=False
447
+ mktidx='auto'
448
+ source='auto'
449
+
450
+ betas=compare_1ticker_mregression_period(ticker,start,end,RF,regression_period)
451
+
452
+ def compare_1ticker_mregression_period(ticker,start,end, \
453
+ RF=0, \
454
+ regression_period=[183,365,730], \
455
+ graph=True,axhline_value=1,axhline_label='', \
456
+ annotate=False,mktidx='auto',source='auto'):
457
+ """
458
+ 功能:一只股票或一个投资组合,不同的回归期间
459
+ """
460
+
461
+ import os,sys
462
+ class HiddenPrints:
463
+ def __enter__(self):
464
+ self._original_stdout = sys.stdout
465
+ sys.stdout = open(os.devnull, 'w')
466
+
467
+ def __exit__(self, exc_type, exc_val, exc_tb):
468
+ sys.stdout.close()
469
+ sys.stdout = self._original_stdout
470
+
471
+ #转换字符串和列表,避免下面的循环出错
472
+ if isinstance(ticker,list):
473
+ ticker=ticker[0]
474
+ if isinstance(RF,list):
475
+ RF=RF[0]
476
+ if isinstance(regression_period,int):
477
+ regression_period=[regression_period]
478
+ print(" Starting to retrive and calculate capm beta on different regression period, please wait ......")
479
+
480
+ df=pd.DataFrame()
481
+ for t in regression_period:
482
+ #计算日历日regression_period对应的交易日数
483
+ regtrddays=int(252 / 365 * t)
484
+
485
+ #关闭print输出
486
+ with HiddenPrints():
487
+ df_tmp=get_capm_beta(ticker,start,end,RF,regtrddays,mktidx,source)
488
+
489
+ if df_tmp is None:
490
+ break
491
+ else:
492
+ dft=df_tmp[['beta']]
493
+ dft.rename(columns={'beta':"基于"+str(t)+"自然日回归"},inplace=True)
494
+
495
+ if len(df)==0: #第一个
496
+ df=dft
497
+ else:
498
+ df=pd.merge(df,dft,how='outer',left_index=True,right_index=True)
499
+
500
+ if len(df)==0:
501
+ print(" #Error(compare_1ticker_mregression_period): data not available for",ticker,"between",start,end)
502
+ return None
503
+
504
+ #仅用于绘图和制表
505
+ df1=df.copy()
506
+ for c in list(df1):
507
+ #是否绘制水平线
508
+ if df1[c].max() > axhline_value and df1[c].min() < axhline_value:
509
+ axhline_label='零线'
510
+ #df1.rename(columns={c:"基于"+str(c)+"自然日回归"},inplace=True)
511
+
512
+ #共同脚注
513
+ footnote1="注:"
514
+ footnote2=""
515
+
516
+ footnote3="贝塔系数基于日收益率,无风险利率为"+str(round(RF*100,4))+'%'
517
+
518
+ import datetime; todaydt = datetime.date.today()
519
+ footnote4="数据来源: 综合新浪/stooq/Yahoo,"+str(todaydt)+"统计"
520
+ if footnote3 !='':
521
+ footnotex=footnote1+footnote3+'\n'+footnote4
522
+ else:
523
+ footnotex=footnote4
524
+
525
+ #绘图
526
+ if graph:
527
+ title_txt="CAPM贝塔系数:"+ticker_name(ticker)
528
+ y_label="贝塔系数"
529
+
530
+ draw_lines(df1,y_label,x_label=footnotex, \
531
+ axhline_value=axhline_value,axhline_label=axhline_label, \
532
+ title_txt=title_txt,data_label=False,annotate=annotate)
533
+
534
+ return df
535
+
536
+
537
+ #==============================================================================
538
+ # 合成函数
539
+ #==============================================================================
540
+ if __name__=='__main__':
541
+ ticker="600519.SS"
542
+ ticker=["600519.SS","000858.SZ"]
543
+ ticker={'Market':('US','^SPX','中概教培组合'),'EDU':0.5,'TAL':0.3,'TEDU':0.2}
544
+
545
+ start="2024-1-1"; end="2024-3-20"
546
+
547
+ RF=0.01759
548
+ RF=[0.005,0.01759,0.05]
549
+
550
+ regression_period=365
551
+
552
+ graph=True
553
+ annotate=False
554
+ source='auto'
555
+
556
+ betas=compare_beta_security(ticker,start,end,RF)
557
+
558
+ def compare_beta_security(ticker,start,end,RF=0,regression_period=365, \
559
+ graph=True,annotate=False,mktidx='auto',source='auto'):
560
+ """
561
+ 功能:组合情况,可能多只股票、多个投资组合或投资组合与股票的混合,多个无风险收益率
562
+
563
+ """
564
+
565
+ #情形1:多个证券
566
+ if isinstance(ticker,list):
567
+ if len(ticker) > 1:
568
+ if isinstance(RF,list):
569
+ RF=RF[0]
570
+
571
+ df=compare_mticker_1beta(ticker,start,end,RF,regression_period, \
572
+ graph, \
573
+ annotate=annotate,mktidx=mktidx,source=source)
574
+ return df
575
+ else:
576
+ #实际上是单个证券
577
+ ticker=ticker[0]
578
+
579
+ #情形2:1只证券,多个RF。时间区间要尽可能短,不然难以看出差异!
580
+ if isinstance(RF,list):
581
+ if len(RF) > 1:
582
+ df=compare_1ticker_mRF(ticker,start,end,RF,regression_period, \
583
+ graph, \
584
+ annotate=annotate,mktidx=mktidx,source=source)
585
+ return df
586
+ else:
587
+ #实际上是单个RF
588
+ RF=RF[0]
589
+
590
+ #情形3:1只证券,多个回归天数
591
+ if isinstance(regression_period,list):
592
+ if len(regression_period) > 1:
593
+ df=compare_1ticker_mregression_period(ticker,start,end, \
594
+ RF,regression_period, \
595
+ graph, \
596
+ annotate=annotate,mktidx=mktidx,source=source)
597
+ return df
598
+ else:
599
+ #实际上是单个regression_period
600
+ regression_period=regression_period[0]
601
+
602
+ #情形4:1只证券,1个RF,1个回归天数
603
+ df=compare_mticker_1beta(ticker,start,end,RF,regression_period, \
604
+ graph,annotate=annotate,mktidx=mktidx,source=source)
605
+ return df
606
+
607
+
608
+ #==============================================================================
609
+ #==============================================================================
610
+
611
+ #==============================================================================
612
+ #==============================================================================
613
+ #==============================================================================
614
+ #==============================================================================
615
+ #==============================================================================