shotgun-sh 0.2.11.dev5__py3-none-any.whl → 0.2.17.dev1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of shotgun-sh might be problematic. Click here for more details.

@@ -58,7 +58,12 @@ from shotgun.agents.context_analyzer import (
58
58
  ContextCompositionTelemetry,
59
59
  ContextFormatter,
60
60
  )
61
- from shotgun.agents.models import AgentResponse, AgentType, FileOperation
61
+ from shotgun.agents.models import (
62
+ AgentResponse,
63
+ AgentType,
64
+ FileOperation,
65
+ FileOperationTracker,
66
+ )
62
67
  from shotgun.posthog_telemetry import track_event
63
68
  from shotgun.tui.screens.chat_screen.hint_message import HintMessage
64
69
  from shotgun.utils.source_detection import detect_source
@@ -769,6 +774,12 @@ class AgentManager(Widget):
769
774
  HintMessage(message=agent_response.response)
770
775
  )
771
776
 
777
+ # Add file operation hints before questions (so they appear first in UI)
778
+ if file_operations:
779
+ file_hint = self._create_file_operation_hint(file_operations)
780
+ if file_hint:
781
+ self.ui_message_history.append(HintMessage(message=file_hint))
782
+
772
783
  if len(agent_response.clarifying_questions) == 1:
773
784
  # Single question - treat as non-blocking suggestion, DON'T enter Q&A mode
774
785
  self.ui_message_history.append(
@@ -1134,6 +1145,38 @@ class AgentManager(Widget):
1134
1145
  )
1135
1146
  )
1136
1147
 
1148
+ def _create_file_operation_hint(
1149
+ self, file_operations: list[FileOperation]
1150
+ ) -> str | None:
1151
+ """Create a hint message for file operations.
1152
+
1153
+ Args:
1154
+ file_operations: List of file operations to create a hint for
1155
+
1156
+ Returns:
1157
+ Hint message string or None if no operations
1158
+ """
1159
+ if not file_operations:
1160
+ return None
1161
+
1162
+ tracker = FileOperationTracker(operations=file_operations)
1163
+ display_path = tracker.get_display_path()
1164
+
1165
+ if not display_path:
1166
+ return None
1167
+
1168
+ path_obj = Path(display_path)
1169
+
1170
+ if len(file_operations) == 1:
1171
+ return f"📝 Modified: `{display_path}`"
1172
+ else:
1173
+ num_files = len({op.file_path for op in file_operations})
1174
+ if path_obj.is_dir():
1175
+ return f"📁 Modified {num_files} files in: `{display_path}`"
1176
+ else:
1177
+ # Common path is a file, show parent directory
1178
+ return f"📁 Modified {num_files} files in: `{path_obj.parent}`"
1179
+
1137
1180
  def _post_messages_updated(
1138
1181
  self, file_operations: list[FileOperation] | None = None
1139
1182
  ) -> None:
@@ -1,7 +1,9 @@
1
1
  """History processors for managing conversation history in Shotgun agents."""
2
2
 
3
+ from collections.abc import Awaitable, Callable
3
4
  from typing import TYPE_CHECKING, Any, Protocol
4
5
 
6
+ from anthropic import APIStatusError
5
7
  from pydantic_ai import ModelSettings
6
8
  from pydantic_ai.messages import (
7
9
  ModelMessage,
@@ -14,6 +16,7 @@ from pydantic_ai.messages import (
14
16
  from shotgun.agents.llm import shotgun_model_request
15
17
  from shotgun.agents.messages import AgentSystemPrompt, SystemStatusPrompt
16
18
  from shotgun.agents.models import AgentDeps
19
+ from shotgun.exceptions import ContextSizeLimitExceeded
17
20
  from shotgun.logging_config import get_logger
18
21
  from shotgun.posthog_telemetry import track_event
19
22
  from shotgun.prompts import PromptLoader
@@ -51,6 +54,86 @@ logger = get_logger(__name__)
51
54
  prompt_loader = PromptLoader()
52
55
 
53
56
 
57
+ async def _safe_token_estimation(
58
+ estimation_func: Callable[..., Awaitable[int]],
59
+ model_name: str,
60
+ max_tokens: int,
61
+ *args: Any,
62
+ **kwargs: Any,
63
+ ) -> int:
64
+ """Safely estimate tokens with proper error handling.
65
+
66
+ Wraps token estimation functions to handle failures gracefully.
67
+ Only RuntimeError (from token counters) is wrapped in ContextSizeLimitExceeded.
68
+ Other errors (network, auth) are allowed to bubble up.
69
+
70
+ Args:
71
+ estimation_func: Async function that estimates tokens
72
+ model_name: Name of the model for error messages
73
+ max_tokens: Maximum tokens for the model
74
+ *args: Arguments to pass to estimation_func
75
+ **kwargs: Keyword arguments to pass to estimation_func
76
+
77
+ Returns:
78
+ Token count from estimation_func
79
+
80
+ Raises:
81
+ ContextSizeLimitExceeded: If token counting fails with RuntimeError
82
+ Exception: Any other exceptions from estimation_func
83
+ """
84
+ try:
85
+ return await estimation_func(*args, **kwargs)
86
+ except Exception as e:
87
+ # Log the error with full context
88
+ logger.warning(
89
+ f"Token counting failed for {model_name}",
90
+ extra={
91
+ "error_type": type(e).__name__,
92
+ "error_message": str(e),
93
+ "model": model_name,
94
+ },
95
+ )
96
+
97
+ # Token counting behavior with oversized context (verified via testing):
98
+ #
99
+ # 1. OpenAI/tiktoken:
100
+ # - Successfully counts any size (tested with 752K tokens, no error)
101
+ # - Library errors: ValueError, KeyError, AttributeError, SSLError (file/cache issues)
102
+ # - Wrapped as: RuntimeError by our counter
103
+ #
104
+ # 2. Gemini/SentencePiece:
105
+ # - Successfully counts any size (tested with 752K tokens, no error)
106
+ # - Library errors: RuntimeError, IOError, TypeError (file/model loading issues)
107
+ # - Wrapped as: RuntimeError by our counter
108
+ #
109
+ # 3. Anthropic API:
110
+ # - Successfully counts large token counts (tested with 752K tokens, no error)
111
+ # - Only enforces 32 MB request size limit (not token count)
112
+ # - Raises: APIStatusError(413) with error type 'request_too_large' for 32MB+ requests
113
+ # - Other API errors: APIConnectionError, RateLimitError, APIStatusError (4xx/5xx)
114
+ # - Wrapped as: RuntimeError by our counter
115
+ #
116
+ # IMPORTANT: No provider raises errors for "too many tokens" during counting.
117
+ # Token count validation happens separately by comparing count to max_input_tokens.
118
+ #
119
+ # We wrap RuntimeError (library-level failures from tiktoken/sentencepiece).
120
+ # We also wrap Anthropic's 413 error (request exceeds 32 MB) as it indicates
121
+ # context is effectively too large and needs user action to reduce it.
122
+ if isinstance(e, RuntimeError):
123
+ raise ContextSizeLimitExceeded(
124
+ model_name=model_name, max_tokens=max_tokens
125
+ ) from e
126
+
127
+ # Check for Anthropic's 32 MB request size limit (APIStatusError with status 413)
128
+ if isinstance(e, APIStatusError) and e.status_code == 413:
129
+ raise ContextSizeLimitExceeded(
130
+ model_name=model_name, max_tokens=max_tokens
131
+ ) from e
132
+
133
+ # Re-raise other exceptions (network errors, auth failures, etc.)
134
+ raise
135
+
136
+
54
137
  def is_summary_part(part: Any) -> bool:
55
138
  """Check if a message part is a compacted summary."""
56
139
  return isinstance(part, TextPart) and part.content.startswith(SUMMARY_MARKER)
@@ -157,9 +240,15 @@ async def token_limit_compactor(
157
240
 
158
241
  if last_summary_index is not None:
159
242
  # Check if post-summary conversation exceeds threshold for incremental compaction
160
- post_summary_tokens = await estimate_post_summary_tokens(
161
- messages, last_summary_index, deps.llm_model
243
+ post_summary_tokens = await _safe_token_estimation(
244
+ estimate_post_summary_tokens,
245
+ deps.llm_model.name,
246
+ model_max_tokens,
247
+ messages,
248
+ last_summary_index,
249
+ deps.llm_model,
162
250
  )
251
+
163
252
  post_summary_percentage = (
164
253
  (post_summary_tokens / max_tokens) * 100 if max_tokens > 0 else 0
165
254
  )
@@ -366,7 +455,14 @@ async def token_limit_compactor(
366
455
 
367
456
  else:
368
457
  # Check if total conversation exceeds threshold for full compaction
369
- total_tokens = await estimate_tokens_from_messages(messages, deps.llm_model)
458
+ total_tokens = await _safe_token_estimation(
459
+ estimate_tokens_from_messages,
460
+ deps.llm_model.name,
461
+ model_max_tokens,
462
+ messages,
463
+ deps.llm_model,
464
+ )
465
+
370
466
  total_percentage = (total_tokens / max_tokens) * 100 if max_tokens > 0 else 0
371
467
 
372
468
  logger.debug(
@@ -63,7 +63,9 @@ class OpenAITokenCounter(TokenCounter):
63
63
 
64
64
  try:
65
65
  return len(self.encoding.encode(text))
66
- except Exception as e:
66
+ except BaseException as e:
67
+ # Must catch BaseException to handle PanicException from tiktoken's Rust layer
68
+ # which can occur with extremely long texts. Regular Exception won't catch it.
67
69
  raise RuntimeError(
68
70
  f"Failed to count tokens for OpenAI model {self.model_name}"
69
71
  ) from e
@@ -8,7 +8,7 @@ DO NOT EDIT MANUALLY.
8
8
  SENTRY_DSN = 'https://2818a6d165c64eccc94cfd51ce05d6aa@o4506813296738304.ingest.us.sentry.io/4510045952409600'
9
9
 
10
10
  # PostHog configuration embedded at build time (empty strings if not provided)
11
- POSTHOG_API_KEY = ''
11
+ POSTHOG_API_KEY = 'phc_KKnChzZUKeNqZDOTJ6soCBWNQSx3vjiULdwTR9H5Mcr'
12
12
  POSTHOG_PROJECT_ID = '191396'
13
13
 
14
14
  # Logfire configuration embedded at build time (only for dev builds)
shotgun/exceptions.py ADDED
@@ -0,0 +1,32 @@
1
+ """General exceptions for Shotgun application."""
2
+
3
+
4
+ class ErrorNotPickedUpBySentry(Exception): # noqa: N818
5
+ """Base for user-actionable errors that shouldn't be sent to Sentry.
6
+
7
+ These errors represent expected user conditions requiring action
8
+ rather than bugs that need tracking.
9
+ """
10
+
11
+
12
+ class ContextSizeLimitExceeded(ErrorNotPickedUpBySentry):
13
+ """Raised when conversation context exceeds the model's limits.
14
+
15
+ This is a user-actionable error - they need to either:
16
+ 1. Switch to a larger context model
17
+ 2. Switch to a larger model, compact their conversation, then switch back
18
+ 3. Clear the conversation and start fresh
19
+ """
20
+
21
+ def __init__(self, model_name: str, max_tokens: int):
22
+ """Initialize the exception.
23
+
24
+ Args:
25
+ model_name: Name of the model whose limit was exceeded
26
+ max_tokens: Maximum tokens allowed by the model
27
+ """
28
+ self.model_name = model_name
29
+ self.max_tokens = max_tokens
30
+ super().__init__(
31
+ f"Context too large for {model_name} (limit: {max_tokens:,} tokens)"
32
+ )
@@ -18,6 +18,9 @@ logger = get_early_logger(__name__)
18
18
  # Global PostHog client instance
19
19
  _posthog_client = None
20
20
 
21
+ # Cache the shotgun instance ID to avoid async calls during event tracking
22
+ _shotgun_instance_id: str | None = None
23
+
21
24
 
22
25
  def setup_posthog_observability() -> bool:
23
26
  """Set up PostHog analytics for usage tracking.
@@ -25,7 +28,7 @@ def setup_posthog_observability() -> bool:
25
28
  Returns:
26
29
  True if PostHog was successfully set up, False otherwise
27
30
  """
28
- global _posthog_client
31
+ global _posthog_client, _shotgun_instance_id
29
32
 
30
33
  try:
31
34
  # Check if PostHog is already initialized
@@ -57,31 +60,20 @@ def setup_posthog_observability() -> bool:
57
60
  # Store the client for later use
58
61
  _posthog_client = posthog
59
62
 
60
- # Set user context with anonymous shotgun instance ID from config
63
+ # Cache the shotgun instance ID for later use (avoids async issues)
61
64
  try:
62
65
  import asyncio
63
66
 
64
67
  config_manager = get_config_manager()
65
- shotgun_instance_id = asyncio.run(config_manager.get_shotgun_instance_id())
66
-
67
- # Identify the user in PostHog
68
- posthog.identify( # type: ignore[attr-defined]
69
- distinct_id=shotgun_instance_id,
70
- properties={
71
- "version": __version__,
72
- "environment": environment,
73
- },
74
- )
75
-
76
- # Set default properties for all events
77
- posthog.disabled = False
78
- posthog.personal_api_key = None # Not needed for event tracking
68
+ _shotgun_instance_id = asyncio.run(config_manager.get_shotgun_instance_id())
79
69
 
80
70
  logger.debug(
81
- "PostHog user identified with anonymous ID: %s", shotgun_instance_id
71
+ "PostHog initialized with shotgun instance ID: %s",
72
+ _shotgun_instance_id,
82
73
  )
83
74
  except Exception as e:
84
- logger.warning("Failed to set user context: %s", e)
75
+ logger.warning("Failed to load shotgun instance ID: %s", e)
76
+ # Continue anyway - we'll try to get it during event tracking
85
77
 
86
78
  logger.debug(
87
79
  "PostHog analytics configured successfully (environment: %s, version: %s)",
@@ -102,18 +94,19 @@ def track_event(event_name: str, properties: dict[str, Any] | None = None) -> No
102
94
  event_name: Name of the event to track
103
95
  properties: Optional properties to include with the event
104
96
  """
105
- global _posthog_client
97
+ global _posthog_client, _shotgun_instance_id
106
98
 
107
99
  if _posthog_client is None:
108
100
  logger.debug("PostHog not initialized, skipping event: %s", event_name)
109
101
  return
110
102
 
111
103
  try:
112
- import asyncio
113
-
114
- # Get shotgun instance ID for tracking
115
- config_manager = get_config_manager()
116
- shotgun_instance_id = asyncio.run(config_manager.get_shotgun_instance_id())
104
+ # Use cached instance ID (loaded during setup)
105
+ if _shotgun_instance_id is None:
106
+ logger.warning(
107
+ "Shotgun instance ID not available, skipping event: %s", event_name
108
+ )
109
+ return
117
110
 
118
111
  # Add version and environment to properties
119
112
  if properties is None:
@@ -128,7 +121,7 @@ def track_event(event_name: str, properties: dict[str, Any] | None = None) -> No
128
121
 
129
122
  # Track the event using PostHog's capture method
130
123
  _posthog_client.capture(
131
- distinct_id=shotgun_instance_id, event=event_name, properties=properties
124
+ distinct_id=_shotgun_instance_id, event=event_name, properties=properties
132
125
  )
133
126
  logger.debug("Tracked PostHog event: %s", event_name)
134
127
  except Exception as e:
@@ -7,10 +7,11 @@ Your extensive expertise spans, among other things:
7
7
  ## KEY RULES
8
8
 
9
9
  {% if interactive_mode %}
10
- 0. Always ask CLARIFYING QUESTIONS using structured output if the user's request is ambiguous or lacks sufficient detail.
10
+ 0. Always ask CLARIFYING QUESTIONS using structured output before doing work.
11
11
  - Return your response with the clarifying_questions field populated
12
- - Do not make assumptions about what the user wants
12
+ - Do not make assumptions about what the user wants, get a clear understanding first.
13
13
  - Questions should be clear, specific, and answerable
14
+ - Do not ask too many questions that might overwhelm the user; prioritize the most important ones.
14
15
  {% endif %}
15
16
  1. Above all, prefer using tools to do the work and NEVER respond with text.
16
17
  2. IMPORTANT: Always ask for review and go ahead to move forward after using write_file().
@@ -1,5 +1,8 @@
1
1
  """Sentry observability setup for Shotgun."""
2
2
 
3
+ from pathlib import Path
4
+ from typing import Any
5
+
3
6
  from shotgun import __version__
4
7
  from shotgun.logging_config import get_early_logger
5
8
  from shotgun.settings import settings
@@ -8,6 +11,122 @@ from shotgun.settings import settings
8
11
  logger = get_early_logger(__name__)
9
12
 
10
13
 
14
+ def _scrub_path(path: str) -> str:
15
+ """Scrub sensitive information from file paths.
16
+
17
+ Removes home directory and current working directory prefixes to prevent
18
+ leaking usernames that might be part of the path.
19
+
20
+ Args:
21
+ path: The file path to scrub
22
+
23
+ Returns:
24
+ The scrubbed path with sensitive prefixes removed
25
+ """
26
+ if not path:
27
+ return path
28
+
29
+ try:
30
+ # Get home and cwd as Path objects for comparison
31
+ home = Path.home()
32
+ cwd = Path.cwd()
33
+
34
+ # Convert path to Path object
35
+ path_obj = Path(path)
36
+
37
+ # Try to make path relative to cwd first (most common case)
38
+ try:
39
+ relative_to_cwd = path_obj.relative_to(cwd)
40
+ return str(relative_to_cwd)
41
+ except ValueError:
42
+ pass
43
+
44
+ # Try to replace home directory with ~
45
+ try:
46
+ relative_to_home = path_obj.relative_to(home)
47
+ return f"~/{relative_to_home}"
48
+ except ValueError:
49
+ pass
50
+
51
+ # If path is absolute but not under cwd or home, just return filename
52
+ if path_obj.is_absolute():
53
+ return path_obj.name
54
+
55
+ # Return as-is if already relative
56
+ return path
57
+
58
+ except Exception:
59
+ # If anything goes wrong, return the original path
60
+ # Better to leak a path than break error reporting
61
+ return path
62
+
63
+
64
+ def _scrub_sensitive_paths(event: dict[str, Any]) -> None:
65
+ """Scrub sensitive paths from Sentry event data.
66
+
67
+ Modifies the event in-place to remove:
68
+ - Home directory paths (might contain usernames)
69
+ - Current working directory paths (might contain usernames)
70
+ - Server name/hostname
71
+ - Paths in sys.argv
72
+
73
+ Args:
74
+ event: The Sentry event dictionary to scrub
75
+ """
76
+ extra = event.get("extra", {})
77
+ if "sys.argv" in extra:
78
+ argv = extra["sys.argv"]
79
+ if isinstance(argv, list):
80
+ extra["sys.argv"] = [
81
+ _scrub_path(arg) if isinstance(arg, str) else arg for arg in argv
82
+ ]
83
+
84
+ # Scrub server name if present
85
+ if "server_name" in event:
86
+ event["server_name"] = ""
87
+
88
+ # Scrub contexts that might contain paths
89
+ if "contexts" in event:
90
+ contexts = event["contexts"]
91
+ # Remove runtime context if it has CWD
92
+ if "runtime" in contexts:
93
+ if "cwd" in contexts["runtime"]:
94
+ del contexts["runtime"]["cwd"]
95
+ # Scrub sys.argv to remove paths
96
+ if "sys.argv" in contexts["runtime"]:
97
+ argv = contexts["runtime"]["sys.argv"]
98
+ if isinstance(argv, list):
99
+ contexts["runtime"]["sys.argv"] = [
100
+ _scrub_path(arg) if isinstance(arg, str) else arg
101
+ for arg in argv
102
+ ]
103
+
104
+ # Scrub exception stack traces
105
+ if "exception" in event and "values" in event["exception"]:
106
+ for exception in event["exception"]["values"]:
107
+ if "stacktrace" in exception and "frames" in exception["stacktrace"]:
108
+ for frame in exception["stacktrace"]["frames"]:
109
+ # Scrub file paths
110
+ if "abs_path" in frame:
111
+ frame["abs_path"] = _scrub_path(frame["abs_path"])
112
+ if "filename" in frame:
113
+ frame["filename"] = _scrub_path(frame["filename"])
114
+
115
+ # Scrub local variables that might contain paths
116
+ if "vars" in frame:
117
+ for var_name, var_value in frame["vars"].items():
118
+ if isinstance(var_value, str):
119
+ frame["vars"][var_name] = _scrub_path(var_value)
120
+
121
+ # Scrub breadcrumbs that might contain paths
122
+ if "breadcrumbs" in event and "values" in event["breadcrumbs"]:
123
+ for breadcrumb in event["breadcrumbs"]["values"]:
124
+ if "data" in breadcrumb:
125
+ for key, value in breadcrumb["data"].items():
126
+ if isinstance(value, str):
127
+ breadcrumb["data"][key] = _scrub_path(value)
128
+
129
+
11
130
  def setup_sentry_observability() -> bool:
12
131
  """Set up Sentry observability for error tracking.
13
132
 
@@ -32,20 +151,57 @@ def setup_sentry_observability() -> bool:
32
151
  logger.debug("Using Sentry DSN from settings, proceeding with setup")
33
152
 
34
153
  # Determine environment based on version
35
- # Dev versions contain "dev", "rc", "alpha", or "beta"
154
+ # Dev versions contain "dev", "rc", "alpha", "beta"
36
155
  if any(marker in __version__ for marker in ["dev", "rc", "alpha", "beta"]):
37
156
  environment = "development"
38
157
  else:
39
158
  environment = "production"
40
159
 
160
+ def before_send(event: Any, hint: dict[str, Any]) -> Any:
161
+ """Filter out user-actionable errors and scrub sensitive paths.
162
+
163
+ User-actionable errors (like context size limits) are expected conditions
164
+ that users need to resolve, not bugs that need tracking.
165
+
166
+ Also scrubs sensitive information like usernames from file paths and
167
+ working directories to protect user privacy.
168
+ """
169
+
170
+ log_record = hint.get("log_record")
171
+ if log_record:
172
+ # Scrub pathname using the helper function
173
+ log_record.pathname = _scrub_path(log_record.pathname)
174
+
175
+ # Scrub traceback text if it exists
176
+ if hasattr(log_record, "exc_text") and isinstance(
177
+ log_record.exc_text, str
178
+ ):
179
+ # Replace home directory in traceback text
180
+ home = Path.home()
181
+ log_record.exc_text = log_record.exc_text.replace(str(home), "~")
182
+
183
+ if "exc_info" in hint:
184
+ _, exc_value, _ = hint["exc_info"]
185
+ from shotgun.exceptions import ErrorNotPickedUpBySentry
186
+
187
+ if isinstance(exc_value, ErrorNotPickedUpBySentry):
188
+ # Don't send to Sentry - this is user-actionable, not a bug
189
+ return None
190
+
191
+ # Scrub sensitive paths from the event
192
+ _scrub_sensitive_paths(event)
193
+ return event
194
+
41
195
  # Initialize Sentry
42
196
  sentry_sdk.init(
43
197
  dsn=dsn,
44
198
  release=f"shotgun-sh@{__version__}",
45
199
  environment=environment,
46
200
  send_default_pii=False, # Privacy-first: never send PII
201
+ server_name="", # Privacy: don't send hostname (may contain username)
47
202
  traces_sample_rate=0.1 if environment == "production" else 1.0,
48
203
  profiles_sample_rate=0.1 if environment == "production" else 1.0,
204
+ before_send=before_send,
49
205
  )
50
206
 
51
207
  # Set user context with anonymous shotgun instance ID from config