shotgun-sh 0.1.16.dev2__py3-none-any.whl → 0.2.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of shotgun-sh might be problematic. Click here for more details.

Files changed (55) hide show
  1. shotgun/agents/common.py +4 -5
  2. shotgun/agents/config/constants.py +23 -6
  3. shotgun/agents/config/manager.py +239 -76
  4. shotgun/agents/config/models.py +74 -84
  5. shotgun/agents/config/provider.py +174 -85
  6. shotgun/agents/history/compaction.py +1 -1
  7. shotgun/agents/history/history_processors.py +18 -9
  8. shotgun/agents/history/token_counting/__init__.py +31 -0
  9. shotgun/agents/history/token_counting/anthropic.py +89 -0
  10. shotgun/agents/history/token_counting/base.py +67 -0
  11. shotgun/agents/history/token_counting/openai.py +80 -0
  12. shotgun/agents/history/token_counting/sentencepiece_counter.py +119 -0
  13. shotgun/agents/history/token_counting/tokenizer_cache.py +90 -0
  14. shotgun/agents/history/token_counting/utils.py +147 -0
  15. shotgun/agents/history/token_estimation.py +12 -12
  16. shotgun/agents/llm.py +62 -0
  17. shotgun/agents/models.py +2 -2
  18. shotgun/agents/tools/web_search/__init__.py +42 -15
  19. shotgun/agents/tools/web_search/anthropic.py +54 -50
  20. shotgun/agents/tools/web_search/gemini.py +31 -20
  21. shotgun/agents/tools/web_search/openai.py +4 -4
  22. shotgun/build_constants.py +2 -2
  23. shotgun/cli/config.py +34 -63
  24. shotgun/cli/feedback.py +4 -2
  25. shotgun/cli/models.py +2 -2
  26. shotgun/codebase/core/ingestor.py +47 -8
  27. shotgun/codebase/core/manager.py +7 -3
  28. shotgun/codebase/models.py +4 -4
  29. shotgun/llm_proxy/__init__.py +16 -0
  30. shotgun/llm_proxy/clients.py +39 -0
  31. shotgun/llm_proxy/constants.py +8 -0
  32. shotgun/main.py +6 -0
  33. shotgun/posthog_telemetry.py +15 -11
  34. shotgun/sentry_telemetry.py +3 -3
  35. shotgun/shotgun_web/__init__.py +19 -0
  36. shotgun/shotgun_web/client.py +138 -0
  37. shotgun/shotgun_web/constants.py +17 -0
  38. shotgun/shotgun_web/models.py +47 -0
  39. shotgun/telemetry.py +7 -4
  40. shotgun/tui/app.py +26 -8
  41. shotgun/tui/screens/chat.py +2 -8
  42. shotgun/tui/screens/chat_screen/command_providers.py +118 -11
  43. shotgun/tui/screens/chat_screen/history.py +3 -1
  44. shotgun/tui/screens/feedback.py +2 -2
  45. shotgun/tui/screens/model_picker.py +327 -0
  46. shotgun/tui/screens/provider_config.py +118 -28
  47. shotgun/tui/screens/shotgun_auth.py +295 -0
  48. shotgun/tui/screens/welcome.py +176 -0
  49. shotgun/utils/env_utils.py +12 -0
  50. {shotgun_sh-0.1.16.dev2.dist-info → shotgun_sh-0.2.1.dist-info}/METADATA +2 -2
  51. {shotgun_sh-0.1.16.dev2.dist-info → shotgun_sh-0.2.1.dist-info}/RECORD +54 -37
  52. shotgun/agents/history/token_counting.py +0 -429
  53. {shotgun_sh-0.1.16.dev2.dist-info → shotgun_sh-0.2.1.dist-info}/WHEEL +0 -0
  54. {shotgun_sh-0.1.16.dev2.dist-info → shotgun_sh-0.2.1.dist-info}/entry_points.txt +0 -0
  55. {shotgun_sh-0.1.16.dev2.dist-info → shotgun_sh-0.2.1.dist-info}/licenses/LICENSE +0 -0
@@ -0,0 +1,147 @@
1
+ """Utility functions and cache for token counting."""
2
+
3
+ from pydantic_ai.messages import ModelMessage
4
+
5
+ from shotgun.agents.config.models import ModelConfig, ProviderType
6
+ from shotgun.logging_config import get_logger
7
+
8
+ from .anthropic import AnthropicTokenCounter
9
+ from .base import TokenCounter
10
+ from .openai import OpenAITokenCounter
11
+ from .sentencepiece_counter import SentencePieceTokenCounter
12
+
13
+ logger = get_logger(__name__)
14
+
15
+ # Global cache for token counter instances (singleton pattern)
16
+ _token_counter_cache: dict[tuple[str, str, str], TokenCounter] = {}
17
+
18
+
19
+ def get_token_counter(model_config: ModelConfig) -> TokenCounter:
20
+ """Get appropriate token counter for the model provider (cached singleton).
21
+
22
+ This function ensures that every provider has a proper token counting
23
+ implementation without any fallbacks to estimation. Token counters are
24
+ cached to avoid repeated initialization overhead.
25
+
26
+ Args:
27
+ model_config: Model configuration with provider and credentials
28
+
29
+ Returns:
30
+ Cached provider-specific token counter
31
+
32
+ Raises:
33
+ ValueError: If provider is not supported for token counting
34
+ RuntimeError: If token counter initialization fails
35
+ """
36
+ # Create cache key from provider, model name, and API key
37
+ cache_key = (
38
+ model_config.provider.value,
39
+ model_config.name,
40
+ model_config.api_key[:10]
41
+ if model_config.api_key
42
+ else "no-key", # Partial key for cache
43
+ )
44
+
45
+ # Return cached instance if available
46
+ if cache_key in _token_counter_cache:
47
+ logger.debug(
48
+ f"Reusing cached token counter for {model_config.provider.value}:{model_config.name}"
49
+ )
50
+ return _token_counter_cache[cache_key]
51
+
52
+ # Create new instance and cache it
53
+ logger.debug(
54
+ f"Creating new token counter for {model_config.provider.value}:{model_config.name}"
55
+ )
56
+
57
+ counter: TokenCounter
58
+ if model_config.provider == ProviderType.OPENAI:
59
+ counter = OpenAITokenCounter(model_config.name)
60
+ elif model_config.provider == ProviderType.ANTHROPIC:
61
+ counter = AnthropicTokenCounter(
62
+ model_config.name, model_config.api_key, model_config.key_provider
63
+ )
64
+ elif model_config.provider == ProviderType.GOOGLE:
65
+ # Use local SentencePiece tokenizer (100% accurate, 10-100x faster than API)
66
+ counter = SentencePieceTokenCounter(model_config.name)
67
+ else:
68
+ raise ValueError(
69
+ f"Unsupported provider for token counting: {model_config.provider}. "
70
+ f"Supported providers: {[p.value for p in ProviderType]}"
71
+ )
72
+
73
+ # Cache the instance
74
+ _token_counter_cache[cache_key] = counter
75
+ logger.debug(
76
+ f"Cached token counter for {model_config.provider.value}:{model_config.name}"
77
+ )
78
+
79
+ return counter
80
+
81
+
82
+ async def count_tokens_from_messages(
83
+ messages: list[ModelMessage], model_config: ModelConfig
84
+ ) -> int:
85
+ """Count actual tokens from messages using provider-specific methods (async).
86
+
87
+ This replaces the old estimation approach with accurate token counting
88
+ using each provider's official APIs and libraries.
89
+
90
+ Args:
91
+ messages: List of messages to count tokens for
92
+ model_config: Model configuration with provider info
93
+
94
+ Returns:
95
+ Exact token count for the messages
96
+
97
+ Raises:
98
+ ValueError: If provider is not supported
99
+ RuntimeError: If token counting fails
100
+ """
101
+ counter = get_token_counter(model_config)
102
+ return await counter.count_message_tokens(messages)
103
+
104
+
105
+ async def count_post_summary_tokens(
106
+ messages: list[ModelMessage], summary_index: int, model_config: ModelConfig
107
+ ) -> int:
108
+ """Count actual tokens from summary onwards for incremental compaction decisions (async).
109
+
110
+ Args:
111
+ messages: Full message history
112
+ summary_index: Index of the last summary message
113
+ model_config: Model configuration with provider info
114
+
115
+ Returns:
116
+ Exact token count from summary onwards
117
+
118
+ Raises:
119
+ ValueError: If provider is not supported
120
+ RuntimeError: If token counting fails
121
+ """
122
+ if summary_index >= len(messages):
123
+ return 0
124
+
125
+ post_summary_messages = messages[summary_index:]
126
+ return await count_tokens_from_messages(post_summary_messages, model_config)
127
+
128
+
129
+ async def count_tokens_from_message_parts(
130
+ messages: list[ModelMessage], model_config: ModelConfig
131
+ ) -> int:
132
+ """Count actual tokens from message parts for summarization requests (async).
133
+
134
+ Args:
135
+ messages: List of messages to count tokens for
136
+ model_config: Model configuration with provider info
137
+
138
+ Returns:
139
+ Exact token count from message parts
140
+
141
+ Raises:
142
+ ValueError: If provider is not supported
143
+ RuntimeError: If token counting fails
144
+ """
145
+ # For now, use the same logic as count_tokens_from_messages
146
+ # This can be optimized later if needed for different counting strategies
147
+ return await count_tokens_from_messages(messages, model_config)
@@ -19,10 +19,10 @@ from .constants import INPUT_BUFFER_TOKENS, MIN_SUMMARY_TOKENS
19
19
  from .token_counting import count_tokens_from_messages as _count_tokens_from_messages
20
20
 
21
21
 
22
- def estimate_tokens_from_messages(
22
+ async def estimate_tokens_from_messages(
23
23
  messages: list[ModelMessage], model_config: ModelConfig
24
24
  ) -> int:
25
- """Count actual tokens from current message list.
25
+ """Count actual tokens from current message list (async).
26
26
 
27
27
  This provides accurate token counting for compaction decisions using
28
28
  provider-specific token counting methods instead of rough estimation.
@@ -38,13 +38,13 @@ def estimate_tokens_from_messages(
38
38
  ValueError: If provider is not supported
39
39
  RuntimeError: If token counting fails
40
40
  """
41
- return _count_tokens_from_messages(messages, model_config)
41
+ return await _count_tokens_from_messages(messages, model_config)
42
42
 
43
43
 
44
- def estimate_post_summary_tokens(
44
+ async def estimate_post_summary_tokens(
45
45
  messages: list[ModelMessage], summary_index: int, model_config: ModelConfig
46
46
  ) -> int:
47
- """Count actual tokens from summary onwards for incremental compaction decisions.
47
+ """Count actual tokens from summary onwards for incremental compaction decisions (async).
48
48
 
49
49
  This treats the summary as a reset point and only counts tokens from the summary
50
50
  message onwards. Used to determine if incremental compaction is needed.
@@ -65,13 +65,13 @@ def estimate_post_summary_tokens(
65
65
  return 0
66
66
 
67
67
  post_summary_messages = messages[summary_index:]
68
- return estimate_tokens_from_messages(post_summary_messages, model_config)
68
+ return await estimate_tokens_from_messages(post_summary_messages, model_config)
69
69
 
70
70
 
71
- def estimate_tokens_from_message_parts(
71
+ async def estimate_tokens_from_message_parts(
72
72
  messages: list[ModelMessage], model_config: ModelConfig
73
73
  ) -> int:
74
- """Count actual tokens from message parts for summarization requests.
74
+ """Count actual tokens from message parts for summarization requests (async).
75
75
 
76
76
  This provides accurate token counting across the codebase using
77
77
  provider-specific methods instead of character estimation.
@@ -87,14 +87,14 @@ def estimate_tokens_from_message_parts(
87
87
  ValueError: If provider is not supported
88
88
  RuntimeError: If token counting fails
89
89
  """
90
- return _count_tokens_from_messages(messages, model_config)
90
+ return await _count_tokens_from_messages(messages, model_config)
91
91
 
92
92
 
93
- def calculate_max_summarization_tokens(
93
+ async def calculate_max_summarization_tokens(
94
94
  ctx_or_model_config: Union["RunContext[AgentDeps]", ModelConfig],
95
95
  request_messages: list[ModelMessage],
96
96
  ) -> int:
97
- """Calculate maximum tokens available for summarization output.
97
+ """Calculate maximum tokens available for summarization output (async).
98
98
 
99
99
  This ensures we use the model's full capacity while leaving room for input tokens.
100
100
 
@@ -115,7 +115,7 @@ def calculate_max_summarization_tokens(
115
115
  return MIN_SUMMARY_TOKENS
116
116
 
117
117
  # Count actual input tokens using shared utility
118
- estimated_input_tokens = estimate_tokens_from_message_parts(
118
+ estimated_input_tokens = await estimate_tokens_from_message_parts(
119
119
  request_messages, model_config
120
120
  )
121
121
 
shotgun/agents/llm.py ADDED
@@ -0,0 +1,62 @@
1
+ """LLM request utilities for Shotgun agents."""
2
+
3
+ from typing import Any
4
+
5
+ from pydantic_ai.direct import model_request
6
+ from pydantic_ai.messages import ModelMessage, ModelResponse
7
+ from pydantic_ai.settings import ModelSettings
8
+
9
+ from shotgun.agents.config.models import ModelConfig
10
+ from shotgun.logging_config import get_logger
11
+
12
+ logger = get_logger(__name__)
13
+
14
+
15
+ async def shotgun_model_request(
16
+ model_config: ModelConfig,
17
+ messages: list[ModelMessage],
18
+ model_settings: ModelSettings | None = None,
19
+ **kwargs: Any,
20
+ ) -> ModelResponse:
21
+ """Model request wrapper that uses full token capacity by default.
22
+
23
+ This wrapper ensures all LLM calls in Shotgun use the maximum available
24
+ token capacity of each model, improving response quality and completeness.
25
+ The most common issue this fixes is truncated summaries that were cut off
26
+ at default token limits (e.g., 4096 for Claude models).
27
+
28
+ Args:
29
+ model_config: ModelConfig instance with model settings and API key
30
+ messages: Messages to send to the model
31
+ model_settings: Optional ModelSettings. If None, creates default with max tokens
32
+ **kwargs: Additional arguments passed to model_request
33
+
34
+ Returns:
35
+ ModelResponse from the model
36
+
37
+ Example:
38
+ # Uses full token capacity (e.g., 4096 for Claude, 128k for GPT-5)
39
+ response = await shotgun_model_request(model_config, messages)
40
+
41
+ # With custom settings
42
+ response = await shotgun_model_request(model_config, messages, model_settings=ModelSettings(max_tokens=1000, temperature=0.7))
43
+ """
44
+ if kwargs.get("max_tokens") is not None:
45
+ logger.warning(
46
+ "⚠️ 'max_tokens' argument is ignored in shotgun_model_request. "
47
+ "Set 'model_settings.max_tokens' instead."
48
+ )
49
+
50
+ if not model_settings:
51
+ model_settings = ModelSettings()
52
+
53
+ if model_settings.get("max_tokens") is None:
54
+ model_settings["max_tokens"] = model_config.max_output_tokens
55
+
56
+ # Make the model request with full token utilization
57
+ return await model_request(
58
+ model=model_config.model_instance,
59
+ messages=messages,
60
+ model_settings=model_settings,
61
+ **kwargs,
62
+ )
shotgun/agents/models.py CHANGED
@@ -4,7 +4,7 @@ import os
4
4
  from asyncio import Future, Queue
5
5
  from collections.abc import Callable
6
6
  from datetime import datetime
7
- from enum import Enum, StrEnum
7
+ from enum import StrEnum
8
8
  from pathlib import Path
9
9
  from typing import TYPE_CHECKING
10
10
 
@@ -116,7 +116,7 @@ class AgentRuntimeOptions(BaseModel):
116
116
  )
117
117
 
118
118
 
119
- class FileOperationType(str, Enum):
119
+ class FileOperationType(StrEnum):
120
120
  """Types of file operations that can be tracked."""
121
121
 
122
122
  CREATED = "created"
@@ -1,13 +1,14 @@
1
1
  """Web search tools for Pydantic AI agents.
2
2
 
3
3
  Provides web search capabilities for multiple LLM providers:
4
- - OpenAI: Uses Responses API with web_search tool
5
- - Anthropic: Uses Messages API with web_search_20250305 tool
6
- - Gemini: Uses grounding with Google Search
4
+ - OpenAI: Uses Responses API with web_search tool (BYOK only)
5
+ - Anthropic: Uses Messages API with web_search_20250305 tool (BYOK only)
6
+ - Gemini: Uses grounding with Google Search via Pydantic AI (works with Shotgun Account)
7
7
  """
8
8
 
9
- from collections.abc import Callable
9
+ from collections.abc import Awaitable, Callable
10
10
 
11
+ from shotgun.agents.config import get_config_manager
11
12
  from shotgun.agents.config.models import ProviderType
12
13
  from shotgun.logging_config import get_logger
13
14
 
@@ -18,29 +19,55 @@ from .utils import is_provider_available
18
19
 
19
20
  logger = get_logger(__name__)
20
21
 
21
- # Type alias for web search tools
22
- WebSearchTool = Callable[[str], str]
22
+ # Type alias for web search tools (all now async)
23
+ WebSearchTool = Callable[[str], Awaitable[str]]
23
24
 
24
25
 
25
26
  def get_available_web_search_tools() -> list[WebSearchTool]:
26
27
  """Get list of available web search tools based on configured API keys.
27
28
 
29
+ When using Shotgun Account (via LiteLLM proxy):
30
+ Only Gemini web search is available (others use provider-specific APIs)
31
+
32
+ When using BYOK (individual provider keys):
33
+ All provider tools are available based on their respective keys
34
+
28
35
  Returns:
29
36
  List of web search tool functions that have API keys configured
30
37
  """
31
38
  tools: list[WebSearchTool] = []
32
39
 
33
- if is_provider_available(ProviderType.OPENAI):
34
- logger.debug("✅ OpenAI web search tool available")
35
- tools.append(openai_web_search_tool)
40
+ # Check if using Shotgun Account
41
+ config_manager = get_config_manager()
42
+ config = config_manager.load()
43
+ has_shotgun_key = config.shotgun.api_key is not None
44
+
45
+ if has_shotgun_key:
46
+ # Shotgun Account mode: Only Gemini supports web search via LiteLLM
47
+ if is_provider_available(ProviderType.GOOGLE):
48
+ logger.info("🔑 Shotgun Account detected - using Gemini web search only")
49
+ logger.debug(" OpenAI and Anthropic web search require direct API keys")
50
+ tools.append(gemini_web_search_tool)
51
+ else:
52
+ logger.warning(
53
+ "⚠️ Shotgun Account configured but no Gemini key - "
54
+ "web search unavailable"
55
+ )
56
+ else:
57
+ # BYOK mode: Load all available tools based on individual provider keys
58
+ logger.debug("🔑 BYOK mode - checking all provider web search tools")
59
+
60
+ if is_provider_available(ProviderType.OPENAI):
61
+ logger.debug("✅ OpenAI web search tool available")
62
+ tools.append(openai_web_search_tool)
36
63
 
37
- if is_provider_available(ProviderType.ANTHROPIC):
38
- logger.debug("✅ Anthropic web search tool available")
39
- tools.append(anthropic_web_search_tool)
64
+ if is_provider_available(ProviderType.ANTHROPIC):
65
+ logger.debug("✅ Anthropic web search tool available")
66
+ tools.append(anthropic_web_search_tool)
40
67
 
41
- if is_provider_available(ProviderType.GOOGLE):
42
- logger.debug("✅ Gemini web search tool available")
43
- tools.append(gemini_web_search_tool)
68
+ if is_provider_available(ProviderType.GOOGLE):
69
+ logger.debug("✅ Gemini web search tool available")
70
+ tools.append(gemini_web_search_tool)
44
71
 
45
72
  if not tools:
46
73
  logger.warning("⚠️ No web search tools available - no API keys configured")
@@ -1,20 +1,24 @@
1
1
  """Anthropic web search tool implementation."""
2
2
 
3
- import anthropic
4
3
  from opentelemetry import trace
4
+ from pydantic_ai.messages import ModelMessage, ModelRequest, TextPart
5
+ from pydantic_ai.settings import ModelSettings
5
6
 
6
7
  from shotgun.agents.config import get_provider_model
8
+ from shotgun.agents.config.constants import MEDIUM_TEXT_8K_TOKENS
7
9
  from shotgun.agents.config.models import ProviderType
10
+ from shotgun.agents.llm import shotgun_model_request
8
11
  from shotgun.logging_config import get_logger
9
12
 
10
13
  logger = get_logger(__name__)
11
14
 
12
15
 
13
- def anthropic_web_search_tool(query: str) -> str:
14
- """Perform a web search using Anthropic's Claude API with streaming.
16
+ async def anthropic_web_search_tool(query: str) -> str:
17
+ """Perform a web search using Anthropic's Claude API.
15
18
 
16
19
  This tool uses Anthropic's web search capabilities to find current information
17
- about the given query. Results are streamed for faster response times.
20
+ about the given query. Works with both Shotgun API keys (via LiteLLM proxy)
21
+ and direct Anthropic API keys (BYOK).
18
22
 
19
23
  Args:
20
24
  query: The search query
@@ -27,49 +31,49 @@ def anthropic_web_search_tool(query: str) -> str:
27
31
  span = trace.get_current_span()
28
32
  span.set_attribute("input.value", f"**Query:** {query}\n")
29
33
 
30
- logger.debug("📡 Executing Anthropic web search with streaming prompt: %s", query)
34
+ logger.debug("📡 Executing Anthropic web search with prompt: %s", query)
31
35
 
32
- # Get API key from centralized configuration
36
+ # Get model configuration (supports both Shotgun and BYOK)
33
37
  try:
34
38
  model_config = get_provider_model(ProviderType.ANTHROPIC)
35
- api_key = model_config.api_key
36
39
  except ValueError as e:
37
40
  error_msg = f"Anthropic API key not configured: {str(e)}"
38
41
  logger.error("❌ %s", error_msg)
39
42
  span.set_attribute("output.value", f"**Error:**\n {error_msg}\n")
40
43
  return error_msg
41
44
 
42
- client = anthropic.Anthropic(api_key=api_key)
45
+ # Build the request messages
46
+ messages: list[ModelMessage] = [
47
+ ModelRequest.user_text_prompt(f"Search for: {query}")
48
+ ]
43
49
 
44
- # Use the Messages API with web search tool and streaming
50
+ # Use the Messages API with web search tool
45
51
  try:
46
- result_text = ""
47
-
48
- with client.messages.stream(
49
- model="claude-3-5-sonnet-latest",
50
- max_tokens=8192, # Maximum for Claude 3.5 Sonnet
51
- messages=[{"role": "user", "content": f"Search for: {query}"}],
52
- tools=[
53
- {
54
- "type": "web_search_20250305",
55
- "name": "web_search",
56
- }
57
- ],
58
- tool_choice={"type": "tool", "name": "web_search"},
59
- ) as stream:
60
- logger.debug("🌊 Started streaming Anthropic web search response")
61
-
62
- for event in stream:
63
- if event.type == "content_block_delta":
64
- if hasattr(event.delta, "text"):
65
- result_text += event.delta.text
66
- elif event.type == "message_start":
67
- logger.debug("🚀 Streaming started")
68
- elif event.type == "message_stop":
69
- logger.debug("✅ Streaming completed")
70
-
71
- if not result_text:
72
- result_text = "No content returned from search"
52
+ response = await shotgun_model_request(
53
+ model_config=model_config,
54
+ messages=messages,
55
+ model_settings=ModelSettings(
56
+ max_tokens=MEDIUM_TEXT_8K_TOKENS,
57
+ # Enable Anthropic web search tool
58
+ extra_body={
59
+ "tools": [
60
+ {
61
+ "type": "web_search_20250305",
62
+ "name": "web_search",
63
+ }
64
+ ],
65
+ "tool_choice": {"type": "tool", "name": "web_search"},
66
+ },
67
+ ),
68
+ )
69
+
70
+ # Extract text from response
71
+ result_text = "No content returned from search"
72
+ if response.parts:
73
+ for part in response.parts:
74
+ if isinstance(part, TextPart):
75
+ result_text = part.content
76
+ break
73
77
 
74
78
  logger.debug("📄 Anthropic web search result: %d characters", len(result_text))
75
79
  logger.debug(
@@ -88,9 +92,8 @@ def anthropic_web_search_tool(query: str) -> str:
88
92
  return error_msg
89
93
 
90
94
 
91
- def main() -> None:
95
+ async def main() -> None:
92
96
  """Main function for testing the Anthropic web search tool."""
93
- import os
94
97
  import sys
95
98
 
96
99
  from shotgun.logging_config import setup_logger
@@ -110,24 +113,23 @@ def main() -> None:
110
113
  # Join all arguments as the search query
111
114
  query = " ".join(sys.argv[1:])
112
115
 
113
- print("🔍 Testing Anthropic Web Search with streaming")
116
+ print("🔍 Testing Anthropic Web Search")
114
117
  print(f"📝 Query: {query}")
115
118
  print("=" * 60)
116
119
 
117
120
  # Check if API key is available
118
- if not (
119
- os.getenv("ANTHROPIC_API_KEY")
120
- or (
121
- callable(get_provider_model)
122
- and get_provider_model(ProviderType.ANTHROPIC).api_key
123
- )
124
- ):
125
- print(" Error: ANTHROPIC_API_KEY environment variable not set")
126
- print(" Please set it with: export ANTHROPIC_API_KEY=your_key_here")
121
+ try:
122
+ if callable(get_provider_model):
123
+ model_config = get_provider_model(ProviderType.ANTHROPIC)
124
+ if not model_config.api_key:
125
+ raise ValueError("No API key configured")
126
+ except (ValueError, Exception):
127
+ print("❌ Error: Anthropic API key not configured")
128
+ print(" Please set it in your config file")
127
129
  sys.exit(1)
128
130
 
129
131
  try:
130
- result = anthropic_web_search_tool(query)
132
+ result = await anthropic_web_search_tool(query)
131
133
  print(f"✅ Search completed! Result length: {len(result)} characters")
132
134
  print("=" * 60)
133
135
  print("📄 RESULTS:")
@@ -141,4 +143,6 @@ def main() -> None:
141
143
 
142
144
 
143
145
  if __name__ == "__main__":
144
- main()
146
+ import asyncio
147
+
148
+ asyncio.run(main())
@@ -1,20 +1,24 @@
1
1
  """Gemini web search tool implementation."""
2
2
 
3
- import google.generativeai as genai
4
3
  from opentelemetry import trace
4
+ from pydantic_ai.messages import ModelMessage, ModelRequest
5
+ from pydantic_ai.settings import ModelSettings
5
6
 
6
7
  from shotgun.agents.config import get_provider_model
7
- from shotgun.agents.config.models import ProviderType
8
+ from shotgun.agents.config.constants import MEDIUM_TEXT_8K_TOKENS
9
+ from shotgun.agents.config.models import ModelName
10
+ from shotgun.agents.llm import shotgun_model_request
8
11
  from shotgun.logging_config import get_logger
9
12
 
10
13
  logger = get_logger(__name__)
11
14
 
12
15
 
13
- def gemini_web_search_tool(query: str) -> str:
16
+ async def gemini_web_search_tool(query: str) -> str:
14
17
  """Perform a web search using Google's Gemini API with grounding.
15
18
 
16
19
  This tool uses Gemini's Google Search grounding to find current information
17
- about the given query.
20
+ about the given query. Works with both Shotgun API keys (via LiteLLM proxy)
21
+ and direct Gemini API keys (BYOK).
18
22
 
19
23
  Args:
20
24
  query: The search query
@@ -29,23 +33,16 @@ def gemini_web_search_tool(query: str) -> str:
29
33
 
30
34
  logger.debug("📡 Executing Gemini web search with prompt: %s", query)
31
35
 
32
- # Get API key from centralized configuration
36
+ # Get model configuration (supports both Shotgun and BYOK)
33
37
  try:
34
- model_config = get_provider_model(ProviderType.GOOGLE)
35
- api_key = model_config.api_key
38
+ model_config = get_provider_model(ModelName.GEMINI_2_5_FLASH)
36
39
  except ValueError as e:
37
40
  error_msg = f"Gemini API key not configured: {str(e)}"
38
41
  logger.error("❌ %s", error_msg)
39
42
  span.set_attribute("output.value", f"**Error:**\n {error_msg}\n")
40
43
  return error_msg
41
44
 
42
- genai.configure(api_key=api_key) # type: ignore[attr-defined]
43
-
44
- # Create model without built-in tools to avoid conflict with Pydantic AI
45
- # Using prompt-based search approach instead
46
- model = genai.GenerativeModel("gemini-2.5-pro") # type: ignore[attr-defined]
47
-
48
- # Create a search-optimized prompt that leverages Gemini's knowledge
45
+ # Create a search-optimized prompt
49
46
  search_prompt = f"""Please provide current and accurate information about the following query:
50
47
 
51
48
  Query: {query}
@@ -56,17 +53,31 @@ Instructions:
56
53
  - Focus on current and recent information
57
54
  - Be specific and accurate in your response"""
58
55
 
59
- # Generate response using the model's knowledge
56
+ # Build the request messages
57
+ messages: list[ModelMessage] = [ModelRequest.user_text_prompt(search_prompt)]
58
+
59
+ # Generate response using Pydantic AI with Google Search grounding
60
60
  try:
61
- response = model.generate_content(
62
- search_prompt,
63
- generation_config=genai.GenerationConfig( # type: ignore[attr-defined]
61
+ response = await shotgun_model_request(
62
+ model_config=model_config,
63
+ messages=messages,
64
+ model_settings=ModelSettings(
64
65
  temperature=0.3,
65
- max_output_tokens=8192,
66
+ max_tokens=MEDIUM_TEXT_8K_TOKENS,
67
+ # Enable Google Search grounding for Gemini
68
+ extra_body={"tools": [{"googleSearch": {}}]},
66
69
  ),
67
70
  )
68
71
 
69
- result_text = response.text or "No content returned from search"
72
+ # Extract text from response
73
+ from pydantic_ai.messages import TextPart
74
+
75
+ result_text = "No content returned from search"
76
+ if response.parts:
77
+ for part in response.parts:
78
+ if isinstance(part, TextPart):
79
+ result_text = part.content
80
+ break
70
81
 
71
82
  logger.debug("📄 Gemini web search result: %d characters", len(result_text))
72
83
  logger.debug(
@@ -1,6 +1,6 @@
1
1
  """OpenAI web search tool implementation."""
2
2
 
3
- from openai import OpenAI
3
+ from openai import AsyncOpenAI
4
4
  from opentelemetry import trace
5
5
 
6
6
  from shotgun.agents.config import get_provider_model
@@ -10,7 +10,7 @@ from shotgun.logging_config import get_logger
10
10
  logger = get_logger(__name__)
11
11
 
12
12
 
13
- def openai_web_search_tool(query: str) -> str:
13
+ async def openai_web_search_tool(query: str) -> str:
14
14
  """Perform a web search and return results.
15
15
 
16
16
  This tool uses OpenAI's web search capabilities to find current information
@@ -54,8 +54,8 @@ Instructions:
54
54
  ALWAYS PROVIDE THE SOURCES (urls) TO BACK UP THE INFORMATION YOU PROVIDE.
55
55
  """
56
56
 
57
- client = OpenAI(api_key=api_key)
58
- response = client.responses.create( # type: ignore[call-overload]
57
+ client = AsyncOpenAI(api_key=api_key)
58
+ response = await client.responses.create( # type: ignore[call-overload]
59
59
  model="gpt-5-mini",
60
60
  input=[
61
61
  {"role": "user", "content": [{"type": "input_text", "text": prompt}]}