shinestacker 1.0.4.post2__py3-none-any.whl → 1.2.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of shinestacker might be problematic. Click here for more details.

Files changed (37) hide show
  1. shinestacker/_version.py +1 -1
  2. shinestacker/algorithms/__init__.py +4 -1
  3. shinestacker/algorithms/align.py +128 -14
  4. shinestacker/algorithms/balance.py +362 -163
  5. shinestacker/algorithms/base_stack_algo.py +33 -4
  6. shinestacker/algorithms/depth_map.py +9 -12
  7. shinestacker/algorithms/multilayer.py +12 -2
  8. shinestacker/algorithms/noise_detection.py +8 -3
  9. shinestacker/algorithms/pyramid.py +57 -42
  10. shinestacker/algorithms/pyramid_auto.py +141 -0
  11. shinestacker/algorithms/pyramid_tiles.py +264 -0
  12. shinestacker/algorithms/stack.py +14 -11
  13. shinestacker/algorithms/stack_framework.py +17 -11
  14. shinestacker/algorithms/utils.py +180 -1
  15. shinestacker/algorithms/vignetting.py +23 -5
  16. shinestacker/config/constants.py +31 -5
  17. shinestacker/gui/action_config.py +6 -7
  18. shinestacker/gui/action_config_dialog.py +425 -258
  19. shinestacker/gui/base_form_dialog.py +11 -6
  20. shinestacker/gui/flow_layout.py +105 -0
  21. shinestacker/gui/gui_run.py +24 -19
  22. shinestacker/gui/main_window.py +4 -3
  23. shinestacker/gui/menu_manager.py +12 -2
  24. shinestacker/gui/new_project.py +28 -22
  25. shinestacker/gui/project_controller.py +40 -23
  26. shinestacker/gui/project_converter.py +6 -6
  27. shinestacker/gui/project_editor.py +21 -7
  28. shinestacker/gui/time_progress_bar.py +2 -2
  29. shinestacker/retouch/exif_data.py +5 -5
  30. shinestacker/retouch/shortcuts_help.py +4 -4
  31. shinestacker/retouch/vignetting_filter.py +12 -8
  32. {shinestacker-1.0.4.post2.dist-info → shinestacker-1.2.0.dist-info}/METADATA +20 -1
  33. {shinestacker-1.0.4.post2.dist-info → shinestacker-1.2.0.dist-info}/RECORD +37 -34
  34. {shinestacker-1.0.4.post2.dist-info → shinestacker-1.2.0.dist-info}/WHEEL +0 -0
  35. {shinestacker-1.0.4.post2.dist-info → shinestacker-1.2.0.dist-info}/entry_points.txt +0 -0
  36. {shinestacker-1.0.4.post2.dist-info → shinestacker-1.2.0.dist-info}/licenses/LICENSE +0 -0
  37. {shinestacker-1.0.4.post2.dist-info → shinestacker-1.2.0.dist-info}/top_level.txt +0 -0
shinestacker/_version.py CHANGED
@@ -1 +1 @@
1
- __version__ = '1.0.4.post2'
1
+ __version__ = '1.2.0'
@@ -8,6 +8,8 @@ from .balance import BalanceFrames
8
8
  from .stack import FocusStackBunch, FocusStack
9
9
  from .depth_map import DepthMapStack
10
10
  from .pyramid import PyramidStack
11
+ from .pyramid_tiles import PyramidTilesStack
12
+ from .pyramid_auto import PyramidAutoStack
11
13
  from .multilayer import MultiLayer
12
14
  from .noise_detection import NoiseDetection, MaskNoise
13
15
  from .vignetting import Vignetting
@@ -16,5 +18,6 @@ logger.addHandler(logging.NullHandler())
16
18
 
17
19
  __all__ = [
18
20
  'StackJob', 'CombinedActions', 'AlignFrames', 'BalanceFrames', 'FocusStackBunch', 'FocusStack',
19
- 'DepthMapStack', 'PyramidStack', 'MultiLayer', 'NoiseDetection', 'MaskNoise', 'Vignetting'
21
+ 'DepthMapStack', 'PyramidStack', 'PyramidTilesStack', 'PyramidAutoStack', 'MultiLayer',
22
+ 'NoiseDetection', 'MaskNoise', 'Vignetting'
20
23
  ]
@@ -1,12 +1,13 @@
1
- # pylint: disable=C0114, C0115, C0116, E1101, R0914, R0913, R0917, R0912, R0915, R0902
1
+ # pylint: disable=C0114, C0115, C0116, E1101, R0914, R0913, R0917, R0912, R0915, R0902, E1121, W0102
2
2
  import logging
3
+ import math
3
4
  import numpy as np
4
5
  import matplotlib.pyplot as plt
5
6
  import cv2
6
7
  from .. config.constants import constants
7
8
  from .. core.exceptions import AlignmentError, InvalidOptionError
8
9
  from .. core.colors import color_str
9
- from .utils import img_8bit, img_bw_8bit, save_plot, get_img_metadata, validate_image, img_subsample
10
+ from .utils import img_8bit, img_bw_8bit, save_plot, img_subsample
10
11
  from .stack_framework import SubAction
11
12
 
12
13
  _DEFAULT_FEATURE_CONFIG = {
@@ -29,6 +30,7 @@ _DEFAULT_ALIGNMENT_CONFIG = {
29
30
  'refine_iters': constants.DEFAULT_REFINE_ITERS,
30
31
  'align_confidence': constants.DEFAULT_ALIGN_CONFIDENCE,
31
32
  'max_iters': constants.DEFAULT_ALIGN_MAX_ITERS,
33
+ 'abort_abnormal': constants.DEFAULT_ALIGN_ABORT_ABNORMAL,
32
34
  'border_mode': constants.DEFAULT_BORDER_MODE,
33
35
  'border_value': constants.DEFAULT_BORDER_VALUE,
34
36
  'border_blur': constants.DEFAULT_BORDER_BLUR,
@@ -44,6 +46,89 @@ _cv2_border_mode_map = {
44
46
  constants.BORDER_REPLICATE_BLUR: cv2.BORDER_REPLICATE
45
47
  }
46
48
 
49
+ _AFFINE_THRESHOLDS = {
50
+ 'max_rotation': 10.0, # degrees
51
+ 'min_scale': 0.9,
52
+ 'max_scale': 1.1,
53
+ 'max_shear': 5.0, # degrees
54
+ 'max_translation_ratio': 0.1, # 10% of image dimension
55
+ }
56
+
57
+ _HOMOGRAPHY_THRESHOLDS = {
58
+ 'max_skew': 10.0, # degrees
59
+ 'max_scale_change': 1.5, # max area change ratio
60
+ 'max_aspect_ratio': 2.0, # max aspect ratio change
61
+ }
62
+
63
+
64
+ def decompose_affine_matrix(m):
65
+ a, b, tx = m[0, 0], m[0, 1], m[0, 2]
66
+ c, d, ty = m[1, 0], m[1, 1], m[1, 2]
67
+ scale_x = math.sqrt(a**2 + b**2)
68
+ scale_y = math.sqrt(c**2 + d**2)
69
+ rotation = math.degrees(math.atan2(b, a))
70
+ shear = math.degrees(math.atan2(-c, d)) - rotation
71
+ shear = (shear + 180) % 360 - 180
72
+ return (scale_x, scale_y), rotation, shear, (tx, ty)
73
+
74
+
75
+ def check_affine_matrix(m, img_shape, affine_thresholds=_AFFINE_THRESHOLDS):
76
+ if affine_thresholds is None:
77
+ return True, "No thresholds provided"
78
+ (scale_x, scale_y), rotation, shear, (tx, ty) = decompose_affine_matrix(m)
79
+ h, w = img_shape[:2]
80
+ reasons = []
81
+ if abs(rotation) > affine_thresholds['max_rotation']:
82
+ reasons.append(f"rotation too large ({rotation:.1f}°)")
83
+ if scale_x < affine_thresholds['min_scale'] or scale_x > affine_thresholds['max_scale']:
84
+ reasons.append(f"x-scale out of range ({scale_x:.2f})")
85
+ if scale_y < affine_thresholds['min_scale'] or scale_y > affine_thresholds['max_scale']:
86
+ reasons.append(f"y-scale out of range ({scale_y:.2f})")
87
+ if abs(shear) > affine_thresholds['max_shear']:
88
+ reasons.append(f"shear too large ({shear:.1f}°)")
89
+ max_tx = w * affine_thresholds['max_translation_ratio']
90
+ max_ty = h * affine_thresholds['max_translation_ratio']
91
+ if abs(tx) > max_tx:
92
+ reasons.append(f"x-translation too large (|{tx:.1f}| > {max_tx:.1f})")
93
+ if abs(ty) > max_ty:
94
+ reasons.append(f"y-translation too large (|{ty:.1f}| > {max_ty:.1f})")
95
+ if reasons:
96
+ return False, "; ".join(reasons)
97
+ return True, "Transformation within acceptable limits"
98
+
99
+
100
+ def check_homography_distortion(m, img_shape, homography_thresholds=_HOMOGRAPHY_THRESHOLDS):
101
+ if homography_thresholds is None:
102
+ return True, "No thresholds provided"
103
+ h, w = img_shape[:2]
104
+ corners = np.array([[0, 0], [w, 0], [w, h], [0, h]], dtype=np.float32)
105
+ transformed = cv2.perspectiveTransform(corners.reshape(1, -1, 2), m).reshape(-1, 2)
106
+ reasons = []
107
+ area_orig = w * h
108
+ area_new = cv2.contourArea(transformed)
109
+ area_ratio = area_new / area_orig
110
+ if area_ratio > homography_thresholds['max_scale_change'] or \
111
+ area_ratio < 1.0 / homography_thresholds['max_scale_change']:
112
+ reasons.append(f"area change too large ({area_ratio:.2f})")
113
+ rect = cv2.minAreaRect(transformed.astype(np.float32))
114
+ (w_rect, h_rect) = rect[1]
115
+ aspect_ratio = max(w_rect, h_rect) / min(w_rect, h_rect)
116
+ if aspect_ratio > homography_thresholds['max_aspect_ratio']:
117
+ reasons.append(f"aspect ratio change too large ({aspect_ratio:.2f})")
118
+ angles = []
119
+ for i in range(4):
120
+ vec1 = transformed[(i + 1) % 4] - transformed[i]
121
+ vec2 = transformed[(i - 1) % 4] - transformed[i]
122
+ angle = np.degrees(np.arccos(np.dot(vec1, vec2) /
123
+ (np.linalg.norm(vec1) * np.linalg.norm(vec2))))
124
+ angles.append(angle)
125
+ max_angle_dev = max(abs(angle - 90) for angle in angles)
126
+ if max_angle_dev > homography_thresholds['max_skew']:
127
+ reasons.append(f"angle distortion too large ({max_angle_dev:.1f}°)")
128
+ if reasons:
129
+ return False, "; ".join(reasons)
130
+ return True, "Transformation within acceptable limits"
131
+
47
132
 
48
133
  def get_good_matches(des_0, des_1, matching_config=None):
49
134
  matching_config = {**_DEFAULT_MATCHING_CONFIG, **(matching_config or {})}
@@ -152,7 +237,9 @@ def find_transform(src_pts, dst_pts, transform=constants.DEFAULT_TRANSFORM,
152
237
 
153
238
 
154
239
  def align_images(img_1, img_0, feature_config=None, matching_config=None, alignment_config=None,
155
- plot_path=None, callbacks=None):
240
+ plot_path=None, callbacks=None,
241
+ affine_thresholds=_AFFINE_THRESHOLDS,
242
+ homography_thresholds=_HOMOGRAPHY_THRESHOLDS):
156
243
  feature_config = {**_DEFAULT_FEATURE_CONFIG, **(feature_config or {})}
157
244
  matching_config = {**_DEFAULT_MATCHING_CONFIG, **(matching_config or {})}
158
245
  alignment_config = {**_DEFAULT_ALIGNMENT_CONFIG, **(alignment_config or {})}
@@ -161,10 +248,15 @@ def align_images(img_1, img_0, feature_config=None, matching_config=None, alignm
161
248
  except KeyError as e:
162
249
  raise InvalidOptionError("border_mode", alignment_config['border_mode']) from e
163
250
  min_matches = 4 if alignment_config['transform'] == constants.ALIGN_HOMOGRAPHY else 3
164
- validate_image(img_0, *get_img_metadata(img_1))
165
251
  if callbacks and 'message' in callbacks:
166
252
  callbacks['message']()
253
+ h_ref, w_ref = img_1.shape[:2]
254
+ h0, w0 = img_0.shape[:2]
167
255
  subsample = alignment_config['subsample']
256
+ if subsample == 0:
257
+ img_res = (float(h0) / 1000) * (float(w0) / 1000)
258
+ target_res = constants.DEFAULT_ALIGN_RES_TARGET_MPX
259
+ subsample = int(1 + math.floor(img_res / target_res))
168
260
  fast_subsampling = alignment_config['fast_subsampling']
169
261
  min_good_matches = alignment_config['min_good_matches']
170
262
  while True:
@@ -204,15 +296,14 @@ def align_images(img_1, img_0, feature_config=None, matching_config=None, alignm
204
296
  flags=2), cv2.COLOR_BGR2RGB)
205
297
  plt.figure(figsize=(10, 5))
206
298
  plt.imshow(img_match, 'gray')
207
- plt.savefig(plot_path)
299
+ save_plot(plot_path)
208
300
  if callbacks and 'save_plot' in callbacks:
209
301
  callbacks['save_plot'](plot_path)
210
- h, w = img_0.shape[:2]
211
302
  h_sub, w_sub = img_0_sub.shape[:2]
212
303
  if subsample > 1:
213
304
  if transform == constants.ALIGN_HOMOGRAPHY:
214
305
  low_size = np.float32([[0, 0], [0, h_sub], [w_sub, h_sub], [w_sub, 0]])
215
- high_size = np.float32([[0, 0], [0, h], [w, h], [w, 0]])
306
+ high_size = np.float32([[0, 0], [0, h0], [w0, h0], [w0, 0]])
216
307
  scale_up = cv2.getPerspectiveTransform(low_size, high_size)
217
308
  scale_down = cv2.getPerspectiveTransform(high_size, low_size)
218
309
  m = scale_up @ m @ scale_down
@@ -225,22 +316,37 @@ def align_images(img_1, img_0, feature_config=None, matching_config=None, alignm
225
316
  m[:, 2] = translation_fullres
226
317
  else:
227
318
  raise InvalidOptionError("transform", transform)
319
+
320
+ transform_type = alignment_config['transform']
321
+ is_valid = True
322
+ reason = ""
323
+ if transform_type == constants.ALIGN_RIGID:
324
+ is_valid, reason = check_affine_matrix(
325
+ m, img_0.shape, affine_thresholds)
326
+ elif transform_type == constants.ALIGN_HOMOGRAPHY:
327
+ is_valid, reason = check_homography_distortion(
328
+ m, img_0.shape, homography_thresholds)
329
+ if not is_valid:
330
+ if callbacks and 'warning' in callbacks:
331
+ callbacks['warning'](f"invalid transformation: {reason}")
332
+ return n_good_matches, None, None
333
+
228
334
  if callbacks and 'align_message' in callbacks:
229
335
  callbacks['align_message']()
230
336
  img_mask = np.ones_like(img_0, dtype=np.uint8)
231
337
  if alignment_config['transform'] == constants.ALIGN_HOMOGRAPHY:
232
338
  img_warp = cv2.warpPerspective(
233
- img_0, m, (w, h),
339
+ img_0, m, (w_ref, h_ref),
234
340
  borderMode=cv2_border_mode, borderValue=alignment_config['border_value'])
235
341
  if alignment_config['border_mode'] == constants.BORDER_REPLICATE_BLUR:
236
- mask = cv2.warpPerspective(img_mask, m, (w, h),
342
+ mask = cv2.warpPerspective(img_mask, m, (w_ref, h_ref),
237
343
  borderMode=cv2.BORDER_CONSTANT, borderValue=0)
238
344
  elif alignment_config['transform'] == constants.ALIGN_RIGID:
239
345
  img_warp = cv2.warpAffine(
240
- img_0, m, (w, h),
346
+ img_0, m, (w_ref, h_ref),
241
347
  borderMode=cv2_border_mode, borderValue=alignment_config['border_value'])
242
348
  if alignment_config['border_mode'] == constants.BORDER_REPLICATE_BLUR:
243
- mask = cv2.warpAffine(img_mask, m, (w, h),
349
+ mask = cv2.warpAffine(img_mask, m, (w_ref, h_ref),
244
350
  borderMode=cv2.BORDER_CONSTANT, borderValue=0)
245
351
  if alignment_config['border_mode'] == constants.BORDER_REPLICATE_BLUR:
246
352
  if callbacks and 'blur_message' in callbacks:
@@ -293,7 +399,7 @@ class AlignFrames(SubAction):
293
399
  'ecc_message': lambda: self.sub_msg(": ecc refinement"),
294
400
  'blur_message': lambda: self.sub_msg(': blur borders'),
295
401
  'warning': lambda msg: self.sub_msg(
296
- f': {msg}', constants.LOG_COLOR_ALERT),
402
+ f': {msg}', constants.LOG_COLOR_WARNING),
297
403
  'save_plot': lambda plot_path: self.process.callback(
298
404
  'save_plot', self.process.id,
299
405
  f"{self.process.name}: matches\nframe {idx_str}", plot_path)
@@ -303,19 +409,27 @@ class AlignFrames(SubAction):
303
409
  f"{self.process.name}-matches-{idx_str}.pdf"
304
410
  else:
305
411
  plot_path = None
412
+ if self.alignment_config['abort_abnormal']:
413
+ affine_thresholds = _AFFINE_THRESHOLDS
414
+ homography_thresholds = _HOMOGRAPHY_THRESHOLDS
415
+ else:
416
+ affine_thresholds = None
417
+ homography_thresholds = None
306
418
  n_good_matches, _m, img = align_images(
307
419
  img_1, img_0,
308
420
  feature_config=self.feature_config,
309
421
  matching_config=self.matching_config,
310
422
  alignment_config=self.alignment_config,
311
423
  plot_path=plot_path,
312
- callbacks=callbacks
424
+ callbacks=callbacks,
425
+ affine_thresholds=affine_thresholds,
426
+ homography_thresholds=homography_thresholds
313
427
  )
314
428
  self.n_matches[idx] = n_good_matches
315
429
  if n_good_matches < self.min_matches:
316
430
  self.process.sub_message(f": image not aligned, too few matches found: "
317
431
  f"{n_good_matches}", level=logging.CRITICAL)
318
- raise AlignmentError(idx, f"too few matches found: "
432
+ raise AlignmentError(idx, f"Image not aligned, too few matches found: "
319
433
  f"{n_good_matches} < {self.min_matches}")
320
434
  return img
321
435