shaped 2.0.5__py3-none-any.whl → 2.0.10__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -49,6 +49,7 @@ __all__ = [
49
49
  "CandidateIdsRetrieveStep",
50
50
  "CandidateRetrievalStrategy",
51
51
  "ClickhouseTableConfig",
52
+ "ColumnIndexConfig",
52
53
  "ColumnOrderRetrieveStep",
53
54
  "ColumnOrdering",
54
55
  "CreateTableResponse",
@@ -105,6 +106,7 @@ __all__ = [
105
106
  "HuggingFaceEncoder",
106
107
  "IcebergTableConfig",
107
108
  "IndexConfig",
109
+ "IndexType",
108
110
  "InnerEntityId",
109
111
  "InnerSize",
110
112
  "InnerSize1",
@@ -316,6 +318,7 @@ from shaped.autogen.models.candidate_attributes_retrieve_step import CandidateAt
316
318
  from shaped.autogen.models.candidate_ids_retrieve_step import CandidateIdsRetrieveStep as CandidateIdsRetrieveStep
317
319
  from shaped.autogen.models.candidate_retrieval_strategy import CandidateRetrievalStrategy as CandidateRetrievalStrategy
318
320
  from shaped.autogen.models.clickhouse_table_config import ClickhouseTableConfig as ClickhouseTableConfig
321
+ from shaped.autogen.models.column_index_config import ColumnIndexConfig as ColumnIndexConfig
319
322
  from shaped.autogen.models.column_order_retrieve_step import ColumnOrderRetrieveStep as ColumnOrderRetrieveStep
320
323
  from shaped.autogen.models.column_ordering import ColumnOrdering as ColumnOrdering
321
324
  from shaped.autogen.models.create_table_response import CreateTableResponse as CreateTableResponse
@@ -372,6 +375,7 @@ from shaped.autogen.models.http_problem_response import HttpProblemResponse as H
372
375
  from shaped.autogen.models.hugging_face_encoder import HuggingFaceEncoder as HuggingFaceEncoder
373
376
  from shaped.autogen.models.iceberg_table_config import IcebergTableConfig as IcebergTableConfig
374
377
  from shaped.autogen.models.index_config import IndexConfig as IndexConfig
378
+ from shaped.autogen.models.index_type import IndexType as IndexType
375
379
  from shaped.autogen.models.inner_entity_id import InnerEntityId as InnerEntityId
376
380
  from shaped.autogen.models.inner_size import InnerSize as InnerSize
377
381
  from shaped.autogen.models.inner_size1 import InnerSize1 as InnerSize1
@@ -504,7 +504,7 @@ class Configuration:
504
504
  return "Python SDK Debug Report:\n"\
505
505
  "OS: {env}\n"\
506
506
  "Python Version: {pyversion}\n"\
507
- "Version of the API: 2.0.5\n"\
507
+ "Version of the API: 2.0.10\n"\
508
508
  "SDK Package Version: 1.0.0".\
509
509
  format(env=sys.platform, pyversion=sys.version)
510
510
 
@@ -31,6 +31,7 @@ from shaped.autogen.models.candidate_attributes_retrieve_step import CandidateAt
31
31
  from shaped.autogen.models.candidate_ids_retrieve_step import CandidateIdsRetrieveStep
32
32
  from shaped.autogen.models.candidate_retrieval_strategy import CandidateRetrievalStrategy
33
33
  from shaped.autogen.models.clickhouse_table_config import ClickhouseTableConfig
34
+ from shaped.autogen.models.column_index_config import ColumnIndexConfig
34
35
  from shaped.autogen.models.column_order_retrieve_step import ColumnOrderRetrieveStep
35
36
  from shaped.autogen.models.column_ordering import ColumnOrdering
36
37
  from shaped.autogen.models.create_table_response import CreateTableResponse
@@ -87,6 +88,7 @@ from shaped.autogen.models.http_problem_response import HttpProblemResponse
87
88
  from shaped.autogen.models.hugging_face_encoder import HuggingFaceEncoder
88
89
  from shaped.autogen.models.iceberg_table_config import IcebergTableConfig
89
90
  from shaped.autogen.models.index_config import IndexConfig
91
+ from shaped.autogen.models.index_type import IndexType
90
92
  from shaped.autogen.models.inner_entity_id import InnerEntityId
91
93
  from shaped.autogen.models.inner_size import InnerSize
92
94
  from shaped.autogen.models.inner_size1 import InnerSize1
@@ -0,0 +1,89 @@
1
+ # coding: utf-8
2
+
3
+ """
4
+ Shaped API
5
+
6
+ Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. The Shaped API has four main endpoints: **Tables** - Provision and manage batch and real-time data connectors. **Views** - Configure SQL transformations and AI enrichment on your input data. Use SQL to combine multiple data sources or use an LLM to add new categories, extract specific attributes from descriptions, etc. **Engines** - Deploy and manage your relevance engines. The Engine API exposes configuration for indexing logic, input datasets, externam embeddings, and more. **Query** - Execute queries against your engines, to return data based on an input query or rerank an existing list. The Query API exposes the retrieve, filter, score, and ranking steps of the 4-stage ranking architecture. The base URL for each endpoint is: `https://api.shaped.ai/v2`
7
+
8
+ Generated by OpenAPI Generator (https://openapi-generator.tech)
9
+
10
+ Do not edit the class manually.
11
+ """ # noqa: E501
12
+
13
+
14
+ from __future__ import annotations
15
+ import pprint
16
+ import re # noqa: F401
17
+ import json
18
+
19
+ from pydantic import BaseModel, ConfigDict, Field, StrictStr
20
+ from typing import Any, ClassVar, Dict, List, Optional
21
+ from shaped.autogen.models.index_type import IndexType
22
+ from typing import Optional, Set
23
+ from typing_extensions import Self
24
+
25
+ class ColumnIndexConfig(BaseModel):
26
+ """
27
+ Configuration for a specific column index in the vector store.
28
+ """ # noqa: E501
29
+ column: StrictStr = Field(description="Column name to create an index for.")
30
+ index_type: Optional[IndexType] = Field(default=None, description="Type of index to create. Options: btree, bitmap, label_list, fts.")
31
+ __properties: ClassVar[List[str]] = ["column", "index_type"]
32
+
33
+ model_config = ConfigDict(
34
+ populate_by_name=True,
35
+ validate_assignment=True,
36
+ protected_namespaces=(),
37
+ )
38
+
39
+
40
+ def to_str(self) -> str:
41
+ """Returns the string representation of the model using alias"""
42
+ return pprint.pformat(self.model_dump(by_alias=True))
43
+
44
+ def to_json(self) -> str:
45
+ """Returns the JSON representation of the model using alias"""
46
+ # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
47
+ return json.dumps(self.to_dict())
48
+
49
+ @classmethod
50
+ def from_json(cls, json_str: str) -> Optional[Self]:
51
+ """Create an instance of ColumnIndexConfig from a JSON string"""
52
+ return cls.from_dict(json.loads(json_str))
53
+
54
+ def to_dict(self) -> Dict[str, Any]:
55
+ """Return the dictionary representation of the model using alias.
56
+
57
+ This has the following differences from calling pydantic's
58
+ `self.model_dump(by_alias=True)`:
59
+
60
+ * `None` is only added to the output dict for nullable fields that
61
+ were set at model initialization. Other fields with value `None`
62
+ are ignored.
63
+ """
64
+ excluded_fields: Set[str] = set([
65
+ ])
66
+
67
+ _dict = self.model_dump(
68
+ by_alias=True,
69
+ exclude=excluded_fields,
70
+ exclude_none=True,
71
+ )
72
+ return _dict
73
+
74
+ @classmethod
75
+ def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
76
+ """Create an instance of ColumnIndexConfig from a dict"""
77
+ if obj is None:
78
+ return None
79
+
80
+ if not isinstance(obj, dict):
81
+ return cls.model_validate(obj)
82
+
83
+ _obj = cls.model_validate({
84
+ "column": obj.get("column"),
85
+ "index_type": obj.get("index_type")
86
+ })
87
+ return _obj
88
+
89
+
@@ -26,10 +26,11 @@ class EvaluationConfig(BaseModel):
26
26
  """
27
27
  Defines the strategy for offline model evaluation.
28
28
  """ # noqa: E501
29
+ enable: Optional[StrictBool] = Field(default=False, description="Whether to perform offline model evaluation.")
29
30
  candidate_source: Optional[CandidateRetrievalStrategy] = Field(default=None, description="Strategy for selecting candidate items for evaluation.")
30
31
  filter_seen_items: Optional[StrictBool] = Field(default=False, description="Whether to filter out items the user has already seen.")
31
32
  evaluation_top_k: Optional[StrictInt] = Field(default=50, description="Number of top items to evaluate (must be between 1 and 300).")
32
- __properties: ClassVar[List[str]] = ["candidate_source", "filter_seen_items", "evaluation_top_k"]
33
+ __properties: ClassVar[List[str]] = ["enable", "candidate_source", "filter_seen_items", "evaluation_top_k"]
33
34
 
34
35
  model_config = ConfigDict(
35
36
  populate_by_name=True,
@@ -82,6 +83,7 @@ class EvaluationConfig(BaseModel):
82
83
  return cls.model_validate(obj)
83
84
 
84
85
  _obj = cls.model_validate({
86
+ "enable": obj.get("enable") if obj.get("enable") is not None else False,
85
87
  "candidate_source": obj.get("candidate_source"),
86
88
  "filter_seen_items": obj.get("filter_seen_items") if obj.get("filter_seen_items") is not None else False,
87
89
  "evaluation_top_k": obj.get("evaluation_top_k") if obj.get("evaluation_top_k") is not None else 50
@@ -18,6 +18,7 @@ import json
18
18
 
19
19
  from pydantic import BaseModel, ConfigDict, Field
20
20
  from typing import Any, ClassVar, Dict, List, Optional
21
+ from shaped.autogen.models.column_index_config import ColumnIndexConfig
21
22
  from shaped.autogen.models.embedding_config import EmbeddingConfig
22
23
  from shaped.autogen.models.search_config import SearchConfig
23
24
  from typing import Optional, Set
@@ -29,7 +30,9 @@ class IndexConfig(BaseModel):
29
30
  """ # noqa: E501
30
31
  lexical_search: Optional[SearchConfig] = Field(default=None, description="BM25 text search configuration.")
31
32
  embeddings: Optional[List[EmbeddingConfig]] = Field(default=None, description="List of embedding configurations for vector search.")
32
- __properties: ClassVar[List[str]] = ["lexical_search", "embeddings"]
33
+ user_column_indices: Optional[List[ColumnIndexConfig]] = None
34
+ item_column_indices: Optional[List[ColumnIndexConfig]] = None
35
+ __properties: ClassVar[List[str]] = ["lexical_search", "embeddings", "user_column_indices", "item_column_indices"]
33
36
 
34
37
  model_config = ConfigDict(
35
38
  populate_by_name=True,
@@ -80,6 +83,30 @@ class IndexConfig(BaseModel):
80
83
  if _item_embeddings:
81
84
  _items.append(_item_embeddings.to_dict())
82
85
  _dict['embeddings'] = _items
86
+ # override the default output from pydantic by calling `to_dict()` of each item in user_column_indices (list)
87
+ _items = []
88
+ if self.user_column_indices:
89
+ for _item_user_column_indices in self.user_column_indices:
90
+ if _item_user_column_indices:
91
+ _items.append(_item_user_column_indices.to_dict())
92
+ _dict['user_column_indices'] = _items
93
+ # override the default output from pydantic by calling `to_dict()` of each item in item_column_indices (list)
94
+ _items = []
95
+ if self.item_column_indices:
96
+ for _item_item_column_indices in self.item_column_indices:
97
+ if _item_item_column_indices:
98
+ _items.append(_item_item_column_indices.to_dict())
99
+ _dict['item_column_indices'] = _items
100
+ # set to None if user_column_indices (nullable) is None
101
+ # and model_fields_set contains the field
102
+ if self.user_column_indices is None and "user_column_indices" in self.model_fields_set:
103
+ _dict['user_column_indices'] = None
104
+
105
+ # set to None if item_column_indices (nullable) is None
106
+ # and model_fields_set contains the field
107
+ if self.item_column_indices is None and "item_column_indices" in self.model_fields_set:
108
+ _dict['item_column_indices'] = None
109
+
83
110
  return _dict
84
111
 
85
112
  @classmethod
@@ -93,7 +120,9 @@ class IndexConfig(BaseModel):
93
120
 
94
121
  _obj = cls.model_validate({
95
122
  "lexical_search": SearchConfig.from_dict(obj["lexical_search"]) if obj.get("lexical_search") is not None else None,
96
- "embeddings": [EmbeddingConfig.from_dict(_item) for _item in obj["embeddings"]] if obj.get("embeddings") is not None else None
123
+ "embeddings": [EmbeddingConfig.from_dict(_item) for _item in obj["embeddings"]] if obj.get("embeddings") is not None else None,
124
+ "user_column_indices": [ColumnIndexConfig.from_dict(_item) for _item in obj["user_column_indices"]] if obj.get("user_column_indices") is not None else None,
125
+ "item_column_indices": [ColumnIndexConfig.from_dict(_item) for _item in obj["item_column_indices"]] if obj.get("item_column_indices") is not None else None
97
126
  })
98
127
  return _obj
99
128
 
@@ -0,0 +1,38 @@
1
+ # coding: utf-8
2
+
3
+ """
4
+ Shaped API
5
+
6
+ Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. The Shaped API has four main endpoints: **Tables** - Provision and manage batch and real-time data connectors. **Views** - Configure SQL transformations and AI enrichment on your input data. Use SQL to combine multiple data sources or use an LLM to add new categories, extract specific attributes from descriptions, etc. **Engines** - Deploy and manage your relevance engines. The Engine API exposes configuration for indexing logic, input datasets, externam embeddings, and more. **Query** - Execute queries against your engines, to return data based on an input query or rerank an existing list. The Query API exposes the retrieve, filter, score, and ranking steps of the 4-stage ranking architecture. The base URL for each endpoint is: `https://api.shaped.ai/v2`
7
+
8
+ Generated by OpenAPI Generator (https://openapi-generator.tech)
9
+
10
+ Do not edit the class manually.
11
+ """ # noqa: E501
12
+
13
+
14
+ from __future__ import annotations
15
+ import json
16
+ from enum import Enum
17
+ from typing_extensions import Self
18
+
19
+
20
+ class IndexType(str, Enum):
21
+ """
22
+ The underlying index type to build for fast lookups.
23
+ """
24
+
25
+ """
26
+ allowed enum values
27
+ """
28
+ BTREE = 'btree'
29
+ BITMAP = 'bitmap'
30
+ LABEL_LIST = 'label_list'
31
+ FTS = 'fts'
32
+
33
+ @classmethod
34
+ def from_json(cls, json_str: str) -> Self:
35
+ """Create an instance of IndexType from a JSON string"""
36
+ return cls(json.loads(json_str))
37
+
38
+
@@ -26,7 +26,7 @@ class RequestsPerSecondScalingPolicy(BaseModel):
26
26
  RequestsPerSecondScalingPolicy
27
27
  """ # noqa: E501
28
28
  type: Optional[StrictStr] = Field(default='requests_per_second', description="Scaling policy type discriminator.")
29
- target_requests: Optional[Union[StrictFloat, StrictInt]] = Field(default=10.0, description="Target requests per second per replica for scaling.")
29
+ target_requests: Optional[Union[StrictFloat, StrictInt]] = Field(default=1.0, description="Target requests per second per replica for scaling.")
30
30
  additional_properties: Dict[str, Any] = {}
31
31
  __properties: ClassVar[List[str]] = ["type", "target_requests"]
32
32
 
@@ -99,7 +99,7 @@ class RequestsPerSecondScalingPolicy(BaseModel):
99
99
 
100
100
  _obj = cls.model_validate({
101
101
  "type": obj.get("type") if obj.get("type") is not None else 'requests_per_second',
102
- "target_requests": obj.get("target_requests") if obj.get("target_requests") is not None else 10.0
102
+ "target_requests": obj.get("target_requests") if obj.get("target_requests") is not None else 1.0
103
103
  })
104
104
  # store additional fields in additional_properties
105
105
  for _key in obj.keys():
@@ -25,7 +25,7 @@ class SetupEngineResponse(BaseModel):
25
25
  """
26
26
  SetupEngineResponse
27
27
  """ # noqa: E501
28
- engine_url: StrictStr = Field(description="URL to access the created or updated engine.")
28
+ engine_url: StrictStr = Field(description="URL to the console run-health monitor for the engine.")
29
29
  __properties: ClassVar[List[str]] = ["engine_url"]
30
30
 
31
31
  model_config = ConfigDict(
@@ -31,8 +31,7 @@ class TrainingComputeConfig(BaseModel):
31
31
  cpu_count: Optional[StrictInt] = Field(default=4, description="Number of CPU cores per training job.")
32
32
  force_gpu: Optional[StrictBool] = Field(default=False, description="Whether to force GPU usage even if not needed.")
33
33
  disk_size_gb: Optional[StrictInt] = Field(default=64, description="Disk size in GB for training job storage.")
34
- use_kubetorch: Optional[StrictBool] = Field(default=True, description="Whether to use kubetorch for running remote jobs.")
35
- __properties: ClassVar[List[str]] = ["gpu_type", "gpu_count", "cpu_memory_gb", "cpu_count", "force_gpu", "disk_size_gb", "use_kubetorch"]
34
+ __properties: ClassVar[List[str]] = ["gpu_type", "gpu_count", "cpu_memory_gb", "cpu_count", "force_gpu", "disk_size_gb"]
36
35
 
37
36
  model_config = ConfigDict(
38
37
  populate_by_name=True,
@@ -90,8 +89,7 @@ class TrainingComputeConfig(BaseModel):
90
89
  "cpu_memory_gb": obj.get("cpu_memory_gb") if obj.get("cpu_memory_gb") is not None else 16,
91
90
  "cpu_count": obj.get("cpu_count") if obj.get("cpu_count") is not None else 4,
92
91
  "force_gpu": obj.get("force_gpu") if obj.get("force_gpu") is not None else False,
93
- "disk_size_gb": obj.get("disk_size_gb") if obj.get("disk_size_gb") is not None else 64,
94
- "use_kubetorch": obj.get("use_kubetorch") if obj.get("use_kubetorch") is not None else True
92
+ "disk_size_gb": obj.get("disk_size_gb") if obj.get("disk_size_gb") is not None else 64
95
93
  })
96
94
  return _obj
97
95
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: shaped
3
- Version: 2.0.5
3
+ Version: 2.0.10
4
4
  Summary: CLI and SDK tools for interacting with the Shaped API.
5
5
  Home-page: https://github.com/shaped-ai/magnus
6
6
  Author: Shaped Team
@@ -2,10 +2,10 @@ shaped/__init__.py,sha256=9yORfYF9JPwhi6b29Y21EUCatpCMhlgHgBfMj_s9EAI,1160
2
2
  shaped/client.py,sha256=4jRsfysLkQvuyEYzdAB8yweRywdiklOzS-_qAmd_s2o,23377
3
3
  shaped/config_builders.py,sha256=GY4kNDZxRvmVkfR-jVSjqXDebbJnE9oCpuHYOipb8Gc,23212
4
4
  shaped/query_builder.py,sha256=44X58tb9msOZsyx19eknSriHyxADiantdX9Qs8-AdPo,24206
5
- shaped/autogen/__init__.py,sha256=5Kvb3mZ_cWlVSpAIVEWUrIGAHSiWSZve3XweXsXIePM,32954
5
+ shaped/autogen/__init__.py,sha256=VUyPSF0qDNhLpz9koR3IShO5BwxLxrYeUVIKmxGj2hc,33157
6
6
  shaped/autogen/api_client.py,sha256=-tW1rGCEA-Kp_Lh6EIOK-g08l1zm9_Kif75yciFaQ94,28576
7
7
  shaped/autogen/api_response.py,sha256=eMxw1mpmJcoGZ3gs9z6jM4oYoZ10Gjk333s9sKxGv7s,652
8
- shaped/autogen/configuration.py,sha256=4XTCFNzjlPmLHuG8R4p-NemaRw02jNjS4ePjyMdqp9Y,19007
8
+ shaped/autogen/configuration.py,sha256=Ol2F9Qbd3HKy6yr7jNUGRM65cV5p_8IifvW037_VJKQ,19008
9
9
  shaped/autogen/exceptions.py,sha256=4lNtdqGV1jjRyY567a7-_RLREwHQtZ44ut8nbqFoGgk,7325
10
10
  shaped/autogen/rest.py,sha256=YWfNOI5JIZcB-L3ZBUs_J2mccDFqSlxWM97RCQQp2Po,10442
11
11
  shaped/autogen/api/__init__.py,sha256=4Likv3Dq2be4kg4uoXtWHb9KqtKNisLBmKVox8MvNbM,248
@@ -13,7 +13,7 @@ shaped/autogen/api/engine_api.py,sha256=0586q7unJpsE3E03LdmGkWbkDihHK2-qCGE253WF
13
13
  shaped/autogen/api/query_api.py,sha256=e87oopjHS54dhIM4-Cm_qy2Rd2jTEgk7bi3eRRtTBuI,44140
14
14
  shaped/autogen/api/table_api.py,sha256=XRycXoLo9djcyk2O5hJQkT9c9aOm2Xp9uqIEAnDs43s,62209
15
15
  shaped/autogen/api/view_api.py,sha256=9JLbuuEwvYQ-N3qKlXjku_se1yD3byaOdyklfNPiRtU,57133
16
- shaped/autogen/models/__init__.py,sha256=2TGvCodZvTDViYFI-TxiL2qmBlU2qjotuYyDYXRNGMc,19659
16
+ shaped/autogen/models/__init__.py,sha256=MukGY5zplv0TllT59XbJ9QKKi4yH2gRur4nqjkrPodg,19786
17
17
  shaped/autogen/models/ai_enrichment_view_config.py,sha256=c0i8o2Cmh0Ts746MOCzDLKNNaz02_Z4sCMKIhrDN44s,5605
18
18
  shaped/autogen/models/algorithm.py,sha256=AZIFRf-uaghKvUbKHoUDQmXmmPDNrffwE98P0sQGzzQ,5611
19
19
  shaped/autogen/models/amplitude_table_config.py,sha256=5S87obbWtzkxIoN5r3IvfW1kMmh0oj5BT4GVLm-x9z4,4281
@@ -33,6 +33,7 @@ shaped/autogen/models/candidate_attributes_retrieve_step.py,sha256=587W_ay2LQRem
33
33
  shaped/autogen/models/candidate_ids_retrieve_step.py,sha256=UI_ypU0ri7-TCY3yNzYleJWCi7nish_fbOZb5l00b0g,4667
34
34
  shaped/autogen/models/candidate_retrieval_strategy.py,sha256=t1MbtrEZBSVqeT5FN9i6PqyTlTKu51iocvHOBhHdTZU,1718
35
35
  shaped/autogen/models/clickhouse_table_config.py,sha256=ZfJr52e3YCUPmvJ7f_xj_U7hVBYy6Vcl2xInX5lDIiI,6438
36
+ shaped/autogen/models/column_index_config.py,sha256=eWaWv1Afppe_l1XK3EEC5ZKHXNzz-Q0BuV16PjCeLf4,3657
36
37
  shaped/autogen/models/column_order_retrieve_step.py,sha256=zv6gqHxBET_OXwITr6FFZbhlaNpR6Qd3zJ9LspHWYqE,5221
37
38
  shaped/autogen/models/column_ordering.py,sha256=ZVkb8gbFo6TUemwtwt8TvdH3bS3q2nvAKUpamNFbf4U,3778
38
39
  shaped/autogen/models/create_table_response.py,sha256=9BNYVWhUVY9JZt7xgAp14PM1QrDaBCZ9DEqP0C5mXuk,3376
@@ -66,7 +67,7 @@ shaped/autogen/models/engine_schema.py,sha256=uMH1jfMogQZc3047E2kSshr1eX1u43mMUK
66
67
  shaped/autogen/models/entity_config.py,sha256=YgoIai3GItON4fVZfQEv2ci7rjpBr67I4PgvZjfcOYI,4435
67
68
  shaped/autogen/models/entity_journey.py,sha256=T51zvjcq2uTesJIY1CZEV0iHxWDY2e050x1Rozr3-dU,8358
68
69
  shaped/autogen/models/entity_type.py,sha256=qYxhkucnd_w18-NFd_b13sYq6Sh-k7nroc9xqegK3t0,1597
69
- shaped/autogen/models/evaluation_config.py,sha256=rCKckq4qSt19dN5CLN-qcZIhZu7RD-UytUSf3ekoXt4,4133
70
+ shaped/autogen/models/evaluation_config.py,sha256=cbQOvnQzGwnJDOSJ_jGZ69_MxQO3vBKbAyvYrxQCmHU,4344
70
71
  shaped/autogen/models/exploration_reorder_step.py,sha256=SqXHGqSLcRELzd-HhvpEtlNOPl6w6r2yv7m1kAY5c18,5317
71
72
  shaped/autogen/models/expression_filter_step.py,sha256=_MnBU5dp8X_HVZihCUux_0ZSX8ddTDJj-jR_tG89K4M,4206
72
73
  shaped/autogen/models/factors.py,sha256=oWAU8F83tGL6ZnL2JjWMeULaBSeyerpvR7Wdp40ozvM,5611
@@ -88,7 +89,8 @@ shaped/autogen/models/http_problem_response.py,sha256=pg8YROcQBs1EWvdQs57z8RSwfm
88
89
  shaped/autogen/models/http_validation_error.py,sha256=zCe-Exp-xTcsnkW6iZsEQsYCqk-FWY7wVJLW9DpA4KI,3791
89
90
  shaped/autogen/models/hugging_face_encoder.py,sha256=OWooFy4uI-xW_SjHsTWlXnmQM-vpbVgUYkxTbdSULUw,4946
90
91
  shaped/autogen/models/iceberg_table_config.py,sha256=DOkEvoj8mmJrYXPMXZ22foh0Qmk_blXZ9MEldtgElaE,6819
91
- shaped/autogen/models/index_config.py,sha256=F9Z_dK-E30JQ4XEUGeCfE3ZjgzREhCf8vlGYoBUAoT0,4408
92
+ shaped/autogen/models/index_config.py,sha256=WU9WPmpCExVk8CjHxH5FTLkKiGsXJXtXgCZ7TnX6kgA,6340
93
+ shaped/autogen/models/index_type.py,sha256=509_7usCEb8eFfmIh1N84HrwJIZnbOYdtD8rL0Qc-6I,1614
92
94
  shaped/autogen/models/inner_entity_id.py,sha256=Ql5Xedgk0E0T5TcABI9RPBfsB3-H_LNGqfXcjAGUgME,5806
93
95
  shaped/autogen/models/inner_size.py,sha256=gyCAiOS0dSBXLJxtdb1aWQtsofQQQGLjiqxbY2lwZVw,5779
94
96
  shaped/autogen/models/inner_size1.py,sha256=Uccddpth6Zuj5Jx6VzAfth9wgBafm0z3ekk4abbhNHk,5784
@@ -178,7 +180,7 @@ shaped/autogen/models/reorder_inner.py,sha256=CUddR6JFFqHEyDrt2W6t0YVZw6hi_fTbE2
178
180
  shaped/autogen/models/reorder_step_explanation.py,sha256=aucAsw_Ulhw9nW3WYUpCtWAY0QRqy1vj_S9gp4YXnSU,10047
179
181
  shaped/autogen/models/request.py,sha256=vlFQ-a2VpHuTg140VzoJdxjURP2Xs2hh_pB6mkJ5HqA,20574
180
182
  shaped/autogen/models/request1.py,sha256=izawNv6-MWsQJVTT_4ynhPCVrypDmPcvNNekLMZ3yc4,6237
181
- shaped/autogen/models/requests_per_second_scaling_policy.py,sha256=YR4odcZTBvMhar_sC4rEMs6qlcEL6pLNN3yfy1cXPd0,4733
183
+ shaped/autogen/models/requests_per_second_scaling_policy.py,sha256=cFbaAmc77d2GelRG0jekmCX79UmyQUv7jNq4svTLFnc,4731
182
184
  shaped/autogen/models/resource_config.py,sha256=O1nwrQ-l9Red0faavmP0JG7ULRbsKgg-TJNPLoBsgPs,4275
183
185
  shaped/autogen/models/response_get_view_details_views_view_name_get.py,sha256=RnMWszR8WAC43g-l9O8TB72ZUW6RlFTyUi_ZR2HHIZs,5836
184
186
  shaped/autogen/models/result.py,sha256=H_CxvdR6nTrpA7Z7iEnwGpZI1FlKyBwXF3FNJWrN2Pk,5843
@@ -202,7 +204,7 @@ shaped/autogen/models/search_config.py,sha256=h2JDaHcDYp0cDCQVXU8p_jxvLtM0E9jcH2
202
204
  shaped/autogen/models/segment_table_config.py,sha256=nbm2lgu286MW-RDyuTwLJYwn5kCipbX55vVDVUathRI,4261
203
205
  shaped/autogen/models/sequence_length.py,sha256=_24b8xnKrZH9fPL3X9N713VOGG3WbhbRzf7C_dIaVDQ,5793
204
206
  shaped/autogen/models/server_config.py,sha256=Oa5Pl5Ko0jvFXiDb0TlEJFM-2h1GXflLP7pmQ5qBAXg,4076
205
- shaped/autogen/models/setup_engine_response.py,sha256=DuGjcRmCEieb2AZWQaArOGFt0E-guXE-UqpvKCEzXkY,3378
207
+ shaped/autogen/models/setup_engine_response.py,sha256=KdY2Wum3OKtmZD3btb6VE7ebovEPLYJ2B--JSyO7e9k,3387
206
208
  shaped/autogen/models/shaped_internal_recsys_policies_als_model_policy_als_model_policy_config.py,sha256=89Z9QIWvHBdeJ81veTu5auasxQZ46cB7YGcoJTUX8DA,8001
207
209
  shaped/autogen/models/shaped_internal_recsys_policies_beeformer_model_policy_beeformer_model_policy_beeformer_model_policy_config.py,sha256=YJr_yJQwv8_QGsUrwgrvPJf2TB3NLsceEI8X98V2YFg,9127
208
210
  shaped/autogen/models/shaped_internal_recsys_policies_bert_model_policy_bert_model_policy_bert_model_policy_config.py,sha256=cvpgEP-wjxCoI2oZcMGPqWHrTUXfQzXktrYRLkjySAw,12749
@@ -235,7 +237,7 @@ shaped/autogen/models/time_frequency.py,sha256=gfOCRMAEONcFu2Fja03_LJaACH5Zu1fmQ
235
237
  shaped/autogen/models/time_window.py,sha256=BpO1FvfsmA2JXYM_sCIi-3xztI5yuk-k1TAwZGH4UHU,5583
236
238
  shaped/autogen/models/tokenizer.py,sha256=HTUArLoNpc6-EpuFdNzq5gHy1V1ARNUAnrG_rbViYXA,6565
237
239
  shaped/autogen/models/trained_model_encoder.py,sha256=W_shI0zGQkME5sqLT6x1rhrVSDPiOw_yBQxDVPb3jcc,3905
238
- shaped/autogen/models/training_compute_config.py,sha256=GiFtVyhqVSZwqx50QjTkJZwFv83KZcG08Kc9f1mu7MU,4946
240
+ shaped/autogen/models/training_compute_config.py,sha256=d5bP6liJFz9tsENDOQ58UI9ZFzt6lFGMHTl0_BuWy84,4697
239
241
  shaped/autogen/models/training_config.py,sha256=UWSDLzgezVOlxOISKi-ss9q_0DcV4xCT62ioO46Gu9I,6018
240
242
  shaped/autogen/models/training_strategy.py,sha256=weXra3YylPe3WtFS9_vPJhBBaKGR9P2qNOSDOTNDZ1o,1566
241
243
  shaped/autogen/models/transform_status.py,sha256=WWcO_9p92Y-mxPA60tGDGa3h4pzSHqWrjxV85tdpWnQ,1661
@@ -263,9 +265,9 @@ shaped/autogen/models/whitespace_tokenizer.py,sha256=RmYrVsagfJnYIrY_AYTjd1q9WEA
263
265
  shaped/autogen/models/window_size.py,sha256=PV0jImHGEsrSLREU0O6osmMCQh8TBC6KpldwHf-5-a8,5627
264
266
  shaped/cli/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
265
267
  shaped/cli/shaped_cli.py,sha256=foTU4wUNvXz9Ux7dL4M_HE0mYmTRpUV8Ru9Hb_IIOZU,25845
266
- shaped-2.0.5.dist-info/METADATA,sha256=SGrrj4Hh4AQ3Yqn40RDxMIXn2nJ-YW35BDnEQW2gbzA,8004
267
- shaped-2.0.5.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
268
- shaped-2.0.5.dist-info/entry_points.txt,sha256=Wa7tSHF7q4vSrM2UR5E-e3dVdSb59EOKQrA-6PAvyZI,54
269
- shaped-2.0.5.dist-info/top_level.txt,sha256=w-lDaoadQVYpze9N9gZyK9qngb7fZCJ-KCdHLGvt0SU,7
270
- shaped-2.0.5.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
271
- shaped-2.0.5.dist-info/RECORD,,
268
+ shaped-2.0.10.dist-info/METADATA,sha256=eWHJrmKB2uV3fvojy45PpB7bErcgMGuCDPf0zXWSZ1U,8005
269
+ shaped-2.0.10.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
270
+ shaped-2.0.10.dist-info/entry_points.txt,sha256=Wa7tSHF7q4vSrM2UR5E-e3dVdSb59EOKQrA-6PAvyZI,54
271
+ shaped-2.0.10.dist-info/top_level.txt,sha256=w-lDaoadQVYpze9N9gZyK9qngb7fZCJ-KCdHLGvt0SU,7
272
+ shaped-2.0.10.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
273
+ shaped-2.0.10.dist-info/RECORD,,