shaped 2.0.2__py3-none-any.whl → 2.0.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (283) hide show
  1. shaped/__init__.py +47 -42
  2. shaped/autogen/__init__.py +41 -56
  3. shaped/autogen/api/engine_api.py +5 -6
  4. shaped/autogen/api/query_api.py +12 -73
  5. shaped/autogen/api/table_api.py +5 -6
  6. shaped/autogen/api/view_api.py +5 -6
  7. shaped/autogen/api_client.py +8 -9
  8. shaped/autogen/configuration.py +9 -8
  9. shaped/autogen/exceptions.py +11 -9
  10. shaped/autogen/models/__init__.py +23 -31
  11. shaped/autogen/models/ai_enrichment_view_config.py +5 -6
  12. shaped/autogen/models/algorithm.py +5 -6
  13. shaped/autogen/models/amplitude_table_config.py +5 -6
  14. shaped/autogen/models/attn_dropout_prob.py +5 -6
  15. shaped/autogen/models/attribute_journey.py +5 -6
  16. shaped/autogen/models/attribute_value.py +5 -6
  17. shaped/autogen/models/autoscaling_config.py +5 -6
  18. shaped/autogen/models/aws_pinpoint_table_config.py +5 -6
  19. shaped/autogen/models/batch_size.py +5 -6
  20. shaped/autogen/models/batch_size1.py +5 -6
  21. shaped/autogen/models/batch_size2.py +5 -6
  22. shaped/autogen/models/big_query_table_config.py +5 -6
  23. shaped/autogen/models/bm25.py +5 -6
  24. shaped/autogen/models/boosted_reorder_step.py +5 -6
  25. shaped/autogen/models/canary_rollout.py +5 -6
  26. shaped/autogen/models/candidate_attributes_retrieve_step.py +5 -19
  27. shaped/autogen/models/candidate_ids_retrieve_step.py +5 -6
  28. shaped/autogen/models/candidate_retrieval_strategy.py +5 -6
  29. shaped/autogen/models/clickhouse_table_config.py +5 -6
  30. shaped/autogen/models/column_order_retrieve_step.py +5 -6
  31. shaped/autogen/models/column_ordering.py +5 -6
  32. shaped/autogen/models/create_table_response.py +5 -6
  33. shaped/autogen/models/create_view_response.py +5 -6
  34. shaped/autogen/models/custom_table_config.py +5 -6
  35. shaped/autogen/models/data_compute_config.py +5 -6
  36. shaped/autogen/models/data_config.py +5 -6
  37. shaped/autogen/models/data_config_interaction_table.py +5 -6
  38. shaped/autogen/models/data_split_config.py +5 -6
  39. shaped/autogen/models/data_split_strategy.py +5 -6
  40. shaped/autogen/models/data_tier.py +5 -6
  41. shaped/autogen/models/default.py +5 -6
  42. shaped/autogen/models/delete_engine_response.py +5 -6
  43. shaped/autogen/models/delete_table_response.py +5 -6
  44. shaped/autogen/models/delete_view_response.py +5 -6
  45. shaped/autogen/models/deployment_config.py +6 -13
  46. shaped/autogen/models/diversity_reorder_step.py +5 -6
  47. shaped/autogen/models/dropout_rate.py +5 -6
  48. shaped/autogen/models/dynamo_db_table_config.py +5 -6
  49. shaped/autogen/models/dynamo_db_table_config_scan_kwargs_value.py +5 -6
  50. shaped/autogen/models/embedder_batch_size.py +5 -6
  51. shaped/autogen/models/embedding_config.py +5 -6
  52. shaped/autogen/models/embedding_dim.py +5 -6
  53. shaped/autogen/models/embedding_dims.py +5 -6
  54. shaped/autogen/models/embedding_size.py +5 -6
  55. shaped/autogen/models/encoder.py +5 -6
  56. shaped/autogen/models/engine.py +5 -6
  57. shaped/autogen/models/engine_config_v2.py +5 -6
  58. shaped/autogen/models/engine_details_response.py +5 -6
  59. shaped/autogen/models/engine_schema.py +12 -13
  60. shaped/autogen/models/entity_config.py +5 -6
  61. shaped/autogen/models/entity_journey.py +32 -24
  62. shaped/autogen/models/entity_type.py +5 -6
  63. shaped/autogen/models/evaluation_config.py +5 -6
  64. shaped/autogen/models/exploration_reorder_step.py +5 -6
  65. shaped/autogen/models/expression_filter_step.py +5 -6
  66. shaped/autogen/models/factors.py +5 -6
  67. shaped/autogen/models/factors1.py +5 -6
  68. shaped/autogen/models/feature.py +5 -6
  69. shaped/autogen/models/feature_type.py +5 -6
  70. shaped/autogen/models/file_table_config.py +5 -6
  71. shaped/autogen/models/filter_config.py +18 -19
  72. shaped/autogen/models/filter_index_type.py +5 -6
  73. shaped/autogen/models/filter_retrieve_step.py +5 -6
  74. shaped/autogen/models/filter_step_explanation.py +164 -0
  75. shaped/autogen/models/{filter_dataset.py → filter_table.py} +12 -13
  76. shaped/autogen/models/{type.py → filter_type.py} +10 -11
  77. shaped/autogen/models/global_filter.py +5 -6
  78. shaped/autogen/models/hidden_dropout_prob.py +5 -6
  79. shaped/autogen/models/hidden_size.py +5 -6
  80. shaped/autogen/models/hidden_size1.py +5 -6
  81. shaped/autogen/models/http_problem_response.py +5 -6
  82. shaped/autogen/models/http_validation_error.py +5 -6
  83. shaped/autogen/models/hugging_face_encoder.py +10 -9
  84. shaped/autogen/models/iceberg_table_config.py +5 -6
  85. shaped/autogen/models/index_config.py +5 -6
  86. shaped/autogen/models/{time_window_in_days.py → inner_entity_id.py} +27 -26
  87. shaped/autogen/models/inner_size.py +5 -6
  88. shaped/autogen/models/inner_size1.py +5 -6
  89. shaped/autogen/models/{mode2.py → inner_uid.py} +37 -30
  90. shaped/autogen/models/interaction_config.py +5 -6
  91. shaped/autogen/models/interaction_pooling_encoder.py +5 -6
  92. shaped/autogen/models/interaction_round_robin_encoder.py +5 -6
  93. shaped/autogen/models/item_attribute_pooling_encoder.py +5 -19
  94. shaped/autogen/models/journey.py +5 -6
  95. shaped/autogen/models/kafka_table_config.py +5 -6
  96. shaped/autogen/models/kinesis_table_config.py +5 -6
  97. shaped/autogen/models/kinesis_table_config_column_schema_value.py +5 -6
  98. shaped/autogen/models/label.py +5 -6
  99. shaped/autogen/models/label_type.py +5 -7
  100. shaped/autogen/models/laplace_smoothing.py +5 -6
  101. shaped/autogen/models/latency_scaling_policy.py +5 -6
  102. shaped/autogen/models/learning_rate.py +5 -6
  103. shaped/autogen/models/learning_rate1.py +5 -6
  104. shaped/autogen/models/learning_rate2.py +5 -6
  105. shaped/autogen/models/learning_rate3.py +5 -6
  106. shaped/autogen/models/lexical_search_mode.py +7 -8
  107. shaped/autogen/models/list_engines_response.py +5 -6
  108. shaped/autogen/models/list_tables_response.py +5 -6
  109. shaped/autogen/models/list_views_response.py +5 -6
  110. shaped/autogen/models/{validation_error_loc_inner.py → location_inner.py} +11 -12
  111. shaped/autogen/models/loss_types.py +5 -6
  112. shaped/autogen/models/lr.py +5 -6
  113. shaped/autogen/models/lr1.py +5 -6
  114. shaped/autogen/models/lr2.py +5 -6
  115. shaped/autogen/models/max_depth.py +5 -6
  116. shaped/autogen/models/max_leaves.py +5 -6
  117. shaped/autogen/models/max_seq_length.py +5 -6
  118. shaped/autogen/models/max_seq_length1.py +5 -6
  119. shaped/autogen/models/max_seq_length2.py +5 -6
  120. shaped/autogen/models/mode.py +5 -6
  121. shaped/autogen/models/mode1.py +24 -23
  122. shaped/autogen/models/{training_config_models_inner.py → models_inner.py} +13 -14
  123. shaped/autogen/models/mongo_db_table_config.py +5 -6
  124. shaped/autogen/models/mssql_table_config.py +5 -6
  125. shaped/autogen/models/my_sql_table_config.py +5 -6
  126. shaped/autogen/models/n_epochs.py +5 -6
  127. shaped/autogen/models/n_epochs1.py +5 -6
  128. shaped/autogen/models/n_epochs2.py +5 -6
  129. shaped/autogen/models/n_estimators.py +5 -6
  130. shaped/autogen/models/n_heads.py +5 -6
  131. shaped/autogen/models/n_layers.py +5 -6
  132. shaped/autogen/models/neg_per_positive.py +5 -6
  133. shaped/autogen/models/negative_samples_count.py +5 -6
  134. shaped/autogen/models/ngram_tokenizer.py +5 -6
  135. shaped/autogen/models/no_op_config.py +5 -6
  136. shaped/autogen/models/num_blocks.py +5 -6
  137. shaped/autogen/models/num_heads.py +5 -6
  138. shaped/autogen/models/num_leaves.py +5 -6
  139. shaped/autogen/models/objective.py +5 -6
  140. shaped/autogen/models/objective1.py +5 -6
  141. shaped/autogen/models/online_store_config.py +5 -6
  142. shaped/autogen/models/pagination_config.py +5 -6
  143. shaped/autogen/models/parameter_definition.py +5 -6
  144. shaped/autogen/models/parameters_value.py +5 -6
  145. shaped/autogen/models/passthrough_score.py +5 -6
  146. shaped/autogen/models/personal_filter.py +5 -6
  147. shaped/autogen/models/pipeline_stage_explanation.py +8 -9
  148. shaped/autogen/models/policy.py +5 -6
  149. shaped/autogen/models/pooling_function.py +5 -6
  150. shaped/autogen/models/postgres_table_config.py +5 -6
  151. shaped/autogen/models/posthog_table_config.py +5 -6
  152. shaped/autogen/models/prebuilt_filter_step.py +5 -6
  153. shaped/autogen/models/precomputed_item_embedding.py +5 -6
  154. shaped/autogen/models/precomputed_user_embedding.py +5 -6
  155. shaped/autogen/models/query.py +19 -20
  156. shaped/autogen/models/query1.py +19 -20
  157. shaped/autogen/models/{query_any_of.py → query_config.py} +13 -14
  158. shaped/autogen/models/query_definition.py +5 -6
  159. shaped/autogen/models/query_encoder.py +5 -6
  160. shaped/autogen/models/query_explanation.py +11 -8
  161. shaped/autogen/models/query_request.py +5 -6
  162. shaped/autogen/models/query_result.py +5 -6
  163. shaped/autogen/models/query_table_config.py +5 -6
  164. shaped/autogen/models/rank_item_attribute_values_query_config.py +5 -6
  165. shaped/autogen/models/rank_query_config.py +11 -12
  166. shaped/autogen/models/rank_query_config_filter_inner.py +5 -6
  167. shaped/autogen/models/recreate_rollout.py +5 -6
  168. shaped/autogen/models/redshift_table_config.py +5 -6
  169. shaped/autogen/models/reference_table_config.py +5 -6
  170. shaped/autogen/models/regularization.py +5 -6
  171. shaped/autogen/models/{rank_query_config_reorder_inner.py → reorder_inner.py} +11 -12
  172. shaped/autogen/models/reorder_step_explanation.py +206 -0
  173. shaped/autogen/models/request.py +5 -6
  174. shaped/autogen/models/request1.py +5 -6
  175. shaped/autogen/models/requests_per_second_scaling_policy.py +5 -6
  176. shaped/autogen/models/resource_config.py +99 -0
  177. shaped/autogen/models/response_get_view_details_views_view_name_get.py +5 -6
  178. shaped/autogen/models/result.py +5 -19
  179. shaped/autogen/models/result_embeddings_value.py +5 -6
  180. shaped/autogen/models/{ascending.py → retrieval_scores_value.py} +26 -36
  181. shaped/autogen/models/{rank_query_config_retrieve_inner.py → retrieve_inner.py} +13 -14
  182. shaped/autogen/models/retrieve_step_explanation.py +171 -0
  183. shaped/autogen/models/retriever.py +5 -6
  184. shaped/autogen/models/retriever1.py +5 -6
  185. shaped/autogen/models/rollout_config.py +5 -6
  186. shaped/autogen/models/rudderstack_table_config.py +5 -6
  187. shaped/autogen/models/sampling_strategy.py +5 -6
  188. shaped/autogen/models/saved_query_info_response.py +22 -9
  189. shaped/autogen/models/saved_query_list_response.py +5 -6
  190. shaped/autogen/models/saved_query_request.py +5 -6
  191. shaped/autogen/models/schema_config.py +5 -6
  192. shaped/autogen/models/score.py +5 -6
  193. shaped/autogen/models/score_ensemble.py +5 -19
  194. shaped/autogen/models/score_step_explanation.py +223 -0
  195. shaped/autogen/models/search_config.py +5 -6
  196. shaped/autogen/models/segment_table_config.py +5 -6
  197. shaped/autogen/models/sequence_length.py +5 -6
  198. shaped/autogen/models/server_config.py +18 -6
  199. shaped/autogen/models/setup_engine_response.py +5 -6
  200. shaped/autogen/models/shaped_internal_recsys_policies_als_model_policy_als_model_policy_config.py +13 -8
  201. shaped/autogen/models/shaped_internal_recsys_policies_beeformer_model_policy_beeformer_model_policy_beeformer_model_policy_config.py +13 -8
  202. shaped/autogen/models/shaped_internal_recsys_policies_bert_model_policy_bert_model_policy_bert_model_policy_config.py +14 -9
  203. shaped/autogen/models/shaped_internal_recsys_policies_elsa_model_policy_elsa_model_policy_elsa_model_policy_config.py +10 -9
  204. shaped/autogen/models/shaped_internal_recsys_policies_gsasrec_model_policy_gsasrec_model_policy_gsas_rec_model_policy_config.py +13 -8
  205. shaped/autogen/models/shaped_internal_recsys_policies_item2vec_model_policy_item2_vec_model_policy_config.py +5 -6
  206. shaped/autogen/models/shaped_internal_recsys_policies_lightgbm_model_policy_lightgbm_model_policy_light_gbm_model_policy_config.py +13 -8
  207. shaped/autogen/models/shaped_internal_recsys_policies_ngram_model_policy_ngram_model_policy_config.py +5 -6
  208. shaped/autogen/models/shaped_internal_recsys_policies_rising_popular_policy_rising_popular_policy_config.py +5 -6
  209. shaped/autogen/models/shaped_internal_recsys_policies_sasrec_model_policy_sasrec_model_policy_sas_rec_model_policy_config.py +13 -8
  210. shaped/autogen/models/shaped_internal_recsys_policies_svd_model_policy_svd_model_policy_config.py +5 -6
  211. shaped/autogen/models/shaped_internal_recsys_policies_two_tower_model_policy_two_tower_model_policy_two_tower_model_policy_config.py +13 -8
  212. shaped/autogen/models/shaped_internal_recsys_policies_widedeep_model_policy_wide_deep_model_policy_config.py +14 -9
  213. shaped/autogen/models/shaped_internal_recsys_policies_xgboost_model_policy_xg_boost_model_policy_config.py +16 -11
  214. shaped/autogen/models/shopify_table_config.py +5 -6
  215. shaped/autogen/models/similarity_retrieve_step.py +10 -9
  216. shaped/autogen/models/snowflake_table_config.py +5 -6
  217. shaped/autogen/models/sql_transform_type.py +5 -6
  218. shaped/autogen/models/sql_view_config.py +5 -6
  219. shaped/autogen/models/stemmer_tokenizer.py +5 -6
  220. shaped/autogen/models/step_explanation.py +5 -6
  221. shaped/autogen/models/steps_inner.py +178 -0
  222. shaped/autogen/models/strategy.py +5 -6
  223. shaped/autogen/models/table.py +5 -6
  224. shaped/autogen/models/table_deployment_type.py +5 -6
  225. shaped/autogen/models/table_insert_arguments.py +7 -8
  226. shaped/autogen/models/table_insert_response.py +5 -6
  227. shaped/autogen/models/text_search_retrieve_step.py +5 -6
  228. shaped/autogen/models/time_frequency.py +5 -6
  229. shaped/autogen/models/time_window.py +5 -6
  230. shaped/autogen/models/tokenizer.py +5 -6
  231. shaped/autogen/models/trained_model_encoder.py +5 -6
  232. shaped/autogen/models/training_compute_config.py +8 -9
  233. shaped/autogen/models/training_config.py +8 -9
  234. shaped/autogen/models/training_strategy.py +5 -6
  235. shaped/autogen/models/transform_status.py +40 -0
  236. shaped/autogen/models/truncate_filter_step.py +5 -6
  237. shaped/autogen/models/tunable_bool.py +5 -6
  238. shaped/autogen/models/tunable_float.py +5 -6
  239. shaped/autogen/models/tunable_int.py +5 -6
  240. shaped/autogen/models/tunable_int_categorical.py +5 -6
  241. shaped/autogen/models/tunable_string.py +5 -6
  242. shaped/autogen/models/tuning_config.py +5 -6
  243. shaped/autogen/models/update_table_response.py +5 -6
  244. shaped/autogen/models/update_view_response.py +5 -6
  245. shaped/autogen/models/user_attribute_pooling_encoder.py +5 -6
  246. shaped/autogen/models/{engine_schema_user_inner.py → user_inner.py} +11 -12
  247. shaped/autogen/models/val_split.py +5 -6
  248. shaped/autogen/models/validation_error.py +8 -9
  249. shaped/autogen/models/value_type.py +5 -6
  250. shaped/autogen/models/vector_search_mode.py +10 -9
  251. shaped/autogen/models/view.py +8 -9
  252. shaped/autogen/models/view_details_ai.py +10 -11
  253. shaped/autogen/models/view_details_ai_schema_value.py +5 -6
  254. shaped/autogen/models/view_details_sql.py +10 -11
  255. shaped/autogen/models/weight_decay.py +5 -6
  256. shaped/autogen/models/whitespace_tokenizer.py +5 -6
  257. shaped/autogen/models/window_size.py +5 -6
  258. shaped/autogen/rest.py +13 -14
  259. shaped/cli/shaped_cli.py +152 -29
  260. shaped/client.py +50 -43
  261. shaped/config_builders.py +110 -100
  262. shaped/query_builder.py +56 -49
  263. {shaped-2.0.2.dist-info → shaped-2.0.5.dist-info}/METADATA +2 -2
  264. shaped-2.0.5.dist-info/RECORD +271 -0
  265. {shaped-2.0.2.dist-info → shaped-2.0.5.dist-info}/WHEEL +1 -1
  266. shaped/autogen/models/distance_function.py +0 -38
  267. shaped/autogen/models/encoding_pooling_strategy.py +0 -38
  268. shaped/autogen/models/pool_fn.py +0 -134
  269. shaped/autogen/models/score_ensemble_policy_config.py +0 -141
  270. shaped/autogen/models/score_ensemble_policy_config_policies_inner.py +0 -422
  271. shaped/autogen/models/shaped_internal_recsys_policies_chronological_model_policy_chronological_model_policy_config.py +0 -137
  272. shaped/autogen/models/shaped_internal_recsys_policies_item_content_similarity_model_policy_item_content_similarity_model_policy_config.py +0 -152
  273. shaped/autogen/models/shaped_internal_recsys_policies_popular_model_policy_popular_model_policy_config.py +0 -137
  274. shaped/autogen/models/shaped_internal_recsys_policies_random_model_policy_random_model_policy_config.py +0 -104
  275. shaped/autogen/models/shaped_internal_recsys_policies_recently_popular_policy_recently_popular_policy_config.py +0 -130
  276. shaped/autogen/models/shaped_internal_recsys_policies_user_item_content_similarity_model_policy_user_item_content_similarity_model_policy_config.py +0 -131
  277. shaped/autogen/models/text_encoding.py +0 -136
  278. shaped/autogen/models/trending_mode.py +0 -37
  279. shaped/autogen/models/view_status.py +0 -41
  280. shaped-2.0.2.dist-info/RECORD +0 -278
  281. {shaped-2.0.2.dist-info → shaped-2.0.5.dist-info}/entry_points.txt +0 -0
  282. {shaped-2.0.2.dist-info → shaped-2.0.5.dist-info}/top_level.txt +0 -0
  283. {shaped-2.0.2.dist-info → shaped-2.0.5.dist-info}/zip-safe +0 -0
@@ -1,15 +1,14 @@
1
1
  # coding: utf-8
2
2
 
3
3
  """
4
- Shaped API
4
+ Shaped API
5
5
 
6
- Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. The Shaped API has four main endpoints: **Tables** - Provision and manage batch and real-time data connectors. **Views** - Configure SQL transformations and AI enrichment on your input data. Use SQL to combine multiple data sources or use an LLM to add new categories, extract specific attributes from descriptions, etc. **Engines** - Deploy and manage your relevance engines. The Engine API exposes configuration for indexing logic, input datasets, externam embeddings, and more. **Query** - Execute queries against your engines, to return data based on an input query or rerank an existing list. The Query API exposes the retrieve, filter, score, and ranking steps of the 4-stage ranking architecture. The base URL for each endpoint is: `https://api.shaped.ai/v2`
6
+ Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. The Shaped API has four main endpoints: **Tables** - Provision and manage batch and real-time data connectors. **Views** - Configure SQL transformations and AI enrichment on your input data. Use SQL to combine multiple data sources or use an LLM to add new categories, extract specific attributes from descriptions, etc. **Engines** - Deploy and manage your relevance engines. The Engine API exposes configuration for indexing logic, input datasets, externam embeddings, and more. **Query** - Execute queries against your engines, to return data based on an input query or rerank an existing list. The Query API exposes the retrieve, filter, score, and ranking steps of the 4-stage ranking architecture. The base URL for each endpoint is: `https://api.shaped.ai/v2`
7
7
 
8
- The version of the OpenAPI document: 2.0.0
9
- Generated by OpenAPI Generator (https://openapi-generator.tech)
8
+ Generated by OpenAPI Generator (https://openapi-generator.tech)
10
9
 
11
- Do not edit the class manually.
12
- """ # noqa: E501
10
+ Do not edit the class manually.
11
+ """ # noqa: E501
13
12
 
14
13
 
15
14
  from __future__ import annotations
@@ -1,15 +1,14 @@
1
1
  # coding: utf-8
2
2
 
3
3
  """
4
- Shaped API
4
+ Shaped API
5
5
 
6
- Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. The Shaped API has four main endpoints: **Tables** - Provision and manage batch and real-time data connectors. **Views** - Configure SQL transformations and AI enrichment on your input data. Use SQL to combine multiple data sources or use an LLM to add new categories, extract specific attributes from descriptions, etc. **Engines** - Deploy and manage your relevance engines. The Engine API exposes configuration for indexing logic, input datasets, externam embeddings, and more. **Query** - Execute queries against your engines, to return data based on an input query or rerank an existing list. The Query API exposes the retrieve, filter, score, and ranking steps of the 4-stage ranking architecture. The base URL for each endpoint is: `https://api.shaped.ai/v2`
6
+ Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. The Shaped API has four main endpoints: **Tables** - Provision and manage batch and real-time data connectors. **Views** - Configure SQL transformations and AI enrichment on your input data. Use SQL to combine multiple data sources or use an LLM to add new categories, extract specific attributes from descriptions, etc. **Engines** - Deploy and manage your relevance engines. The Engine API exposes configuration for indexing logic, input datasets, externam embeddings, and more. **Query** - Execute queries against your engines, to return data based on an input query or rerank an existing list. The Query API exposes the retrieve, filter, score, and ranking steps of the 4-stage ranking architecture. The base URL for each endpoint is: `https://api.shaped.ai/v2`
7
7
 
8
- The version of the OpenAPI document: 2.0.0
9
- Generated by OpenAPI Generator (https://openapi-generator.tech)
8
+ Generated by OpenAPI Generator (https://openapi-generator.tech)
10
9
 
11
- Do not edit the class manually.
12
- """ # noqa: E501
10
+ Do not edit the class manually.
11
+ """ # noqa: E501
13
12
 
14
13
 
15
14
  from __future__ import annotations
@@ -32,7 +31,6 @@ class ScoreEnsemble(BaseModel):
32
31
  input_interactions_item_ids: Optional[List[Any]] = None
33
32
  name: Optional[StrictStr] = None
34
33
  type: Optional[StrictStr] = Field(default='score_ensemble', description="Score step type discriminator.")
35
- additional_properties: Dict[str, Any] = {}
36
34
  __properties: ClassVar[List[str]] = ["value_model", "input_user_id", "input_user_features", "input_interactions_item_ids", "name", "type"]
37
35
 
38
36
  @field_validator('type')
@@ -75,10 +73,8 @@ class ScoreEnsemble(BaseModel):
75
73
  * `None` is only added to the output dict for nullable fields that
76
74
  were set at model initialization. Other fields with value `None`
77
75
  are ignored.
78
- * Fields in `self.additional_properties` are added to the output dict.
79
76
  """
80
77
  excluded_fields: Set[str] = set([
81
- "additional_properties",
82
78
  ])
83
79
 
84
80
  _dict = self.model_dump(
@@ -86,11 +82,6 @@ class ScoreEnsemble(BaseModel):
86
82
  exclude=excluded_fields,
87
83
  exclude_none=True,
88
84
  )
89
- # puts key-value pairs in additional_properties in the top level
90
- if self.additional_properties is not None:
91
- for _key, _value in self.additional_properties.items():
92
- _dict[_key] = _value
93
-
94
85
  # set to None if input_user_id (nullable) is None
95
86
  # and model_fields_set contains the field
96
87
  if self.input_user_id is None and "input_user_id" in self.model_fields_set:
@@ -130,11 +121,6 @@ class ScoreEnsemble(BaseModel):
130
121
  "name": obj.get("name"),
131
122
  "type": obj.get("type") if obj.get("type") is not None else 'score_ensemble'
132
123
  })
133
- # store additional fields in additional_properties
134
- for _key in obj.keys():
135
- if _key not in cls.__properties:
136
- _obj.additional_properties[_key] = obj.get(_key)
137
-
138
124
  return _obj
139
125
 
140
126
 
@@ -0,0 +1,223 @@
1
+ # coding: utf-8
2
+
3
+ """
4
+ Shaped API
5
+
6
+ Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. The Shaped API has four main endpoints: **Tables** - Provision and manage batch and real-time data connectors. **Views** - Configure SQL transformations and AI enrichment on your input data. Use SQL to combine multiple data sources or use an LLM to add new categories, extract specific attributes from descriptions, etc. **Engines** - Deploy and manage your relevance engines. The Engine API exposes configuration for indexing logic, input datasets, externam embeddings, and more. **Query** - Execute queries against your engines, to return data based on an input query or rerank an existing list. The Query API exposes the retrieve, filter, score, and ranking steps of the 4-stage ranking architecture. The base URL for each endpoint is: `https://api.shaped.ai/v2`
7
+
8
+ Generated by OpenAPI Generator (https://openapi-generator.tech)
9
+
10
+ Do not edit the class manually.
11
+ """ # noqa: E501
12
+
13
+
14
+ from __future__ import annotations
15
+ import pprint
16
+ import re # noqa: F401
17
+ import json
18
+
19
+ from pydantic import BaseModel, ConfigDict, Field, StrictBool, StrictFloat, StrictInt, StrictStr
20
+ from typing import Any, ClassVar, Dict, List, Optional, Union
21
+ from shaped.autogen.models.retrieval_scores_value import RetrievalScoresValue
22
+ from typing import Optional, Set
23
+ from typing_extensions import Self
24
+
25
+ class ScoreStepExplanation(BaseModel):
26
+ """
27
+ Explanation for a scoring step.
28
+ """ # noqa: E501
29
+ step_name: Optional[StrictStr] = None
30
+ step_type: Optional[StrictStr] = Field(default='', description="Type of step. Examples: 'column_order', 'similarity', 'text_search', 'prebuilt', 'expression', 'score_ensemble', 'diversity', etc.")
31
+ input_count: Optional[StrictInt] = None
32
+ output_count: Optional[StrictInt] = None
33
+ filtered_count: Optional[StrictInt] = None
34
+ execution_time_ms: Optional[Union[StrictFloat, StrictInt]] = None
35
+ metadata: Optional[Dict[str, Any]] = Field(default=None, description="Additional step-specific metadata. Contains implementation details specific to the step type.")
36
+ score_type: Optional[StrictStr] = None
37
+ value_model: Optional[StrictStr] = None
38
+ score_distribution: Optional[Dict[str, Union[StrictFloat, StrictInt]]] = None
39
+ items_scored: Optional[StrictInt] = None
40
+ scoring_policy_scores: Optional[Dict[str, List[Optional[RetrievalScoresValue]]]] = None
41
+ is_user_found_in_feature_store: Optional[StrictBool] = None
42
+ user_interaction_count: Optional[StrictInt] = None
43
+ user_feature_column_count: Optional[StrictInt] = None
44
+ item_feature_column_count: Optional[StrictInt] = None
45
+ candidate_item_features_count: Optional[StrictInt] = None
46
+ additional_properties: Dict[str, Any] = {}
47
+ __properties: ClassVar[List[str]] = ["step_name", "step_type", "input_count", "output_count", "filtered_count", "execution_time_ms", "metadata", "score_type", "value_model", "score_distribution", "items_scored", "scoring_policy_scores", "is_user_found_in_feature_store", "user_interaction_count", "user_feature_column_count", "item_feature_column_count", "candidate_item_features_count"]
48
+
49
+ model_config = ConfigDict(
50
+ populate_by_name=True,
51
+ validate_assignment=True,
52
+ protected_namespaces=(),
53
+ )
54
+
55
+
56
+ def to_str(self) -> str:
57
+ """Returns the string representation of the model using alias"""
58
+ return pprint.pformat(self.model_dump(by_alias=True))
59
+
60
+ def to_json(self) -> str:
61
+ """Returns the JSON representation of the model using alias"""
62
+ # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
63
+ return json.dumps(self.to_dict())
64
+
65
+ @classmethod
66
+ def from_json(cls, json_str: str) -> Optional[Self]:
67
+ """Create an instance of ScoreStepExplanation from a JSON string"""
68
+ return cls.from_dict(json.loads(json_str))
69
+
70
+ def to_dict(self) -> Dict[str, Any]:
71
+ """Return the dictionary representation of the model using alias.
72
+
73
+ This has the following differences from calling pydantic's
74
+ `self.model_dump(by_alias=True)`:
75
+
76
+ * `None` is only added to the output dict for nullable fields that
77
+ were set at model initialization. Other fields with value `None`
78
+ are ignored.
79
+ * Fields in `self.additional_properties` are added to the output dict.
80
+ """
81
+ excluded_fields: Set[str] = set([
82
+ "additional_properties",
83
+ ])
84
+
85
+ _dict = self.model_dump(
86
+ by_alias=True,
87
+ exclude=excluded_fields,
88
+ exclude_none=True,
89
+ )
90
+ # override the default output from pydantic by calling `to_dict()` of each value in scoring_policy_scores (dict of array)
91
+ _field_dict_of_array = {}
92
+ if self.scoring_policy_scores:
93
+ for _key_scoring_policy_scores in self.scoring_policy_scores:
94
+ if self.scoring_policy_scores[_key_scoring_policy_scores] is not None:
95
+ _field_dict_of_array[_key_scoring_policy_scores] = [
96
+ _item.to_dict() for _item in self.scoring_policy_scores[_key_scoring_policy_scores]
97
+ ]
98
+ _dict['scoring_policy_scores'] = _field_dict_of_array
99
+ # puts key-value pairs in additional_properties in the top level
100
+ if self.additional_properties is not None:
101
+ for _key, _value in self.additional_properties.items():
102
+ _dict[_key] = _value
103
+
104
+ # set to None if step_name (nullable) is None
105
+ # and model_fields_set contains the field
106
+ if self.step_name is None and "step_name" in self.model_fields_set:
107
+ _dict['step_name'] = None
108
+
109
+ # set to None if input_count (nullable) is None
110
+ # and model_fields_set contains the field
111
+ if self.input_count is None and "input_count" in self.model_fields_set:
112
+ _dict['input_count'] = None
113
+
114
+ # set to None if output_count (nullable) is None
115
+ # and model_fields_set contains the field
116
+ if self.output_count is None and "output_count" in self.model_fields_set:
117
+ _dict['output_count'] = None
118
+
119
+ # set to None if filtered_count (nullable) is None
120
+ # and model_fields_set contains the field
121
+ if self.filtered_count is None and "filtered_count" in self.model_fields_set:
122
+ _dict['filtered_count'] = None
123
+
124
+ # set to None if execution_time_ms (nullable) is None
125
+ # and model_fields_set contains the field
126
+ if self.execution_time_ms is None and "execution_time_ms" in self.model_fields_set:
127
+ _dict['execution_time_ms'] = None
128
+
129
+ # set to None if score_type (nullable) is None
130
+ # and model_fields_set contains the field
131
+ if self.score_type is None and "score_type" in self.model_fields_set:
132
+ _dict['score_type'] = None
133
+
134
+ # set to None if value_model (nullable) is None
135
+ # and model_fields_set contains the field
136
+ if self.value_model is None and "value_model" in self.model_fields_set:
137
+ _dict['value_model'] = None
138
+
139
+ # set to None if score_distribution (nullable) is None
140
+ # and model_fields_set contains the field
141
+ if self.score_distribution is None and "score_distribution" in self.model_fields_set:
142
+ _dict['score_distribution'] = None
143
+
144
+ # set to None if items_scored (nullable) is None
145
+ # and model_fields_set contains the field
146
+ if self.items_scored is None and "items_scored" in self.model_fields_set:
147
+ _dict['items_scored'] = None
148
+
149
+ # set to None if scoring_policy_scores (nullable) is None
150
+ # and model_fields_set contains the field
151
+ if self.scoring_policy_scores is None and "scoring_policy_scores" in self.model_fields_set:
152
+ _dict['scoring_policy_scores'] = None
153
+
154
+ # set to None if is_user_found_in_feature_store (nullable) is None
155
+ # and model_fields_set contains the field
156
+ if self.is_user_found_in_feature_store is None and "is_user_found_in_feature_store" in self.model_fields_set:
157
+ _dict['is_user_found_in_feature_store'] = None
158
+
159
+ # set to None if user_interaction_count (nullable) is None
160
+ # and model_fields_set contains the field
161
+ if self.user_interaction_count is None and "user_interaction_count" in self.model_fields_set:
162
+ _dict['user_interaction_count'] = None
163
+
164
+ # set to None if user_feature_column_count (nullable) is None
165
+ # and model_fields_set contains the field
166
+ if self.user_feature_column_count is None and "user_feature_column_count" in self.model_fields_set:
167
+ _dict['user_feature_column_count'] = None
168
+
169
+ # set to None if item_feature_column_count (nullable) is None
170
+ # and model_fields_set contains the field
171
+ if self.item_feature_column_count is None and "item_feature_column_count" in self.model_fields_set:
172
+ _dict['item_feature_column_count'] = None
173
+
174
+ # set to None if candidate_item_features_count (nullable) is None
175
+ # and model_fields_set contains the field
176
+ if self.candidate_item_features_count is None and "candidate_item_features_count" in self.model_fields_set:
177
+ _dict['candidate_item_features_count'] = None
178
+
179
+ return _dict
180
+
181
+ @classmethod
182
+ def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
183
+ """Create an instance of ScoreStepExplanation from a dict"""
184
+ if obj is None:
185
+ return None
186
+
187
+ if not isinstance(obj, dict):
188
+ return cls.model_validate(obj)
189
+
190
+ _obj = cls.model_validate({
191
+ "step_name": obj.get("step_name"),
192
+ "step_type": obj.get("step_type") if obj.get("step_type") is not None else '',
193
+ "input_count": obj.get("input_count"),
194
+ "output_count": obj.get("output_count"),
195
+ "filtered_count": obj.get("filtered_count"),
196
+ "execution_time_ms": obj.get("execution_time_ms"),
197
+ "metadata": obj.get("metadata"),
198
+ "score_type": obj.get("score_type"),
199
+ "value_model": obj.get("value_model"),
200
+ "score_distribution": obj.get("score_distribution"),
201
+ "items_scored": obj.get("items_scored"),
202
+ "scoring_policy_scores": dict(
203
+ (_k,
204
+ [RetrievalScoresValue.from_dict(_item) for _item in _v]
205
+ if _v is not None
206
+ else None
207
+ )
208
+ for _k, _v in obj.get("scoring_policy_scores", {}).items()
209
+ ),
210
+ "is_user_found_in_feature_store": obj.get("is_user_found_in_feature_store"),
211
+ "user_interaction_count": obj.get("user_interaction_count"),
212
+ "user_feature_column_count": obj.get("user_feature_column_count"),
213
+ "item_feature_column_count": obj.get("item_feature_column_count"),
214
+ "candidate_item_features_count": obj.get("candidate_item_features_count")
215
+ })
216
+ # store additional fields in additional_properties
217
+ for _key in obj.keys():
218
+ if _key not in cls.__properties:
219
+ _obj.additional_properties[_key] = obj.get(_key)
220
+
221
+ return _obj
222
+
223
+
@@ -1,15 +1,14 @@
1
1
  # coding: utf-8
2
2
 
3
3
  """
4
- Shaped API
4
+ Shaped API
5
5
 
6
- Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. The Shaped API has four main endpoints: **Tables** - Provision and manage batch and real-time data connectors. **Views** - Configure SQL transformations and AI enrichment on your input data. Use SQL to combine multiple data sources or use an LLM to add new categories, extract specific attributes from descriptions, etc. **Engines** - Deploy and manage your relevance engines. The Engine API exposes configuration for indexing logic, input datasets, externam embeddings, and more. **Query** - Execute queries against your engines, to return data based on an input query or rerank an existing list. The Query API exposes the retrieve, filter, score, and ranking steps of the 4-stage ranking architecture. The base URL for each endpoint is: `https://api.shaped.ai/v2`
6
+ Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. The Shaped API has four main endpoints: **Tables** - Provision and manage batch and real-time data connectors. **Views** - Configure SQL transformations and AI enrichment on your input data. Use SQL to combine multiple data sources or use an LLM to add new categories, extract specific attributes from descriptions, etc. **Engines** - Deploy and manage your relevance engines. The Engine API exposes configuration for indexing logic, input datasets, externam embeddings, and more. **Query** - Execute queries against your engines, to return data based on an input query or rerank an existing list. The Query API exposes the retrieve, filter, score, and ranking steps of the 4-stage ranking architecture. The base URL for each endpoint is: `https://api.shaped.ai/v2`
7
7
 
8
- The version of the OpenAPI document: 2.0.0
9
- Generated by OpenAPI Generator (https://openapi-generator.tech)
8
+ Generated by OpenAPI Generator (https://openapi-generator.tech)
10
9
 
11
- Do not edit the class manually.
12
- """ # noqa: E501
10
+ Do not edit the class manually.
11
+ """ # noqa: E501
13
12
 
14
13
 
15
14
  from __future__ import annotations
@@ -1,15 +1,14 @@
1
1
  # coding: utf-8
2
2
 
3
3
  """
4
- Shaped API
4
+ Shaped API
5
5
 
6
- Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. The Shaped API has four main endpoints: **Tables** - Provision and manage batch and real-time data connectors. **Views** - Configure SQL transformations and AI enrichment on your input data. Use SQL to combine multiple data sources or use an LLM to add new categories, extract specific attributes from descriptions, etc. **Engines** - Deploy and manage your relevance engines. The Engine API exposes configuration for indexing logic, input datasets, externam embeddings, and more. **Query** - Execute queries against your engines, to return data based on an input query or rerank an existing list. The Query API exposes the retrieve, filter, score, and ranking steps of the 4-stage ranking architecture. The base URL for each endpoint is: `https://api.shaped.ai/v2`
6
+ Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. The Shaped API has four main endpoints: **Tables** - Provision and manage batch and real-time data connectors. **Views** - Configure SQL transformations and AI enrichment on your input data. Use SQL to combine multiple data sources or use an LLM to add new categories, extract specific attributes from descriptions, etc. **Engines** - Deploy and manage your relevance engines. The Engine API exposes configuration for indexing logic, input datasets, externam embeddings, and more. **Query** - Execute queries against your engines, to return data based on an input query or rerank an existing list. The Query API exposes the retrieve, filter, score, and ranking steps of the 4-stage ranking architecture. The base URL for each endpoint is: `https://api.shaped.ai/v2`
7
7
 
8
- The version of the OpenAPI document: 2.0.0
9
- Generated by OpenAPI Generator (https://openapi-generator.tech)
8
+ Generated by OpenAPI Generator (https://openapi-generator.tech)
10
9
 
11
- Do not edit the class manually.
12
- """ # noqa: E501
10
+ Do not edit the class manually.
11
+ """ # noqa: E501
13
12
 
14
13
 
15
14
  from __future__ import annotations
@@ -1,15 +1,14 @@
1
1
  # coding: utf-8
2
2
 
3
3
  """
4
- Shaped API
4
+ Shaped API
5
5
 
6
- Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. The Shaped API has four main endpoints: **Tables** - Provision and manage batch and real-time data connectors. **Views** - Configure SQL transformations and AI enrichment on your input data. Use SQL to combine multiple data sources or use an LLM to add new categories, extract specific attributes from descriptions, etc. **Engines** - Deploy and manage your relevance engines. The Engine API exposes configuration for indexing logic, input datasets, externam embeddings, and more. **Query** - Execute queries against your engines, to return data based on an input query or rerank an existing list. The Query API exposes the retrieve, filter, score, and ranking steps of the 4-stage ranking architecture. The base URL for each endpoint is: `https://api.shaped.ai/v2`
6
+ Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. The Shaped API has four main endpoints: **Tables** - Provision and manage batch and real-time data connectors. **Views** - Configure SQL transformations and AI enrichment on your input data. Use SQL to combine multiple data sources or use an LLM to add new categories, extract specific attributes from descriptions, etc. **Engines** - Deploy and manage your relevance engines. The Engine API exposes configuration for indexing logic, input datasets, externam embeddings, and more. **Query** - Execute queries against your engines, to return data based on an input query or rerank an existing list. The Query API exposes the retrieve, filter, score, and ranking steps of the 4-stage ranking architecture. The base URL for each endpoint is: `https://api.shaped.ai/v2`
7
7
 
8
- The version of the OpenAPI document: 2.0.0
9
- Generated by OpenAPI Generator (https://openapi-generator.tech)
8
+ Generated by OpenAPI Generator (https://openapi-generator.tech)
10
9
 
11
- Do not edit the class manually.
12
- """ # noqa: E501
10
+ Do not edit the class manually.
11
+ """ # noqa: E501
13
12
 
14
13
 
15
14
  from __future__ import annotations
@@ -1,15 +1,14 @@
1
1
  # coding: utf-8
2
2
 
3
3
  """
4
- Shaped API
4
+ Shaped API
5
5
 
6
- Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. The Shaped API has four main endpoints: **Tables** - Provision and manage batch and real-time data connectors. **Views** - Configure SQL transformations and AI enrichment on your input data. Use SQL to combine multiple data sources or use an LLM to add new categories, extract specific attributes from descriptions, etc. **Engines** - Deploy and manage your relevance engines. The Engine API exposes configuration for indexing logic, input datasets, externam embeddings, and more. **Query** - Execute queries against your engines, to return data based on an input query or rerank an existing list. The Query API exposes the retrieve, filter, score, and ranking steps of the 4-stage ranking architecture. The base URL for each endpoint is: `https://api.shaped.ai/v2`
6
+ Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. The Shaped API has four main endpoints: **Tables** - Provision and manage batch and real-time data connectors. **Views** - Configure SQL transformations and AI enrichment on your input data. Use SQL to combine multiple data sources or use an LLM to add new categories, extract specific attributes from descriptions, etc. **Engines** - Deploy and manage your relevance engines. The Engine API exposes configuration for indexing logic, input datasets, externam embeddings, and more. **Query** - Execute queries against your engines, to return data based on an input query or rerank an existing list. The Query API exposes the retrieve, filter, score, and ranking steps of the 4-stage ranking architecture. The base URL for each endpoint is: `https://api.shaped.ai/v2`
7
7
 
8
- The version of the OpenAPI document: 2.0.0
9
- Generated by OpenAPI Generator (https://openapi-generator.tech)
8
+ Generated by OpenAPI Generator (https://openapi-generator.tech)
10
9
 
11
- Do not edit the class manually.
12
- """ # noqa: E501
10
+ Do not edit the class manually.
11
+ """ # noqa: E501
13
12
 
14
13
 
15
14
  from __future__ import annotations
@@ -27,6 +26,7 @@ class ServerConfig(BaseModel):
27
26
  Low-level configuration for the inference server process.
28
27
  """ # noqa: E501
29
28
  worker_count: Optional[StrictInt] = Field(default=1, description="Number of worker processes per inference pod.")
29
+ additional_properties: Dict[str, Any] = {}
30
30
  __properties: ClassVar[List[str]] = ["worker_count"]
31
31
 
32
32
  model_config = ConfigDict(
@@ -59,8 +59,10 @@ class ServerConfig(BaseModel):
59
59
  * `None` is only added to the output dict for nullable fields that
60
60
  were set at model initialization. Other fields with value `None`
61
61
  are ignored.
62
+ * Fields in `self.additional_properties` are added to the output dict.
62
63
  """
63
64
  excluded_fields: Set[str] = set([
65
+ "additional_properties",
64
66
  ])
65
67
 
66
68
  _dict = self.model_dump(
@@ -68,6 +70,11 @@ class ServerConfig(BaseModel):
68
70
  exclude=excluded_fields,
69
71
  exclude_none=True,
70
72
  )
73
+ # puts key-value pairs in additional_properties in the top level
74
+ if self.additional_properties is not None:
75
+ for _key, _value in self.additional_properties.items():
76
+ _dict[_key] = _value
77
+
71
78
  return _dict
72
79
 
73
80
  @classmethod
@@ -82,6 +89,11 @@ class ServerConfig(BaseModel):
82
89
  _obj = cls.model_validate({
83
90
  "worker_count": obj.get("worker_count") if obj.get("worker_count") is not None else 1
84
91
  })
92
+ # store additional fields in additional_properties
93
+ for _key in obj.keys():
94
+ if _key not in cls.__properties:
95
+ _obj.additional_properties[_key] = obj.get(_key)
96
+
85
97
  return _obj
86
98
 
87
99
 
@@ -1,15 +1,14 @@
1
1
  # coding: utf-8
2
2
 
3
3
  """
4
- Shaped API
4
+ Shaped API
5
5
 
6
- Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. The Shaped API has four main endpoints: **Tables** - Provision and manage batch and real-time data connectors. **Views** - Configure SQL transformations and AI enrichment on your input data. Use SQL to combine multiple data sources or use an LLM to add new categories, extract specific attributes from descriptions, etc. **Engines** - Deploy and manage your relevance engines. The Engine API exposes configuration for indexing logic, input datasets, externam embeddings, and more. **Query** - Execute queries against your engines, to return data based on an input query or rerank an existing list. The Query API exposes the retrieve, filter, score, and ranking steps of the 4-stage ranking architecture. The base URL for each endpoint is: `https://api.shaped.ai/v2`
6
+ Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. The Shaped API has four main endpoints: **Tables** - Provision and manage batch and real-time data connectors. **Views** - Configure SQL transformations and AI enrichment on your input data. Use SQL to combine multiple data sources or use an LLM to add new categories, extract specific attributes from descriptions, etc. **Engines** - Deploy and manage your relevance engines. The Engine API exposes configuration for indexing logic, input datasets, externam embeddings, and more. **Query** - Execute queries against your engines, to return data based on an input query or rerank an existing list. The Query API exposes the retrieve, filter, score, and ranking steps of the 4-stage ranking architecture. The base URL for each endpoint is: `https://api.shaped.ai/v2`
7
7
 
8
- The version of the OpenAPI document: 2.0.0
9
- Generated by OpenAPI Generator (https://openapi-generator.tech)
8
+ Generated by OpenAPI Generator (https://openapi-generator.tech)
10
9
 
11
- Do not edit the class manually.
12
- """ # noqa: E501
10
+ Do not edit the class manually.
11
+ """ # noqa: E501
13
12
 
14
13
 
15
14
  from __future__ import annotations
@@ -1,15 +1,14 @@
1
1
  # coding: utf-8
2
2
 
3
3
  """
4
- Shaped API
4
+ Shaped API
5
5
 
6
- Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. The Shaped API has four main endpoints: **Tables** - Provision and manage batch and real-time data connectors. **Views** - Configure SQL transformations and AI enrichment on your input data. Use SQL to combine multiple data sources or use an LLM to add new categories, extract specific attributes from descriptions, etc. **Engines** - Deploy and manage your relevance engines. The Engine API exposes configuration for indexing logic, input datasets, externam embeddings, and more. **Query** - Execute queries against your engines, to return data based on an input query or rerank an existing list. The Query API exposes the retrieve, filter, score, and ranking steps of the 4-stage ranking architecture. The base URL for each endpoint is: `https://api.shaped.ai/v2`
6
+ Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. The Shaped API has four main endpoints: **Tables** - Provision and manage batch and real-time data connectors. **Views** - Configure SQL transformations and AI enrichment on your input data. Use SQL to combine multiple data sources or use an LLM to add new categories, extract specific attributes from descriptions, etc. **Engines** - Deploy and manage your relevance engines. The Engine API exposes configuration for indexing logic, input datasets, externam embeddings, and more. **Query** - Execute queries against your engines, to return data based on an input query or rerank an existing list. The Query API exposes the retrieve, filter, score, and ranking steps of the 4-stage ranking architecture. The base URL for each endpoint is: `https://api.shaped.ai/v2`
7
7
 
8
- The version of the OpenAPI document: 2.0.0
9
- Generated by OpenAPI Generator (https://openapi-generator.tech)
8
+ Generated by OpenAPI Generator (https://openapi-generator.tech)
10
9
 
11
- Do not edit the class manually.
12
- """ # noqa: E501
10
+ Do not edit the class manually.
11
+ """ # noqa: E501
13
12
 
14
13
 
15
14
  from __future__ import annotations
@@ -38,8 +37,11 @@ class ShapedInternalRecsysPoliciesAlsModelPolicyALSModelPolicyConfig(BaseModel):
38
37
  bm25_k1: Optional[Union[StrictFloat, StrictInt]] = Field(default=1.2, description="BM25 coefficient for item frequency factor.")
39
38
  bm25_b: Optional[Union[StrictFloat, StrictInt]] = Field(default=0.75, description="BM25 coefficient for document length factor.")
40
39
  use_features: Optional[StrictBool] = Field(default=False, description="Whether to use entity features in the model.")
40
+ normalize_numerical_features: Optional[StrictBool] = Field(default=False, description="Enable NormalizeNumerical transform for entity features.")
41
+ use_derived_timestamp_features: Optional[StrictBool] = Field(default=False, description="Enable TimestampSinCosEncoder and TimestampCountEncoder for entity features.")
42
+ balance_labels: Optional[StrictBool] = Field(default=False, description="Enable BalanceLabel transform for interactions.")
41
43
  additional_properties: Dict[str, Any] = {}
42
- __properties: ClassVar[List[str]] = ["policy_type", "name", "event_values", "factors", "regularization", "bm25", "bm25_k1", "bm25_b", "use_features"]
44
+ __properties: ClassVar[List[str]] = ["policy_type", "name", "event_values", "factors", "regularization", "bm25", "bm25_k1", "bm25_b", "use_features", "normalize_numerical_features", "use_derived_timestamp_features", "balance_labels"]
43
45
 
44
46
  @field_validator('policy_type')
45
47
  def policy_type_validate_enum(cls, value):
@@ -136,7 +138,10 @@ class ShapedInternalRecsysPoliciesAlsModelPolicyALSModelPolicyConfig(BaseModel):
136
138
  "bm25": Bm25.from_dict(obj["bm25"]) if obj.get("bm25") is not None else None,
137
139
  "bm25_k1": obj.get("bm25_k1") if obj.get("bm25_k1") is not None else 1.2,
138
140
  "bm25_b": obj.get("bm25_b") if obj.get("bm25_b") is not None else 0.75,
139
- "use_features": obj.get("use_features") if obj.get("use_features") is not None else False
141
+ "use_features": obj.get("use_features") if obj.get("use_features") is not None else False,
142
+ "normalize_numerical_features": obj.get("normalize_numerical_features") if obj.get("normalize_numerical_features") is not None else False,
143
+ "use_derived_timestamp_features": obj.get("use_derived_timestamp_features") if obj.get("use_derived_timestamp_features") is not None else False,
144
+ "balance_labels": obj.get("balance_labels") if obj.get("balance_labels") is not None else False
140
145
  })
141
146
  # store additional fields in additional_properties
142
147
  for _key in obj.keys():
@@ -1,15 +1,14 @@
1
1
  # coding: utf-8
2
2
 
3
3
  """
4
- Shaped API
4
+ Shaped API
5
5
 
6
- Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. The Shaped API has four main endpoints: **Tables** - Provision and manage batch and real-time data connectors. **Views** - Configure SQL transformations and AI enrichment on your input data. Use SQL to combine multiple data sources or use an LLM to add new categories, extract specific attributes from descriptions, etc. **Engines** - Deploy and manage your relevance engines. The Engine API exposes configuration for indexing logic, input datasets, externam embeddings, and more. **Query** - Execute queries against your engines, to return data based on an input query or rerank an existing list. The Query API exposes the retrieve, filter, score, and ranking steps of the 4-stage ranking architecture. The base URL for each endpoint is: `https://api.shaped.ai/v2`
6
+ Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. The Shaped API has four main endpoints: **Tables** - Provision and manage batch and real-time data connectors. **Views** - Configure SQL transformations and AI enrichment on your input data. Use SQL to combine multiple data sources or use an LLM to add new categories, extract specific attributes from descriptions, etc. **Engines** - Deploy and manage your relevance engines. The Engine API exposes configuration for indexing logic, input datasets, externam embeddings, and more. **Query** - Execute queries against your engines, to return data based on an input query or rerank an existing list. The Query API exposes the retrieve, filter, score, and ranking steps of the 4-stage ranking architecture. The base URL for each endpoint is: `https://api.shaped.ai/v2`
7
7
 
8
- The version of the OpenAPI document: 2.0.0
9
- Generated by OpenAPI Generator (https://openapi-generator.tech)
8
+ Generated by OpenAPI Generator (https://openapi-generator.tech)
10
9
 
11
- Do not edit the class manually.
12
- """ # noqa: E501
10
+ Do not edit the class manually.
11
+ """ # noqa: E501
13
12
 
14
13
 
15
14
  from __future__ import annotations
@@ -45,7 +44,10 @@ class ShapedInternalRecsysPoliciesBeeformerModelPolicyBeeformerModelPolicyBeefor
45
44
  max_seq_length: Optional[MaxSeqLength] = None
46
45
  embedder_batch_size: Optional[EmbedderBatchSize] = None
47
46
  train_distributed: Optional[StrictBool] = Field(default=False, description="Train on multiple devices.")
48
- __properties: ClassVar[List[str]] = ["policy_type", "name", "event_values", "device", "seed", "lr", "use_scheduler", "epochs", "max_output", "batch_size", "top_k", "embedder", "use_images", "max_seq_length", "embedder_batch_size", "train_distributed"]
47
+ normalize_numerical_features: Optional[StrictBool] = Field(default=False, description="Enable NormalizeNumerical transform for entity features.")
48
+ use_derived_timestamp_features: Optional[StrictBool] = Field(default=False, description="Enable TimestampSinCosEncoder and TimestampCountEncoder for entity features.")
49
+ balance_labels: Optional[StrictBool] = Field(default=False, description="Enable BalanceLabel transform for interactions.")
50
+ __properties: ClassVar[List[str]] = ["policy_type", "name", "event_values", "device", "seed", "lr", "use_scheduler", "epochs", "max_output", "batch_size", "top_k", "embedder", "use_images", "max_seq_length", "embedder_batch_size", "train_distributed", "normalize_numerical_features", "use_derived_timestamp_features", "balance_labels"]
49
51
 
50
52
  @field_validator('policy_type')
51
53
  def policy_type_validate_enum(cls, value):
@@ -147,7 +149,10 @@ class ShapedInternalRecsysPoliciesBeeformerModelPolicyBeeformerModelPolicyBeefor
147
149
  "use_images": obj.get("use_images") if obj.get("use_images") is not None else False,
148
150
  "max_seq_length": MaxSeqLength.from_dict(obj["max_seq_length"]) if obj.get("max_seq_length") is not None else None,
149
151
  "embedder_batch_size": EmbedderBatchSize.from_dict(obj["embedder_batch_size"]) if obj.get("embedder_batch_size") is not None else None,
150
- "train_distributed": obj.get("train_distributed") if obj.get("train_distributed") is not None else False
152
+ "train_distributed": obj.get("train_distributed") if obj.get("train_distributed") is not None else False,
153
+ "normalize_numerical_features": obj.get("normalize_numerical_features") if obj.get("normalize_numerical_features") is not None else False,
154
+ "use_derived_timestamp_features": obj.get("use_derived_timestamp_features") if obj.get("use_derived_timestamp_features") is not None else False,
155
+ "balance_labels": obj.get("balance_labels") if obj.get("balance_labels") is not None else False
151
156
  })
152
157
  return _obj
153
158
 
@@ -1,15 +1,14 @@
1
1
  # coding: utf-8
2
2
 
3
3
  """
4
- Shaped API
4
+ Shaped API
5
5
 
6
- Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. The Shaped API has four main endpoints: **Tables** - Provision and manage batch and real-time data connectors. **Views** - Configure SQL transformations and AI enrichment on your input data. Use SQL to combine multiple data sources or use an LLM to add new categories, extract specific attributes from descriptions, etc. **Engines** - Deploy and manage your relevance engines. The Engine API exposes configuration for indexing logic, input datasets, externam embeddings, and more. **Query** - Execute queries against your engines, to return data based on an input query or rerank an existing list. The Query API exposes the retrieve, filter, score, and ranking steps of the 4-stage ranking architecture. The base URL for each endpoint is: `https://api.shaped.ai/v2`
6
+ Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. The Shaped API has four main endpoints: **Tables** - Provision and manage batch and real-time data connectors. **Views** - Configure SQL transformations and AI enrichment on your input data. Use SQL to combine multiple data sources or use an LLM to add new categories, extract specific attributes from descriptions, etc. **Engines** - Deploy and manage your relevance engines. The Engine API exposes configuration for indexing logic, input datasets, externam embeddings, and more. **Query** - Execute queries against your engines, to return data based on an input query or rerank an existing list. The Query API exposes the retrieve, filter, score, and ranking steps of the 4-stage ranking architecture. The base URL for each endpoint is: `https://api.shaped.ai/v2`
7
7
 
8
- The version of the OpenAPI document: 2.0.0
9
- Generated by OpenAPI Generator (https://openapi-generator.tech)
8
+ Generated by OpenAPI Generator (https://openapi-generator.tech)
10
9
 
11
- Do not edit the class manually.
12
- """ # noqa: E501
10
+ Do not edit the class manually.
11
+ """ # noqa: E501
13
12
 
14
13
 
15
14
  from __future__ import annotations
@@ -17,7 +16,7 @@ import pprint
17
16
  import re # noqa: F401
18
17
  import json
19
18
 
20
- from pydantic import BaseModel, ConfigDict, Field, StrictFloat, StrictInt, StrictStr, field_validator
19
+ from pydantic import BaseModel, ConfigDict, Field, StrictBool, StrictFloat, StrictInt, StrictStr, field_validator
21
20
  from typing import Any, ClassVar, Dict, List, Optional, Union
22
21
  from shaped.autogen.models.attn_dropout_prob import AttnDropoutProb
23
22
  from shaped.autogen.models.batch_size import BatchSize
@@ -64,7 +63,10 @@ class ShapedInternalRecsysPoliciesBertModelPolicyBertModelPolicyBERTModelPolicyC
64
63
  sample_ratio: Optional[Union[StrictFloat, StrictInt]] = 0.8
65
64
  eval_step: Optional[StrictInt] = 1
66
65
  early_stopping_step: Optional[StrictInt] = 5
67
- __properties: ClassVar[List[str]] = ["policy_type", "name", "event_values", "batch_size", "eval_batch_size", "n_epochs", "negative_samples_count", "device", "hidden_size", "inner_size", "learning_rate", "attn_dropout_prob", "hidden_act", "hidden_dropout_prob", "n_heads", "n_layers", "layer_norm_eps", "initializer_range", "mask_rate", "loss_type", "max_seq_length", "sample_strategy", "sample_seed", "sample_ratio", "eval_step", "early_stopping_step"]
66
+ normalize_numerical_features: Optional[StrictBool] = Field(default=True, description="Enable NormalizeNumerical transform for entity features.")
67
+ use_derived_timestamp_features: Optional[StrictBool] = Field(default=True, description="Enable TimestampSinCosEncoder and TimestampCountEncoder for entity features.")
68
+ balance_labels: Optional[StrictBool] = Field(default=True, description="Enable BalanceLabel transform for interactions.")
69
+ __properties: ClassVar[List[str]] = ["policy_type", "name", "event_values", "batch_size", "eval_batch_size", "n_epochs", "negative_samples_count", "device", "hidden_size", "inner_size", "learning_rate", "attn_dropout_prob", "hidden_act", "hidden_dropout_prob", "n_heads", "n_layers", "layer_norm_eps", "initializer_range", "mask_rate", "loss_type", "max_seq_length", "sample_strategy", "sample_seed", "sample_ratio", "eval_step", "early_stopping_step", "normalize_numerical_features", "use_derived_timestamp_features", "balance_labels"]
68
70
 
69
71
  @field_validator('policy_type')
70
72
  def policy_type_validate_enum(cls, value):
@@ -202,7 +204,10 @@ class ShapedInternalRecsysPoliciesBertModelPolicyBertModelPolicyBERTModelPolicyC
202
204
  "sample_seed": obj.get("sample_seed") if obj.get("sample_seed") is not None else 42,
203
205
  "sample_ratio": obj.get("sample_ratio") if obj.get("sample_ratio") is not None else 0.8,
204
206
  "eval_step": obj.get("eval_step") if obj.get("eval_step") is not None else 1,
205
- "early_stopping_step": obj.get("early_stopping_step") if obj.get("early_stopping_step") is not None else 5
207
+ "early_stopping_step": obj.get("early_stopping_step") if obj.get("early_stopping_step") is not None else 5,
208
+ "normalize_numerical_features": obj.get("normalize_numerical_features") if obj.get("normalize_numerical_features") is not None else True,
209
+ "use_derived_timestamp_features": obj.get("use_derived_timestamp_features") if obj.get("use_derived_timestamp_features") is not None else True,
210
+ "balance_labels": obj.get("balance_labels") if obj.get("balance_labels") is not None else True
206
211
  })
207
212
  return _obj
208
213