shancx 1.9.33.230__py3-none-any.whl → 1.9.33.232__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
shancx/H/__init__.py ADDED
@@ -0,0 +1,3 @@
1
+ def getSimple(df,n=1000)
2
+ df = df.sample(n=n, replace=True, random_state=42)
3
+ return df
shancx/H/optSchler.py ADDED
@@ -0,0 +1,19 @@
1
+ import torch.optim as optim
2
+ from torch.optim.lr_scheduler import StepLR, ReduceLROnPlateau
3
+ def getoptSchler(lr=3e-5,gamma=0.85)
4
+ optimizer = optim.AdamW(model.parameters(), lr=lr, weight_decay=1e-4)
5
+ # scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=5, verbose=True)
6
+ scheduler = StepLR(optimizer, step_size=10, gamma=gamma) #step_size=10,
7
+ return optimizer,scheduler
8
+ """
9
+ import torch.cuda.amp as amp
10
+ scaler = amp.GradScaler()
11
+ with amp.autocast():
12
+ optimizer.zero_grad()
13
+ scaler.scale(loss).backward()
14
+ scaler.step(optimizer)
15
+ scaler.update()
16
+ current_lr = optimizer.param_groups[0]['lr']
17
+ writer.add_scalar('Learning_Rate/lr', current_lr, epoch)
18
+ scheduler.step() # scheduler.step(val_loss)
19
+ """
shancx/H/simple.py ADDED
@@ -0,0 +1,8 @@
1
+ import traceback
2
+ def getSimple(df=None,n=1000):
3
+ try:
4
+ df = df.sample(n=n, replace=True, random_state=42)
5
+ except Exception as e :
6
+ print(traceback.format_exc())
7
+ return None
8
+ return df
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: shancx
3
- Version: 1.9.33.230
3
+ Version: 1.9.33.232
4
4
  Summary: A simple timer decorator
5
5
  Home-page: https://gitee.com/shancx
6
6
  Author: shancx
@@ -59,6 +59,9 @@ shancx/Fillmiss/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
59
59
  shancx/Fillmiss/imgidwJU.py,sha256=CyP4ZlhPpXPqGVzzcLR7lohVl8bWjEceJLo7yvKgtEM,1708
60
60
  shancx/Fillmiss/imgidwLatLonJU.py,sha256=ltYZj9CwN8cVs4Kow64oVN1EiBERgW9FceTUBFkCOAs,4314
61
61
  shancx/Gpu/__init__.py,sha256=4Ahq04phTGVlFWN9Vih0WAh-IqFrhtwM5hj4G1IU2Dk,1950
62
+ shancx/H/__init__.py,sha256=LzGCfmNvFq5nJQV-H5qvlbbN7Yv93Tv5XEAP92t8Hc4,97
63
+ shancx/H/optSchler.py,sha256=vlrditYROuWoKX6XnKCslX4XU-fQEaCXMYF-ZHWEaGQ,793
64
+ shancx/H/simple.py,sha256=mndEspQfaUBkBLbPjw8eejr63l6OINSOMQJXDjgi-u0,223
62
65
  shancx/H9/__init__.py,sha256=FCarcXfU2tVD2KrCGKNNUuL51zAWZYHV7lrP7gntvaI,4911
63
66
  shancx/H9/ahi_read_hsd.py,sha256=bt9oOOARcXijmyGpmHYXj0NKnuTntZjqx0_tu6Vp2vs,33522
64
67
  shancx/H9/ahisearchtable.py,sha256=e2kpz-P5npgL4gzNxn8igERJuWWIysvTNLkptr5_Zcc,9579
@@ -87,7 +90,7 @@ shancx/Train/multiGpu.py,sha256=D_oZeiSc7VWktpnVDwrFOC1CYZSt9rxOKY5lngE5vFg,820
87
90
  shancx/Train/prepare.py,sha256=vL_8UOA66oZCBIwCICtihsGibivtNgaVJGulJxfNdn8,6793
88
91
  shancx/Train/renet50.py,sha256=wEhYk1X96WE5zuqHqVxWLJa-A5jDNkz4z6edORNufnA,6428
89
92
  shancx/tensBoard/__init__.py,sha256=ga2C5YyJITvvQA1ocpxna_KNFnNRJVwkTjLoIglLZUQ,993
90
- shancx-1.9.33.230.dist-info/METADATA,sha256=GqP0DFY6kMwh9u1nweGE0Bk9Lu98BkfVIfkcUEedBcc,850
91
- shancx-1.9.33.230.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
92
- shancx-1.9.33.230.dist-info/top_level.txt,sha256=akfCS1vKWz3pNmEN_yN9ZiGp-60IQY5ET38mRx_i_-4,7
93
- shancx-1.9.33.230.dist-info/RECORD,,
93
+ shancx-1.9.33.232.dist-info/METADATA,sha256=9WDsU0Z4dIdV5u5BsKQFCwPWEUb2kmUa-017b7dFyX8,850
94
+ shancx-1.9.33.232.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
95
+ shancx-1.9.33.232.dist-info/top_level.txt,sha256=akfCS1vKWz3pNmEN_yN9ZiGp-60IQY5ET38mRx_i_-4,7
96
+ shancx-1.9.33.232.dist-info/RECORD,,