shancx 1.60__py3-none-any.whl → 1.70__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- shancx/__init__.py +93 -0
- shancx/mkIMGSCX.py +92 -0
- shancx/radar_nmc_china_map_compare1.py +55 -0
- shancx/radar_nmc_china_map_f.py +54 -0
- shancx/subplots_compare_devlop.py +36 -0
- shancx/subplots_single_china_map.py +40 -0
- {shancx-1.60.dist-info → shancx-1.70.dist-info}/METADATA +1 -1
- shancx-1.70.dist-info/RECORD +12 -0
- shancx-1.60.dist-info/RECORD +0 -7
- {shancx-1.60.dist-info → shancx-1.70.dist-info}/WHEEL +0 -0
- {shancx-1.60.dist-info → shancx-1.70.dist-info}/top_level.txt +0 -0
shancx/__init__.py
CHANGED
|
@@ -52,3 +52,96 @@ def Mul_Ess(map_fun,tuple_list):
|
|
|
52
52
|
with Pool(31) as p:
|
|
53
53
|
P_data = p.map(map_fun, tuple_list)
|
|
54
54
|
return P_data
|
|
55
|
+
|
|
56
|
+
|
|
57
|
+
import numpy as np
|
|
58
|
+
from matplotlib.colors import ListedColormap
|
|
59
|
+
import matplotlib.pyplot as plt
|
|
60
|
+
import datetime
|
|
61
|
+
cmp_hjnwtx={}
|
|
62
|
+
|
|
63
|
+
newcolorsNMC = np.array([
|
|
64
|
+
[68,157,237, 255],
|
|
65
|
+
[98,230,234, 255],
|
|
66
|
+
[104,249,82, 255],
|
|
67
|
+
[0,215,46, 255],
|
|
68
|
+
[0,143,27, 255],
|
|
69
|
+
[254,254,63, 255],
|
|
70
|
+
[231,192,48, 255],
|
|
71
|
+
[255,154,41, 255],
|
|
72
|
+
[255,19,27, 255],
|
|
73
|
+
[215,14,21, 255],
|
|
74
|
+
[193,11,18, 255],
|
|
75
|
+
[255,28,236, 255],
|
|
76
|
+
[152,15,177, 255],
|
|
77
|
+
[175,145,237, 255]])/255
|
|
78
|
+
cmp_hjnwtx["radar_nmc"] = ListedColormap(newcolorsNMC)
|
|
79
|
+
|
|
80
|
+
newcolorsNMC = np.array([
|
|
81
|
+
[68,157,237, 255],
|
|
82
|
+
[98,230,234, 255],
|
|
83
|
+
[104,249,82, 255],
|
|
84
|
+
[0,215,46, 255],
|
|
85
|
+
[0,143,27, 255],
|
|
86
|
+
[254,254,63, 255],
|
|
87
|
+
[231,192,48, 255],
|
|
88
|
+
[255,154,41, 255],
|
|
89
|
+
[255,19,27, 255],
|
|
90
|
+
[215,14,21, 255],
|
|
91
|
+
[193,11,18, 255],
|
|
92
|
+
[255,28,236, 255],
|
|
93
|
+
[152,15,177, 255],
|
|
94
|
+
[175,145,237, 255]])/255
|
|
95
|
+
cmp_hjnwtx["radar_moc"] = ListedColormap(newcolorsNMC)
|
|
96
|
+
|
|
97
|
+
|
|
98
|
+
newcolorsPRE = np.array([
|
|
99
|
+
[128, 255, 255, 255],
|
|
100
|
+
[35, 182, 254, 255],
|
|
101
|
+
[0, 120, 180, 255],
|
|
102
|
+
[0, 82, 202, 255],
|
|
103
|
+
[0, 16, 220, 255],
|
|
104
|
+
[150, 2, 244, 255],
|
|
105
|
+
[110, 0, 182, 255],
|
|
106
|
+
[77, 0, 130, 255]])/255
|
|
107
|
+
cmp_hjnwtx["pre_tqw"] = ListedColormap(newcolorsPRE)
|
|
108
|
+
|
|
109
|
+
newcolorsWS = np.array([
|
|
110
|
+
[75, 140, 244, 255],
|
|
111
|
+
[0, 89, 235, 255],
|
|
112
|
+
[36, 173, 0, 255],
|
|
113
|
+
[18, 129, 1, 255],
|
|
114
|
+
[3, 64, 4, 255],
|
|
115
|
+
[218, 183, 5, 255],
|
|
116
|
+
[179, 125, 1, 255],
|
|
117
|
+
[155, 70, 16, 255],
|
|
118
|
+
[253, 3, 127, 255],
|
|
119
|
+
[255, 0, 55, 255],
|
|
120
|
+
[233, 0, 3, 255]])/255
|
|
121
|
+
cmp_hjnwtx["ws_nmic"] = ListedColormap(newcolorsWS)
|
|
122
|
+
|
|
123
|
+
import os
|
|
124
|
+
def mkDir(path):
|
|
125
|
+
if "." in path:
|
|
126
|
+
os.makedirs(os.path.dirname(path),exist_ok=True)
|
|
127
|
+
else:
|
|
128
|
+
os.makedirs(path, exist_ok=True)
|
|
129
|
+
|
|
130
|
+
def Radar_Nmc(array_dt,temp = "850"):
|
|
131
|
+
now_str = datetime.datetime.now().strftime("%Y%m%d%H%M")
|
|
132
|
+
if len(array_dt.shape)==3:
|
|
133
|
+
for i , img_ch_nel in enumerate(array_dt):
|
|
134
|
+
plt.imshow(img_ch_nel,vmin=0,vmax=100,cmap=cmp_hjnwtx["radar_nmc"])
|
|
135
|
+
plt.colorbar()
|
|
136
|
+
outpath = f"./radar_nmc/{temp}_{now_str}.png"
|
|
137
|
+
mkDir(outpath)
|
|
138
|
+
plt.savefig(outpath)
|
|
139
|
+
plt.close()
|
|
140
|
+
if len(array_dt.shape)==2:
|
|
141
|
+
plt.imshow(array_dt,vmin=0,vmax=100,cmap=cmp_hjnwtx["radar_nmc"])
|
|
142
|
+
plt.colorbar()
|
|
143
|
+
outpath = f"./radar_nmc/{temp}_{now_str}.png"
|
|
144
|
+
mkDir(outpath)
|
|
145
|
+
plt.savefig(outpath)
|
|
146
|
+
plt.close()
|
|
147
|
+
|
shancx/mkIMGSCX.py
ADDED
|
@@ -0,0 +1,92 @@
|
|
|
1
|
+
|
|
2
|
+
import numpy as np
|
|
3
|
+
from matplotlib.colors import ListedColormap
|
|
4
|
+
import matplotlib.pyplot as plt
|
|
5
|
+
import datetime
|
|
6
|
+
cmp_hjnwtx={}
|
|
7
|
+
|
|
8
|
+
newcolorsNMC = np.array([
|
|
9
|
+
[68,157,237, 255],
|
|
10
|
+
[98,230,234, 255],
|
|
11
|
+
[104,249,82, 255],
|
|
12
|
+
[0,215,46, 255],
|
|
13
|
+
[0,143,27, 255],
|
|
14
|
+
[254,254,63, 255],
|
|
15
|
+
[231,192,48, 255],
|
|
16
|
+
[255,154,41, 255],
|
|
17
|
+
[255,19,27, 255],
|
|
18
|
+
[215,14,21, 255],
|
|
19
|
+
[193,11,18, 255],
|
|
20
|
+
[255,28,236, 255],
|
|
21
|
+
[152,15,177, 255],
|
|
22
|
+
[175,145,237, 255]])/255
|
|
23
|
+
cmp_hjnwtx["radar_nmc"] = ListedColormap(newcolorsNMC)
|
|
24
|
+
|
|
25
|
+
newcolorsNMC = np.array([
|
|
26
|
+
[68,157,237, 255],
|
|
27
|
+
[98,230,234, 255],
|
|
28
|
+
[104,249,82, 255],
|
|
29
|
+
[0,215,46, 255],
|
|
30
|
+
[0,143,27, 255],
|
|
31
|
+
[254,254,63, 255],
|
|
32
|
+
[231,192,48, 255],
|
|
33
|
+
[255,154,41, 255],
|
|
34
|
+
[255,19,27, 255],
|
|
35
|
+
[215,14,21, 255],
|
|
36
|
+
[193,11,18, 255],
|
|
37
|
+
[255,28,236, 255],
|
|
38
|
+
[152,15,177, 255],
|
|
39
|
+
[175,145,237, 255]])/255
|
|
40
|
+
cmp_hjnwtx["radar_moc"] = ListedColormap(newcolorsNMC)
|
|
41
|
+
|
|
42
|
+
|
|
43
|
+
newcolorsPRE = np.array([
|
|
44
|
+
[128, 255, 255, 255],
|
|
45
|
+
[35, 182, 254, 255],
|
|
46
|
+
[0, 120, 180, 255],
|
|
47
|
+
[0, 82, 202, 255],
|
|
48
|
+
[0, 16, 220, 255],
|
|
49
|
+
[150, 2, 244, 255],
|
|
50
|
+
[110, 0, 182, 255],
|
|
51
|
+
[77, 0, 130, 255]])/255
|
|
52
|
+
cmp_hjnwtx["pre_tqw"] = ListedColormap(newcolorsPRE)
|
|
53
|
+
|
|
54
|
+
newcolorsWS = np.array([
|
|
55
|
+
[75, 140, 244, 255],
|
|
56
|
+
[0, 89, 235, 255],
|
|
57
|
+
[36, 173, 0, 255],
|
|
58
|
+
[18, 129, 1, 255],
|
|
59
|
+
[3, 64, 4, 255],
|
|
60
|
+
[218, 183, 5, 255],
|
|
61
|
+
[179, 125, 1, 255],
|
|
62
|
+
[155, 70, 16, 255],
|
|
63
|
+
[253, 3, 127, 255],
|
|
64
|
+
[255, 0, 55, 255],
|
|
65
|
+
[233, 0, 3, 255]])/255
|
|
66
|
+
cmp_hjnwtx["ws_nmic"] = ListedColormap(newcolorsWS)
|
|
67
|
+
|
|
68
|
+
import os
|
|
69
|
+
def mkDir(path):
|
|
70
|
+
if "." in path:
|
|
71
|
+
os.makedirs(os.path.dirname(path),exist_ok=True)
|
|
72
|
+
else:
|
|
73
|
+
os.makedirs(path, exist_ok=True)
|
|
74
|
+
|
|
75
|
+
def Radar_Nmc(array_dt,temp = "850"):
|
|
76
|
+
now_str = datetime.datetime.now().strftime("%Y%m%d%H%M")
|
|
77
|
+
if len(array_dt.shape)==3:
|
|
78
|
+
for i , img_ch_nel in enumerate(array_dt):
|
|
79
|
+
plt.imshow(img_ch_nel,vmin=0,vmax=100,cmap=cmp_hjnwtx["radar_nmc"])
|
|
80
|
+
plt.colorbar()
|
|
81
|
+
outpath = f"./radar_nmc/{temp}_{now_str}.png"
|
|
82
|
+
mkDir(outpath)
|
|
83
|
+
plt.savefig(outpath)
|
|
84
|
+
plt.close()
|
|
85
|
+
if len(array_dt.shape)==2:
|
|
86
|
+
plt.imshow(array_dt,vmin=0,vmax=100,cmap=cmp_hjnwtx["radar_nmc"])
|
|
87
|
+
plt.colorbar()
|
|
88
|
+
outpath = f"./radar_nmc/{temp}_{now_str}.png"
|
|
89
|
+
mkDir(outpath)
|
|
90
|
+
plt.savefig(outpath)
|
|
91
|
+
plt.close()
|
|
92
|
+
|
|
@@ -0,0 +1,55 @@
|
|
|
1
|
+
import matplotlib.pyplot as plt
|
|
2
|
+
import numpy as np
|
|
3
|
+
import datetime
|
|
4
|
+
from hjnwtx.colormap import cmp_hjnwtx # 假设这是您的自定义颜色映射库
|
|
5
|
+
import cartopy.crs as ccrs
|
|
6
|
+
import cartopy.feature as cfeature
|
|
7
|
+
import cartopy.io.shapereader as shpreader
|
|
8
|
+
|
|
9
|
+
def big_value_fun(array_dt,array_dt1,name="temp"):
|
|
10
|
+
now_str = datetime.datetime.now().strftime("%Y%m%d%H%M")
|
|
11
|
+
outpath = f"./radar_nmc/{name}_{now_str}.png"
|
|
12
|
+
mkDir(outpath)
|
|
13
|
+
|
|
14
|
+
# 创建绘图和设置坐标系
|
|
15
|
+
fig = plt.figure(figsize=(10, 8))
|
|
16
|
+
ax = fig.add_subplot(1, 1, 1, projection=ccrs.PlateCarree())
|
|
17
|
+
|
|
18
|
+
# 设置图像显示的范围
|
|
19
|
+
ax.set_extent([73, 135, 18, 54], ccrs.PlateCarree()) # 根据需要调整
|
|
20
|
+
|
|
21
|
+
# 添加中国地图的边界和特征,包括省份轮廓
|
|
22
|
+
add_china_map(ax)
|
|
23
|
+
|
|
24
|
+
# 添加数据层
|
|
25
|
+
if len(array_dt.shape) == 3:
|
|
26
|
+
for i, img_ch_nel in enumerate(array_dt):
|
|
27
|
+
ax.imshow(img_ch_nel, vmin=50, vmax=500, cmap=cmp_hjnwtx["radar_nmc"], transform=ccrs.PlateCarree(), extent=[73, 134.99, 12.21, 54.2])
|
|
28
|
+
plt.colorbar(ax.images[0], ax=ax, orientation='vertical')
|
|
29
|
+
plt.savefig(f"{outpath}_layer_{i}.png")
|
|
30
|
+
plt.clf() # 清除图形以绘制下一个通道图像
|
|
31
|
+
elif len(array_dt.shape) == 2:
|
|
32
|
+
ax.imshow(array_dt, vmin=0, vmax=100, cmap=cmp_hjnwtx["radar_nmc"], transform=ccrs.PlateCarree(), extent=[73, 134.99, 12.21, 54.2], alpha=1)
|
|
33
|
+
ax.imshow(array_dt1, vmin=0, vmax=100, cmap=cmp_hjnwtx["radar_nmc"], transform=ccrs.PlateCarree(), extent=[73, 134.99, 12.21, 54.2], alpha=0.3)
|
|
34
|
+
plt.colorbar(ax.images[0], ax=ax, orientation='vertical')
|
|
35
|
+
plt.savefig(outpath)
|
|
36
|
+
plt.close(fig)
|
|
37
|
+
|
|
38
|
+
def add_china_map(ax):
|
|
39
|
+
# 在地图上添加地形特征
|
|
40
|
+
ax.add_feature(cfeature.COASTLINE, edgecolor='gray')
|
|
41
|
+
ax.add_feature(cfeature.BORDERS, linestyle=':', edgecolor='gray')
|
|
42
|
+
ax.add_feature(cfeature.LAKES, alpha=0.8)
|
|
43
|
+
# 添加省份轮廓
|
|
44
|
+
provinces = shpreader.natural_earth(resolution='10m', category='cultural', name='admin_1_states_provinces')
|
|
45
|
+
provinces_features = shpreader.Reader(provinces).geometries()
|
|
46
|
+
ax.add_geometries(provinces_features, ccrs.PlateCarree(), facecolor='none', edgecolor='gray', linestyle=':', linewidth=0.5, alpha=0.8)
|
|
47
|
+
|
|
48
|
+
def mkDir(path):
|
|
49
|
+
# 处理目录创建
|
|
50
|
+
import os
|
|
51
|
+
directory = os.path.dirname(path)
|
|
52
|
+
if not os.path.exists(directory):
|
|
53
|
+
os.makedirs(directory)
|
|
54
|
+
|
|
55
|
+
# 示例用法
|
|
@@ -0,0 +1,54 @@
|
|
|
1
|
+
import matplotlib.pyplot as plt
|
|
2
|
+
import numpy as np
|
|
3
|
+
import datetime
|
|
4
|
+
from hjnwtx.colormap import cmp_hjnwtx # 假设这是您的自定义颜色映射库
|
|
5
|
+
import cartopy.crs as ccrs
|
|
6
|
+
import cartopy.feature as cfeature
|
|
7
|
+
import cartopy.io.shapereader as shpreader
|
|
8
|
+
|
|
9
|
+
def big_value_fun(array_dt):
|
|
10
|
+
now_str = datetime.datetime.now().strftime("%Y%m%d%H%M")
|
|
11
|
+
outpath = f"./radar_nmc/{now_str}.png"
|
|
12
|
+
mkDir(outpath)
|
|
13
|
+
|
|
14
|
+
# 创建绘图和设置坐标系
|
|
15
|
+
fig = plt.figure(figsize=(10, 8))
|
|
16
|
+
ax = fig.add_subplot(1, 1, 1, projection=ccrs.PlateCarree())
|
|
17
|
+
|
|
18
|
+
# 设置图像显示的范围
|
|
19
|
+
ax.set_extent([73, 135, 18, 54], ccrs.PlateCarree()) # 根据需要调整
|
|
20
|
+
|
|
21
|
+
# 添加中国地图的边界和特征,包括省份轮廓
|
|
22
|
+
add_china_map(ax)
|
|
23
|
+
|
|
24
|
+
# 添加数据层
|
|
25
|
+
if len(array_dt.shape) == 3:
|
|
26
|
+
for i, img_ch_nel in enumerate(array_dt):
|
|
27
|
+
ax.imshow(img_ch_nel, vmin=50, vmax=500, cmap=cmp_hjnwtx["radar_nmc"], transform=ccrs.PlateCarree(), extent=[73, 134.99, 12.21, 54.2])
|
|
28
|
+
plt.colorbar(ax.images[0], ax=ax, orientation='vertical')
|
|
29
|
+
plt.savefig(f"{outpath}_layer_{i}.png")
|
|
30
|
+
plt.clf() # 清除图形以绘制下一个通道图像
|
|
31
|
+
elif len(array_dt.shape) == 2:
|
|
32
|
+
ax.imshow(array_dt, vmin=0, vmax=100, cmap=cmp_hjnwtx["radar_nmc"], transform=ccrs.PlateCarree(), extent=[73, 134.99, 12.21, 54.2])
|
|
33
|
+
plt.colorbar(ax.images[0], ax=ax, orientation='vertical')
|
|
34
|
+
plt.savefig(outpath)
|
|
35
|
+
plt.close(fig)
|
|
36
|
+
|
|
37
|
+
def add_china_map(ax):
|
|
38
|
+
# 在地图上添加地形特征
|
|
39
|
+
ax.add_feature(cfeature.COASTLINE, edgecolor='gray')
|
|
40
|
+
ax.add_feature(cfeature.BORDERS, linestyle=':', edgecolor='gray')
|
|
41
|
+
ax.add_feature(cfeature.LAKES, alpha=0.8)
|
|
42
|
+
# 添加省份轮廓
|
|
43
|
+
provinces = shpreader.natural_earth(resolution='10m', category='cultural', name='admin_1_states_provinces')
|
|
44
|
+
provinces_features = shpreader.Reader(provinces).geometries()
|
|
45
|
+
ax.add_geometries(provinces_features, ccrs.PlateCarree(), facecolor='none', edgecolor='gray', linestyle=':', linewidth=0.5, alpha=0.8)
|
|
46
|
+
|
|
47
|
+
def mkDir(path):
|
|
48
|
+
# 处理目录创建
|
|
49
|
+
import os
|
|
50
|
+
directory = os.path.dirname(path)
|
|
51
|
+
if not os.path.exists(directory):
|
|
52
|
+
os.makedirs(directory)
|
|
53
|
+
|
|
54
|
+
# 示例用法
|
|
@@ -0,0 +1,36 @@
|
|
|
1
|
+
|
|
2
|
+
import glob
|
|
3
|
+
import numpy as np
|
|
4
|
+
from hjnwtx.colormap import cmp_hjnwtx
|
|
5
|
+
PathList = glob.glob("/mnt/wtx_weather_forecast/scx/testDBscan/2024_p/20240312/*")
|
|
6
|
+
path = PathList[0]
|
|
7
|
+
print(path)
|
|
8
|
+
|
|
9
|
+
import numpy as np
|
|
10
|
+
import matplotlib.pyplot as plt
|
|
11
|
+
x = np.load(path)
|
|
12
|
+
# for i in range(35):
|
|
13
|
+
# plt.imshow(x[i])
|
|
14
|
+
# plt.savefig(f"./image/a{str(i)}.png")
|
|
15
|
+
# plt.show()
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
from hjnwtx.colormap import cmp_hjnwtx
|
|
19
|
+
import matplotlib.pyplot as plt
|
|
20
|
+
import datetime
|
|
21
|
+
def drawpic(base_up,base_down,shape_len, name="temp"):
|
|
22
|
+
now_str = datetime.datetime.now().strftime("%Y%m%d%H%M")
|
|
23
|
+
Count = shape_len
|
|
24
|
+
data_all = np.concatenate([base_up,base_down], axis=0)
|
|
25
|
+
fig, axs = plt.subplots(2, Count, figsize=(10*shape_len, 10))
|
|
26
|
+
# data_all = data_all * 70
|
|
27
|
+
for i in range(2):
|
|
28
|
+
for j in range(Count):
|
|
29
|
+
index = i * Count + j
|
|
30
|
+
axs[i, j].imshow(data_all[index, :, :],vmax=70,vmin=0,cmap=cmp_hjnwtx["radar_nmc"])
|
|
31
|
+
axs[i, j].axis('off')
|
|
32
|
+
plt.tight_layout()
|
|
33
|
+
plt.savefig(name +now_str + '.png')
|
|
34
|
+
plt.close()
|
|
35
|
+
#drawpic(x,x,35)
|
|
36
|
+
print("done")
|
|
@@ -0,0 +1,40 @@
|
|
|
1
|
+
import matplotlib.pyplot as plt
|
|
2
|
+
import cartopy.crs as ccrs
|
|
3
|
+
import cartopy.feature as cfeature
|
|
4
|
+
import cartopy.io.shapereader as shpreader
|
|
5
|
+
import datetime
|
|
6
|
+
import os
|
|
7
|
+
|
|
8
|
+
def add_china_map(ax):
|
|
9
|
+
ax.add_feature(cfeature.COASTLINE, edgecolor='gray')
|
|
10
|
+
ax.add_feature(cfeature.BORDERS, linestyle=':', edgecolor='gray')
|
|
11
|
+
ax.add_feature(cfeature.LAKES, alpha=0.8)
|
|
12
|
+
provinces = shpreader.natural_earth(resolution='10m', category='cultural', name='admin_1_states_provinces')
|
|
13
|
+
provinces_features = shpreader.Reader(provinces).geometries()
|
|
14
|
+
ax.add_geometries(provinces_features, ccrs.PlateCarree(), facecolor='none', edgecolor='gray', linestyle=':', linewidth=0.5, alpha=0.8)
|
|
15
|
+
|
|
16
|
+
def mkDir(filepath):
|
|
17
|
+
directory = os.path.dirname(filepath)
|
|
18
|
+
if not os.path.exists(directory):
|
|
19
|
+
os.makedirs(directory)
|
|
20
|
+
|
|
21
|
+
def draw_radar_images(data, num_images, output_name="temp"):
|
|
22
|
+
# Validate input
|
|
23
|
+
if not data.shape[0] >= num_images:
|
|
24
|
+
raise ValueError("Data does not contain enough entries for the number of images specified.")
|
|
25
|
+
|
|
26
|
+
# Setup figure dimensions based on the number of images
|
|
27
|
+
fig, axs = plt.subplots(1, num_images, figsize=(10 * num_images, 10), subplot_kw={'projection': ccrs.PlateCarree()})
|
|
28
|
+
|
|
29
|
+
for i in range(num_images):
|
|
30
|
+
axs[i].imshow(data[i, :, :], vmax=70, vmin=0, cmap=cmp_hjnwtx["radar_nmc"], transform=ccrs.PlateCarree(), extent=[73, 135, 18, 54])
|
|
31
|
+
add_china_map(axs[i])
|
|
32
|
+
axs[i].axis('off')
|
|
33
|
+
|
|
34
|
+
# Save the figure
|
|
35
|
+
now_str = datetime.datetime.now().strftime("%Y%m%d%H%M")
|
|
36
|
+
outpath = f"./aplot_image/{output_name}_{now_str}.png"
|
|
37
|
+
mkDir(outpath)
|
|
38
|
+
fig.tight_layout()
|
|
39
|
+
fig.savefig(outpath, dpi=300)
|
|
40
|
+
plt.close(fig)
|
|
@@ -0,0 +1,12 @@
|
|
|
1
|
+
my_timer_decorator/__init__.py,sha256=ur0N4vwlv-LfYOCph5A8g6H8aFxxc9EhJdG9sxpa-SY,303
|
|
2
|
+
shancx/__init__.py,sha256=2Y16Cyjk7CxtRJllGNrfjypvDuKZubviN1FNODuVUv4,4312
|
|
3
|
+
shancx/mkIMGSCX.py,sha256=RN0LqYcZ3W8ez4jE5F3KBApw9biNgXVXeFuNVeZvQ2U,2520
|
|
4
|
+
shancx/radar_nmc_china_map_compare1.py,sha256=3PhtDm6sAY8EjmpdT8_TXJYjeGbqi02ce8QeqSMp76s,2493
|
|
5
|
+
shancx/radar_nmc_china_map_f.py,sha256=vgxYKygN1SibHVW4wU2zdlRrBm1r4olo_ln0PZr0178,2302
|
|
6
|
+
shancx/subplots_compare_devlop.py,sha256=ZsWEpv-z9ILPBE-mkleSIvLFx2UbRZyGySiWi7PX8oc,1075
|
|
7
|
+
shancx/subplots_single_china_map.py,sha256=NoxmZoc3o7-FIAGYM-PU2jn75EAdq_7k70lJ-PGY44E,1732
|
|
8
|
+
shancx/util_log.py,sha256=bGu-oCU7hozBBZJB6oDGj9XDDsz5GJVe8ZfJtx5pddA,1204
|
|
9
|
+
shancx-1.70.dist-info/METADATA,sha256=STAvvfrd43RZHkzWpC04zpuUDo6QHipNsmmqK6b3TOM,572
|
|
10
|
+
shancx-1.70.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
|
|
11
|
+
shancx-1.70.dist-info/top_level.txt,sha256=akfCS1vKWz3pNmEN_yN9ZiGp-60IQY5ET38mRx_i_-4,7
|
|
12
|
+
shancx-1.70.dist-info/RECORD,,
|
shancx-1.60.dist-info/RECORD
DELETED
|
@@ -1,7 +0,0 @@
|
|
|
1
|
-
my_timer_decorator/__init__.py,sha256=ur0N4vwlv-LfYOCph5A8g6H8aFxxc9EhJdG9sxpa-SY,303
|
|
2
|
-
shancx/__init__.py,sha256=7E61iUEkmy21JSSyOk6kTRGB9yGJo5dJ5cMqHKqCW4U,1790
|
|
3
|
-
shancx/util_log.py,sha256=bGu-oCU7hozBBZJB6oDGj9XDDsz5GJVe8ZfJtx5pddA,1204
|
|
4
|
-
shancx-1.60.dist-info/METADATA,sha256=Ymku04OYpWTcfJcGi68WJEeG9rQZP_5ZobTgcQU6jXA,572
|
|
5
|
-
shancx-1.60.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
|
|
6
|
-
shancx-1.60.dist-info/top_level.txt,sha256=akfCS1vKWz3pNmEN_yN9ZiGp-60IQY5ET38mRx_i_-4,7
|
|
7
|
-
shancx-1.60.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|