sglang 0.5.2rc1__py3-none-any.whl → 0.5.3rc0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch_server.py +10 -1
- sglang/bench_serving.py +257 -29
- sglang/lang/interpreter.py +1 -1
- sglang/srt/configs/__init__.py +4 -0
- sglang/srt/configs/device_config.py +3 -1
- sglang/srt/configs/dots_vlm.py +139 -0
- sglang/srt/configs/internvl.py +6 -0
- sglang/srt/configs/load_config.py +1 -0
- sglang/srt/configs/model_config.py +50 -6
- sglang/srt/configs/qwen3_next.py +326 -0
- sglang/srt/connector/__init__.py +8 -1
- sglang/srt/connector/remote_instance.py +82 -0
- sglang/srt/constrained/base_grammar_backend.py +48 -12
- sglang/srt/constrained/llguidance_backend.py +0 -1
- sglang/srt/constrained/outlines_backend.py +0 -1
- sglang/srt/constrained/xgrammar_backend.py +28 -9
- sglang/srt/custom_op.py +11 -1
- sglang/srt/debug_utils/dump_comparator.py +81 -44
- sglang/srt/debug_utils/dump_loader.py +97 -0
- sglang/srt/debug_utils/dumper.py +11 -3
- sglang/srt/debug_utils/text_comparator.py +73 -11
- sglang/srt/disaggregation/base/conn.py +1 -1
- sglang/srt/disaggregation/common/conn.py +15 -12
- sglang/srt/disaggregation/decode.py +21 -10
- sglang/srt/disaggregation/decode_schedule_batch_mixin.py +4 -1
- sglang/srt/disaggregation/fake/conn.py +1 -1
- sglang/srt/disaggregation/mini_lb.py +6 -445
- sglang/srt/disaggregation/mooncake/conn.py +18 -10
- sglang/srt/disaggregation/nixl/conn.py +180 -16
- sglang/srt/disaggregation/prefill.py +5 -3
- sglang/srt/disaggregation/utils.py +5 -50
- sglang/srt/distributed/parallel_state.py +67 -43
- sglang/srt/entrypoints/engine.py +38 -17
- sglang/srt/entrypoints/grpc_request_manager.py +580 -0
- sglang/srt/entrypoints/grpc_server.py +680 -0
- sglang/srt/entrypoints/http_server.py +88 -53
- sglang/srt/entrypoints/openai/protocol.py +7 -4
- sglang/srt/entrypoints/openai/serving_base.py +46 -3
- sglang/srt/entrypoints/openai/serving_chat.py +39 -19
- sglang/srt/entrypoints/openai/serving_completions.py +15 -4
- sglang/srt/entrypoints/openai/serving_embedding.py +9 -4
- sglang/srt/entrypoints/openai/serving_rerank.py +3 -1
- sglang/srt/entrypoints/openai/serving_responses.py +7 -4
- sglang/srt/entrypoints/openai/serving_score.py +1 -0
- sglang/srt/eplb/eplb_manager.py +2 -2
- sglang/srt/eplb/expert_distribution.py +26 -13
- sglang/srt/eplb/expert_location.py +8 -3
- sglang/srt/eplb/expert_location_updater.py +1 -1
- sglang/srt/function_call/base_format_detector.py +3 -6
- sglang/srt/function_call/ebnf_composer.py +11 -9
- sglang/srt/function_call/function_call_parser.py +6 -0
- sglang/srt/function_call/glm4_moe_detector.py +1 -1
- sglang/srt/function_call/gpt_oss_detector.py +1 -1
- sglang/srt/function_call/qwen3_coder_detector.py +1 -1
- sglang/srt/grpc/__init__.py +1 -0
- sglang/srt/grpc/sglang_scheduler_pb2.py +106 -0
- sglang/srt/grpc/sglang_scheduler_pb2.pyi +427 -0
- sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +236 -0
- sglang/srt/hf_transformers_utils.py +4 -0
- sglang/srt/layers/activation.py +142 -9
- sglang/srt/layers/attention/aiter_backend.py +93 -68
- sglang/srt/layers/attention/ascend_backend.py +11 -4
- sglang/srt/layers/attention/fla/chunk.py +242 -0
- sglang/srt/layers/attention/fla/chunk_delta_h.py +314 -0
- sglang/srt/layers/attention/fla/chunk_o.py +178 -0
- sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +151 -0
- sglang/srt/layers/attention/fla/cumsum.py +300 -0
- sglang/srt/layers/attention/fla/fused_recurrent.py +640 -0
- sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +232 -0
- sglang/srt/layers/attention/fla/index.py +37 -0
- sglang/srt/layers/attention/fla/l2norm.py +150 -0
- sglang/srt/layers/attention/fla/layernorm_gated.py +326 -0
- sglang/srt/layers/attention/fla/op.py +66 -0
- sglang/srt/layers/attention/fla/solve_tril.py +465 -0
- sglang/srt/layers/attention/fla/utils.py +331 -0
- sglang/srt/layers/attention/fla/wy_fast.py +158 -0
- sglang/srt/layers/attention/flashinfer_backend.py +6 -4
- sglang/srt/layers/attention/flashinfer_mla_backend.py +16 -12
- sglang/srt/layers/attention/hybrid_attn_backend.py +57 -50
- sglang/srt/layers/attention/hybrid_linear_attn_backend.py +602 -0
- sglang/srt/layers/attention/intel_amx_backend.py +3 -0
- sglang/srt/layers/attention/mamba/causal_conv1d.py +128 -0
- sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +1052 -0
- sglang/srt/layers/attention/mamba/mamba.py +64 -0
- sglang/srt/layers/attention/torch_native_backend.py +12 -6
- sglang/srt/layers/attention/triton_backend.py +18 -1
- sglang/srt/layers/attention/trtllm_mla_backend.py +124 -31
- sglang/srt/layers/attention/wave_ops/decode_attention.py +2 -4
- sglang/srt/layers/attention/wave_ops/extend_attention.py +1 -3
- sglang/srt/layers/communicator.py +45 -7
- sglang/srt/layers/dp_attention.py +30 -1
- sglang/srt/layers/layernorm.py +32 -15
- sglang/srt/layers/linear.py +34 -3
- sglang/srt/layers/logits_processor.py +29 -10
- sglang/srt/layers/moe/__init__.py +2 -1
- sglang/srt/layers/moe/cutlass_w4a8_moe.py +3 -3
- sglang/srt/layers/moe/ep_moe/kernels.py +1 -1
- sglang/srt/layers/moe/ep_moe/layer.py +182 -62
- sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +156 -0
- sglang/srt/layers/moe/fused_moe_native.py +5 -3
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_3_1/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=352,device_name=NVIDIA_RTX_5880_Ada_Generation,dtype=fp8_w8a8.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=512,device_name=NVIDIA_H20.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/{E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json → E=257,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json } +29 -29
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=64,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +5 -2
- sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +1 -1
- sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_kernels.py +23 -20
- sglang/srt/layers/moe/fused_moe_triton/layer.py +61 -59
- sglang/srt/layers/moe/moe_runner/__init__.py +2 -1
- sglang/srt/layers/moe/moe_runner/base.py +274 -1
- sglang/srt/layers/moe/moe_runner/runner.py +80 -0
- sglang/srt/layers/moe/moe_runner/triton.py +448 -0
- sglang/srt/layers/moe/token_dispatcher/__init__.py +16 -4
- sglang/srt/layers/moe/token_dispatcher/{base_dispatcher.py → base.py} +67 -17
- sglang/srt/layers/moe/token_dispatcher/deepep.py +43 -39
- sglang/srt/layers/moe/token_dispatcher/standard.py +44 -2
- sglang/srt/layers/moe/topk.py +30 -9
- sglang/srt/layers/moe/utils.py +12 -7
- sglang/srt/layers/quantization/awq.py +19 -7
- sglang/srt/layers/quantization/base_config.py +11 -6
- sglang/srt/layers/quantization/blockwise_int8.py +38 -27
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +50 -30
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +13 -1
- sglang/srt/layers/quantization/deep_gemm_wrapper/entrypoint.py +27 -0
- sglang/srt/layers/quantization/fp8.py +76 -47
- sglang/srt/layers/quantization/fp8_utils.py +50 -31
- sglang/srt/layers/quantization/gptq.py +25 -17
- sglang/srt/layers/quantization/modelopt_quant.py +182 -49
- sglang/srt/layers/quantization/moe_wna16.py +21 -18
- sglang/srt/layers/quantization/mxfp4.py +68 -41
- sglang/srt/layers/quantization/quark/quark_moe.py +32 -27
- sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +49 -30
- sglang/srt/layers/quantization/quark/utils.py +97 -0
- sglang/srt/layers/quantization/rocm_mxfp4_utils.py +13 -0
- sglang/srt/layers/quantization/unquant.py +135 -47
- sglang/srt/layers/quantization/w4afp8.py +30 -17
- sglang/srt/layers/quantization/w8a8_fp8.py +35 -20
- sglang/srt/layers/quantization/w8a8_int8.py +76 -38
- sglang/srt/layers/rocm_linear_utils.py +44 -0
- sglang/srt/layers/rotary_embedding.py +0 -18
- sglang/srt/layers/sampler.py +162 -18
- sglang/srt/lora/backend/base_backend.py +50 -8
- sglang/srt/lora/backend/triton_backend.py +90 -2
- sglang/srt/lora/layers.py +32 -0
- sglang/srt/lora/lora.py +4 -1
- sglang/srt/lora/lora_manager.py +35 -112
- sglang/srt/lora/mem_pool.py +24 -10
- sglang/srt/lora/utils.py +18 -9
- sglang/srt/managers/async_dynamic_batch_tokenizer.py +170 -0
- sglang/srt/managers/cache_controller.py +200 -199
- sglang/srt/managers/data_parallel_controller.py +105 -35
- sglang/srt/managers/detokenizer_manager.py +8 -4
- sglang/srt/managers/disagg_service.py +46 -0
- sglang/srt/managers/io_struct.py +199 -12
- sglang/srt/managers/mm_utils.py +1 -0
- sglang/srt/managers/multi_tokenizer_mixin.py +351 -397
- sglang/srt/managers/schedule_batch.py +77 -56
- sglang/srt/managers/schedule_policy.py +4 -3
- sglang/srt/managers/scheduler.py +191 -139
- sglang/srt/managers/scheduler_metrics_mixin.py +116 -9
- sglang/srt/managers/scheduler_output_processor_mixin.py +55 -11
- sglang/srt/managers/scheduler_profiler_mixin.py +1 -1
- sglang/srt/managers/template_manager.py +3 -3
- sglang/srt/managers/tokenizer_communicator_mixin.py +569 -0
- sglang/srt/managers/tokenizer_manager.py +260 -519
- sglang/srt/managers/tp_worker.py +53 -4
- sglang/srt/managers/tp_worker_overlap_thread.py +42 -19
- sglang/srt/mem_cache/allocator.py +1 -1
- sglang/srt/mem_cache/hicache_storage.py +18 -33
- sglang/srt/mem_cache/hiradix_cache.py +108 -48
- sglang/srt/mem_cache/memory_pool.py +347 -48
- sglang/srt/mem_cache/memory_pool_host.py +121 -57
- sglang/srt/mem_cache/radix_cache.py +0 -2
- sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +164 -0
- sglang/srt/mem_cache/storage/hf3fs/{client_hf3fs.py → hf3fs_usrbio_client.py} +5 -1
- sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +95 -5
- sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +280 -0
- sglang/srt/mem_cache/storage/lmcache/unit_test.py +121 -0
- sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +81 -20
- sglang/srt/mem_cache/storage/mooncake_store/test_mooncake_store.py +161 -0
- sglang/srt/mem_cache/swa_radix_cache.py +0 -2
- sglang/srt/metrics/collector.py +502 -77
- sglang/srt/metrics/startup_func_log_and_timer.py +150 -0
- sglang/srt/metrics/utils.py +48 -0
- sglang/srt/model_executor/cpu_graph_runner.py +640 -0
- sglang/srt/model_executor/cuda_graph_runner.py +13 -5
- sglang/srt/model_executor/forward_batch_info.py +75 -19
- sglang/srt/model_executor/model_runner.py +357 -30
- sglang/srt/model_loader/__init__.py +9 -3
- sglang/srt/model_loader/loader.py +128 -4
- sglang/srt/model_loader/weight_utils.py +2 -1
- sglang/srt/models/apertus.py +686 -0
- sglang/srt/models/bailing_moe.py +798 -218
- sglang/srt/models/bailing_moe_nextn.py +168 -0
- sglang/srt/models/deepseek_v2.py +346 -48
- sglang/srt/models/dots_vlm.py +174 -0
- sglang/srt/models/dots_vlm_vit.py +337 -0
- sglang/srt/models/ernie4.py +1 -1
- sglang/srt/models/gemma3n_mm.py +1 -1
- sglang/srt/models/glm4_moe.py +11 -2
- sglang/srt/models/glm4v.py +4 -2
- sglang/srt/models/glm4v_moe.py +3 -0
- sglang/srt/models/gpt_oss.py +1 -1
- sglang/srt/models/internvl.py +28 -0
- sglang/srt/models/llama4.py +9 -0
- sglang/srt/models/llama_eagle3.py +13 -0
- sglang/srt/models/longcat_flash.py +2 -2
- sglang/srt/models/minicpmv.py +165 -3
- sglang/srt/models/mllama4.py +25 -0
- sglang/srt/models/opt.py +637 -0
- sglang/srt/models/qwen2.py +7 -0
- sglang/srt/models/qwen2_5_vl.py +27 -3
- sglang/srt/models/qwen2_moe.py +60 -13
- sglang/srt/models/qwen3.py +8 -2
- sglang/srt/models/qwen3_moe.py +40 -9
- sglang/srt/models/qwen3_next.py +1042 -0
- sglang/srt/models/qwen3_next_mtp.py +112 -0
- sglang/srt/models/step3_vl.py +1 -1
- sglang/srt/models/torch_native_llama.py +1 -1
- sglang/srt/multimodal/processors/dots_vlm.py +99 -0
- sglang/srt/multimodal/processors/glm4v.py +9 -9
- sglang/srt/multimodal/processors/internvl.py +141 -129
- sglang/srt/multimodal/processors/qwen_vl.py +15 -5
- sglang/srt/offloader.py +27 -3
- sglang/srt/{reasoning_parser.py → parser/reasoning_parser.py} +1 -1
- sglang/srt/remote_instance_weight_loader_utils.py +69 -0
- sglang/srt/sampling/sampling_batch_info.py +18 -15
- sglang/srt/server_args.py +355 -37
- sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +5 -0
- sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +10 -1
- sglang/srt/speculative/eagle_utils.py +0 -2
- sglang/srt/speculative/eagle_worker.py +197 -112
- sglang/srt/speculative/spec_info.py +5 -0
- sglang/srt/speculative/standalone_worker.py +109 -0
- sglang/srt/tracing/trace.py +552 -0
- sglang/srt/utils.py +46 -3
- sglang/srt/weight_sync/utils.py +1 -1
- sglang/test/attention/test_trtllm_mla_backend.py +169 -5
- sglang/test/few_shot_gsm8k.py +1 -0
- sglang/test/runners.py +4 -0
- sglang/test/test_cutlass_moe.py +24 -6
- sglang/test/test_disaggregation_utils.py +66 -0
- sglang/test/test_fp4_moe.py +370 -1
- sglang/test/test_utils.py +28 -1
- sglang/utils.py +12 -0
- sglang/version.py +1 -1
- {sglang-0.5.2rc1.dist-info → sglang-0.5.3rc0.dist-info}/METADATA +59 -123
- {sglang-0.5.2rc1.dist-info → sglang-0.5.3rc0.dist-info}/RECORD +263 -200
- sglang/srt/disaggregation/launch_lb.py +0 -118
- sglang/srt/mem_cache/storage/mooncake_store/unit_test.py +0 -40
- /sglang/srt/{model_parallel.py → layers/model_parallel.py} +0 -0
- /sglang/srt/{code_completion_parser.py → parser/code_completion_parser.py} +0 -0
- /sglang/srt/{conversation.py → parser/conversation.py} +0 -0
- /sglang/srt/{harmony_parser.py → parser/harmony_parser.py} +0 -0
- /sglang/srt/{jinja_template_utils.py → parser/jinja_template_utils.py} +0 -0
- {sglang-0.5.2rc1.dist-info → sglang-0.5.3rc0.dist-info}/WHEEL +0 -0
- {sglang-0.5.2rc1.dist-info → sglang-0.5.3rc0.dist-info}/licenses/LICENSE +0 -0
- {sglang-0.5.2rc1.dist-info → sglang-0.5.3rc0.dist-info}/top_level.txt +0 -0
sglang/test/test_fp4_moe.py
CHANGED
@@ -3,12 +3,15 @@ from typing import Callable
|
|
3
3
|
|
4
4
|
import pytest
|
5
5
|
import torch
|
6
|
+
from flashinfer import fp4_quantize
|
6
7
|
from flashinfer.fused_moe import cutlass_fused_moe as flashinfer_cutlass_fused_moe
|
7
|
-
from sgl_kernel import scaled_fp4_quant
|
8
|
+
from sgl_kernel import scaled_fp4_grouped_quant, scaled_fp4_quant
|
9
|
+
from torch.nn import functional as F
|
8
10
|
|
9
11
|
from sglang.srt.layers.activation import SiluAndMul
|
10
12
|
from sglang.srt.layers.moe.cutlass_moe import cutlass_moe_fp4
|
11
13
|
from sglang.srt.layers.moe.cutlass_moe_params import CutlassMoEParams, CutlassMoEType
|
14
|
+
from sglang.srt.layers.moe.flashinfer_cutedsl_moe import flashinfer_cutedsl_moe_masked
|
12
15
|
from sglang.srt.layers.moe.topk import TopKConfig, select_experts
|
13
16
|
|
14
17
|
if torch.cuda.get_device_capability() < (10, 0):
|
@@ -78,6 +81,37 @@ def break_fp4_bytes(a, dtype):
|
|
78
81
|
return values.reshape(m, n * 2).to(dtype=dtype)
|
79
82
|
|
80
83
|
|
84
|
+
def compute_routing(router_logits: torch.Tensor, top_k: int):
|
85
|
+
routing_weights = torch.softmax(router_logits, dim=1, dtype=torch.float)
|
86
|
+
routing_weights, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
|
87
|
+
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
|
88
|
+
routing_weights = routing_weights.float()
|
89
|
+
return routing_weights, selected_experts
|
90
|
+
|
91
|
+
|
92
|
+
def prepare_inputs(
|
93
|
+
hidden_states: torch.Tensor,
|
94
|
+
router_logits: torch.Tensor,
|
95
|
+
num_experts: int,
|
96
|
+
topk: int,
|
97
|
+
):
|
98
|
+
routing_weights, topk_idx = compute_routing(router_logits, topk)
|
99
|
+
|
100
|
+
masked_m = []
|
101
|
+
for i in range(num_experts):
|
102
|
+
mask = topk_idx.view(-1) == i
|
103
|
+
masked_m.append(mask.sum())
|
104
|
+
|
105
|
+
masked_m = torch.tensor(masked_m, dtype=torch.int32)
|
106
|
+
hidden_states_3d = torch.empty(
|
107
|
+
(num_experts, max(masked_m), hidden_states.shape[1]), dtype=hidden_states.dtype
|
108
|
+
)
|
109
|
+
for i in range(num_experts):
|
110
|
+
hidden_states_3d[i, : masked_m[i], :] = hidden_states[topk_idx.view(-1) == i]
|
111
|
+
|
112
|
+
return hidden_states_3d, masked_m, topk_idx, routing_weights
|
113
|
+
|
114
|
+
|
81
115
|
MNK_FACTORS = [
|
82
116
|
(2, 1024, 1024),
|
83
117
|
(2, 1024, 1536),
|
@@ -114,6 +148,99 @@ def torch_moe(a, w1, w2, score, topk, expert_map):
|
|
114
148
|
).sum(dim=1)
|
115
149
|
|
116
150
|
|
151
|
+
def torch_moe_nvfp4(a, w1, w2, topk, topk_weight, topk_ids):
|
152
|
+
B, D = a.shape
|
153
|
+
a = a.view(B, -1, D).repeat(1, topk, 1).reshape(-1, D)
|
154
|
+
out = torch.zeros(B * topk, w2.shape[1], dtype=a.dtype, device=a.device)
|
155
|
+
|
156
|
+
topk_weight = topk_weight.view(-1)
|
157
|
+
topk_ids = topk_ids.view(-1)
|
158
|
+
|
159
|
+
for i in range(w1.shape[0]):
|
160
|
+
mask = topk_ids == i
|
161
|
+
if mask.sum():
|
162
|
+
m = w1[i].shape[0]
|
163
|
+
assert m % 2 == 0
|
164
|
+
# Note: w1 and w3 are swapped!
|
165
|
+
w3_expert, w1_expert = w1[i][m // 2 :, :], w1[i][: m // 2, :]
|
166
|
+
inter = F.silu(a[mask] @ w1_expert.t()) * (a[mask] @ w3_expert.t())
|
167
|
+
inter_gs = torch.tensor(1.0).cuda()
|
168
|
+
inter_q, inter_blockscale = fp4_quantize(inter, inter_gs)
|
169
|
+
inter = dequantize_nvfp4_to_dtype(
|
170
|
+
inter_q,
|
171
|
+
inter_blockscale,
|
172
|
+
inter_gs,
|
173
|
+
dtype=inter.dtype,
|
174
|
+
device=inter.device,
|
175
|
+
block_size=16,
|
176
|
+
).cuda()
|
177
|
+
out[mask] = inter @ w2[i].transpose(0, 1)
|
178
|
+
return (
|
179
|
+
out.view(B, -1, w2.shape[1]) * topk_weight.view(B, -1, 1).to(out.dtype)
|
180
|
+
).sum(dim=1)
|
181
|
+
|
182
|
+
|
183
|
+
def flashinfer_cutedsl_grouped_gemm_nt_masked(
|
184
|
+
hidden_states: torch.Tensor, # 3d
|
185
|
+
input_global_scale: torch.Tensor, # (l,)
|
186
|
+
weights: torch.Tensor,
|
187
|
+
w_global_scale: torch.Tensor, # (l,)
|
188
|
+
masked_m: torch.Tensor,
|
189
|
+
):
|
190
|
+
from flashinfer.cute_dsl.blockscaled_gemm import grouped_gemm_nt_masked
|
191
|
+
|
192
|
+
# hidden_states: [l, m, k]
|
193
|
+
# weights: [l, n, k]
|
194
|
+
aq, aq_sf = scaled_fp4_grouped_quant(
|
195
|
+
hidden_states,
|
196
|
+
input_global_scale,
|
197
|
+
masked_m.to(hidden_states.device),
|
198
|
+
)
|
199
|
+
num_experts, n, k = weights.shape
|
200
|
+
bq, bq_sf = scaled_fp4_grouped_quant(
|
201
|
+
weights,
|
202
|
+
w_global_scale,
|
203
|
+
torch.ones(num_experts, device=weights.device, dtype=torch.int32) * n,
|
204
|
+
)
|
205
|
+
|
206
|
+
out = torch.zeros(
|
207
|
+
(num_experts, max(masked_m), n), dtype=weights.dtype, device=aq.device
|
208
|
+
)
|
209
|
+
out = out.permute(1, 2, 0) # requirement of kernel
|
210
|
+
sf_vec_size = 16
|
211
|
+
ab_dtype = "float4_e2m1fn"
|
212
|
+
sf_dtype = "float8_e4m3fn"
|
213
|
+
c_dtype = "bfloat16"
|
214
|
+
alpha = 1.0 / (input_global_scale * w_global_scale).to(out.dtype).view(
|
215
|
+
1, 1, num_experts
|
216
|
+
)
|
217
|
+
|
218
|
+
def get_cute_dtype(input: torch.Tensor) -> str:
|
219
|
+
if input.dtype == torch.bfloat16:
|
220
|
+
return "bfloat16"
|
221
|
+
elif input.dtype == torch.float16:
|
222
|
+
return "float16"
|
223
|
+
elif input.dtype == torch.float32:
|
224
|
+
return "float32"
|
225
|
+
else:
|
226
|
+
raise ValueError(f"Unsupported cute dtype {input.dtype}")
|
227
|
+
|
228
|
+
grouped_gemm_nt_masked(
|
229
|
+
(aq, aq_sf),
|
230
|
+
(bq, bq_sf),
|
231
|
+
out,
|
232
|
+
masked_m.to(aq.device),
|
233
|
+
ab_dtype=ab_dtype,
|
234
|
+
sf_dtype=sf_dtype,
|
235
|
+
c_dtype=c_dtype,
|
236
|
+
sf_vec_size=sf_vec_size,
|
237
|
+
alpha=alpha,
|
238
|
+
alpha_dtype=get_cute_dtype(alpha),
|
239
|
+
)
|
240
|
+
|
241
|
+
return out
|
242
|
+
|
243
|
+
|
117
244
|
def check_moe(
|
118
245
|
m: int,
|
119
246
|
n: int,
|
@@ -324,6 +451,248 @@ def test_flashinfer_fp4_moe_no_graph(
|
|
324
451
|
check_moe(m, n, k, e, topk, dtype, flashinfer_moe_impl, flip_w13=True)
|
325
452
|
|
326
453
|
|
454
|
+
@pytest.mark.parametrize("bs, hidden_dim, inter_dim", [(2, 128, 256), (16, 128, 512)])
|
455
|
+
@pytest.mark.parametrize("topk", [1, 2, 4])
|
456
|
+
@torch.inference_mode()
|
457
|
+
def test_flashinfer_cutedsl_moe_masked(
|
458
|
+
bs: int, hidden_dim: int, inter_dim: int, topk: int
|
459
|
+
):
|
460
|
+
torch.manual_seed(42)
|
461
|
+
device = "cuda"
|
462
|
+
dtype = torch.bfloat16
|
463
|
+
num_experts = 8
|
464
|
+
hidden_states = (
|
465
|
+
torch.randn(bs, hidden_dim, dtype=torch.bfloat16, device=device) / 5.0
|
466
|
+
)
|
467
|
+
w1 = (
|
468
|
+
torch.randn(
|
469
|
+
num_experts, 2 * inter_dim, hidden_dim, dtype=torch.bfloat16, device=device
|
470
|
+
)
|
471
|
+
/ 10.0
|
472
|
+
)
|
473
|
+
w2 = (
|
474
|
+
torch.randn(
|
475
|
+
num_experts, hidden_dim, inter_dim, dtype=torch.bfloat16, device=device
|
476
|
+
)
|
477
|
+
/ 10.0
|
478
|
+
)
|
479
|
+
router_logits = torch.randn(bs, num_experts, dtype=torch.float32)
|
480
|
+
|
481
|
+
hidden_states_expanded = (
|
482
|
+
hidden_states.view(bs, -1, hidden_dim)
|
483
|
+
.repeat(1, topk, 1)
|
484
|
+
.reshape(-1, hidden_dim)
|
485
|
+
)
|
486
|
+
hidden_states_3d, masked_m, topk_idx, routing_weights = prepare_inputs(
|
487
|
+
hidden_states_expanded, router_logits, num_experts, topk
|
488
|
+
)
|
489
|
+
|
490
|
+
w1_amax = w1.abs().amax(dim=(1, 2)).to(torch.float32).to(w1.device)
|
491
|
+
w2_amax = w2.abs().amax(dim=(1, 2)).to(torch.float32).to(w2.device)
|
492
|
+
input_global_scale = torch.ones(
|
493
|
+
(num_experts,), dtype=torch.float32, device=hidden_states.device
|
494
|
+
)
|
495
|
+
|
496
|
+
w1_global_scale = FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX / w1_amax
|
497
|
+
w2_global_scale = FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX / w2_amax
|
498
|
+
a2_global_scale = torch.ones(
|
499
|
+
(num_experts,), dtype=torch.float32, device=hidden_states.device
|
500
|
+
) # assume intermediate scale is 1.0
|
501
|
+
|
502
|
+
w1_fp4, w1_blockscale = scaled_fp4_grouped_quant(
|
503
|
+
w1,
|
504
|
+
w1_global_scale,
|
505
|
+
torch.ones(num_experts, dtype=torch.int32, device=w1.device) * 2 * inter_dim,
|
506
|
+
)
|
507
|
+
w2_fp4, w2_blockscale = scaled_fp4_grouped_quant(
|
508
|
+
w2,
|
509
|
+
w2_global_scale,
|
510
|
+
torch.ones(num_experts, dtype=torch.int32, device=w2.device) * hidden_dim,
|
511
|
+
)
|
512
|
+
|
513
|
+
w1_alpha = 1.0 / (input_global_scale * w1_global_scale)
|
514
|
+
w2_alpha = 1.0 / (a2_global_scale * w2_global_scale)
|
515
|
+
|
516
|
+
out = flashinfer_cutedsl_moe_masked(
|
517
|
+
hidden_states_3d.to(hidden_states.device),
|
518
|
+
input_global_scale,
|
519
|
+
w1_fp4.permute(2, 0, 1),
|
520
|
+
w1_blockscale,
|
521
|
+
w1_alpha,
|
522
|
+
w2_fp4.permute(2, 0, 1),
|
523
|
+
a2_global_scale,
|
524
|
+
w2_blockscale,
|
525
|
+
w2_alpha,
|
526
|
+
masked_m.to(hidden_states.device),
|
527
|
+
)
|
528
|
+
|
529
|
+
# reference
|
530
|
+
a_fp4, a_scale_interleaved = fp4_quantize(hidden_states, input_global_scale)
|
531
|
+
a_in_dtype = dequantize_nvfp4_to_dtype(
|
532
|
+
a_fp4,
|
533
|
+
a_scale_interleaved,
|
534
|
+
input_global_scale,
|
535
|
+
dtype=hidden_states.dtype,
|
536
|
+
device=hidden_states.device,
|
537
|
+
block_size=16,
|
538
|
+
)
|
539
|
+
w1_d = torch.empty(
|
540
|
+
(num_experts, 2 * inter_dim, hidden_dim), device=w1.device, dtype=w1.dtype
|
541
|
+
)
|
542
|
+
w2_d = torch.empty(
|
543
|
+
(num_experts, hidden_dim, inter_dim), device=w2.device, dtype=w2.dtype
|
544
|
+
)
|
545
|
+
|
546
|
+
for idx in range(0, num_experts):
|
547
|
+
w1_fp4_sliced, w1_blockscale_sliced = fp4_quantize(
|
548
|
+
w1[idx], w1_global_scale[idx]
|
549
|
+
)
|
550
|
+
w2_fp4_sliced, w2_blockscale_sliced = fp4_quantize(
|
551
|
+
w2[idx], w2_global_scale[idx]
|
552
|
+
)
|
553
|
+
w1_d[idx] = dequantize_nvfp4_to_dtype(
|
554
|
+
w1_fp4_sliced,
|
555
|
+
w1_blockscale_sliced,
|
556
|
+
w1_global_scale[idx],
|
557
|
+
dtype=w1.dtype,
|
558
|
+
device=w1.device,
|
559
|
+
block_size=16,
|
560
|
+
)
|
561
|
+
w2_d[idx] = dequantize_nvfp4_to_dtype(
|
562
|
+
w2_fp4_sliced,
|
563
|
+
w2_blockscale_sliced,
|
564
|
+
w2_global_scale[idx],
|
565
|
+
dtype=w2.dtype,
|
566
|
+
device=w2.device,
|
567
|
+
block_size=16,
|
568
|
+
)
|
569
|
+
|
570
|
+
ref_output = torch_moe_nvfp4(
|
571
|
+
a_in_dtype,
|
572
|
+
w1_d,
|
573
|
+
w2_d,
|
574
|
+
topk,
|
575
|
+
routing_weights.to(a_in_dtype.device),
|
576
|
+
topk_idx.to(a_in_dtype.device),
|
577
|
+
)
|
578
|
+
out_weighted = torch.zeros_like(ref_output, device=out.device, dtype=out.dtype)
|
579
|
+
|
580
|
+
positions = torch.nonzero(masked_m[topk_idx], as_tuple=False)
|
581
|
+
rows, cols = positions[:, 0], positions[:, 1]
|
582
|
+
experts = topk_idx[rows, cols]
|
583
|
+
for i in range(num_experts):
|
584
|
+
mask = experts == i
|
585
|
+
if mask.any():
|
586
|
+
idx = torch.nonzero(mask, as_tuple=False).squeeze(-1)
|
587
|
+
r, c = rows[idx], cols[idx]
|
588
|
+
out_weighted[r] += out[i, : len(r), :] * routing_weights[r, c].to(
|
589
|
+
out.device
|
590
|
+
).unsqueeze(-1)
|
591
|
+
torch.testing.assert_close(
|
592
|
+
out_weighted.cpu(), ref_output.cpu(), atol=5e-2, rtol=5e-2
|
593
|
+
)
|
594
|
+
|
595
|
+
|
596
|
+
@pytest.mark.parametrize(
|
597
|
+
"bs, hidden_dim, inter_dim, topk", [(2, 128, 256, 2), (16, 128, 512, 5)]
|
598
|
+
)
|
599
|
+
@torch.inference_mode()
|
600
|
+
def test_grouped_gemm_nt_masked(
|
601
|
+
bs: int, hidden_dim: int, inter_dim: int, topk: int
|
602
|
+
) -> None:
|
603
|
+
torch.manual_seed(42)
|
604
|
+
B = bs
|
605
|
+
D = hidden_dim
|
606
|
+
N = inter_dim
|
607
|
+
num_experts = 8
|
608
|
+
hidden_states = torch.randn(B, D, dtype=torch.bfloat16, device="cuda")
|
609
|
+
weights = torch.randn(num_experts, N, D, dtype=torch.bfloat16, device="cuda")
|
610
|
+
router_logits = torch.randn(B, num_experts, dtype=torch.float32)
|
611
|
+
|
612
|
+
hidden_states_expanded = (
|
613
|
+
hidden_states.view(B, -1, D).repeat(1, topk, 1).reshape(-1, D)
|
614
|
+
)
|
615
|
+
hidden_states_3d, masked_m, topk_idx, _ = prepare_inputs(
|
616
|
+
hidden_states_expanded, router_logits, num_experts, topk
|
617
|
+
)
|
618
|
+
|
619
|
+
# reference
|
620
|
+
out = torch.zeros(
|
621
|
+
(B * topk, weights.shape[1]), dtype=weights.dtype, device=weights.device
|
622
|
+
)
|
623
|
+
for i in range(num_experts):
|
624
|
+
mask = topk_idx.view(-1) == i
|
625
|
+
if mask.sum():
|
626
|
+
lhs = hidden_states_expanded[mask]
|
627
|
+
rhs = weights[i]
|
628
|
+
a_amax = lhs.abs().max().to(torch.float32).to(hidden_states.device)
|
629
|
+
b_amax = rhs.abs().amax().to(torch.float32).to(weights.device)
|
630
|
+
a_gs = FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX / a_amax
|
631
|
+
b_gs = FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX / b_amax
|
632
|
+
|
633
|
+
lhsq, lhsq_sf = fp4_quantize(
|
634
|
+
lhs,
|
635
|
+
a_gs,
|
636
|
+
)
|
637
|
+
rhsq, rhsq_sf = fp4_quantize(
|
638
|
+
rhs,
|
639
|
+
b_gs,
|
640
|
+
)
|
641
|
+
|
642
|
+
lhs_in_dtype = dequantize_nvfp4_to_dtype(
|
643
|
+
lhsq,
|
644
|
+
lhsq_sf,
|
645
|
+
a_gs,
|
646
|
+
dtype=hidden_states.dtype,
|
647
|
+
device=hidden_states.device,
|
648
|
+
block_size=16,
|
649
|
+
)
|
650
|
+
|
651
|
+
rhs_in_dtype = dequantize_nvfp4_to_dtype(
|
652
|
+
rhsq,
|
653
|
+
rhsq_sf,
|
654
|
+
b_gs,
|
655
|
+
dtype=hidden_states.dtype,
|
656
|
+
device=hidden_states.device,
|
657
|
+
block_size=16,
|
658
|
+
)
|
659
|
+
out[mask] = lhs_in_dtype @ rhs_in_dtype.t()
|
660
|
+
|
661
|
+
a_amax = (
|
662
|
+
hidden_states_3d.abs()
|
663
|
+
.amax(dim=(1, 2))
|
664
|
+
.to(torch.float32)
|
665
|
+
.to(hidden_states.device)
|
666
|
+
)
|
667
|
+
b_amax = weights.abs().amax(dim=(1, 2)).to(torch.float32).to(weights.device)
|
668
|
+
a_gs = FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX / a_amax
|
669
|
+
b_gs = FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX / b_amax
|
670
|
+
out_flashinfer = flashinfer_cutedsl_grouped_gemm_nt_masked(
|
671
|
+
hidden_states_3d.to(hidden_states.device), a_gs, weights, b_gs, masked_m
|
672
|
+
)
|
673
|
+
|
674
|
+
# re-pack out into [num_experts, max_m, n]
|
675
|
+
out_ref = torch.zeros(
|
676
|
+
(num_experts, max(masked_m), weights.shape[1]), dtype=out.dtype
|
677
|
+
)
|
678
|
+
expert_slot = [0] * num_experts
|
679
|
+
for i, expert_id in enumerate(topk_idx.view(-1).tolist()):
|
680
|
+
out_ref[expert_id, expert_slot[expert_id], :] = out[i]
|
681
|
+
expert_slot[expert_id] += 1
|
682
|
+
|
683
|
+
# Note: just to compare the masked position due to cutedsl may write nan
|
684
|
+
# into unmasked position.
|
685
|
+
for i in range(num_experts):
|
686
|
+
torch.testing.assert_close(
|
687
|
+
out_flashinfer.permute(2, 0, 1)[i, : masked_m[i]],
|
688
|
+
out_ref.to(out_flashinfer.device)[i, : masked_m[i]],
|
689
|
+
atol=1e-1,
|
690
|
+
rtol=5e-2,
|
691
|
+
)
|
692
|
+
|
693
|
+
|
327
694
|
if __name__ == "__main__":
|
328
695
|
test_cutlass_fp4_moe_no_graph(224, 1024, 1024, 256, 8, torch.half)
|
329
696
|
test_flashinfer_fp4_moe_no_graph(224, 1024, 1024, 256, 8, torch.half)
|
697
|
+
test_flashinfer_cutedsl_moe_masked(16, 128, 512, 4)
|
698
|
+
test_grouped_gemm_nt_masked(16, 128, 512, 4)
|
sglang/test/test_utils.py
CHANGED
@@ -42,7 +42,8 @@ DEFAULT_MODEL_NAME_FOR_TEST = "meta-llama/Llama-3.1-8B-Instruct"
|
|
42
42
|
DEFAULT_SMALL_MODEL_NAME_FOR_TEST = "meta-llama/Llama-3.2-1B-Instruct"
|
43
43
|
DEFAULT_SMALL_MODEL_NAME_FOR_TEST_BASE = "meta-llama/Llama-3.2-1B"
|
44
44
|
DEFAULT_MOE_MODEL_NAME_FOR_TEST = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
45
|
-
|
45
|
+
DEFAULT_SMALL_MOE_MODEL_NAME_FOR_TEST_BASE = "Qwen/Qwen1.5-MoE-A2.7B"
|
46
|
+
DEFAULT_SMALL_MOE_MODEL_NAME_FOR_TEST_CHAT = "Qwen/Qwen1.5-MoE-A2.7B-Chat"
|
46
47
|
|
47
48
|
# MLA test models
|
48
49
|
DEFAULT_SMALL_EMBEDDING_MODEL_NAME_FOR_TEST = "Alibaba-NLP/gte-Qwen2-1.5B-instruct"
|
@@ -52,6 +53,9 @@ DEFAULT_MLA_FP8_MODEL_NAME_FOR_TEST = "neuralmagic/DeepSeek-Coder-V2-Lite-Instru
|
|
52
53
|
DEFAULT_MODEL_NAME_FOR_TEST_MLA = "lmsys/sglang-ci-dsv3-test"
|
53
54
|
DEFAULT_MODEL_NAME_FOR_TEST_MLA_NEXTN = "lmsys/sglang-ci-dsv3-test-NextN"
|
54
55
|
|
56
|
+
# NVFP4 models
|
57
|
+
DEFAULT_DEEPSEEK_NVFP4_MODEL_FOR_TEST = "nvidia/DeepSeek-R1-0528-FP4"
|
58
|
+
|
55
59
|
# FP8 models
|
56
60
|
DEFAULT_MODEL_NAME_FOR_TEST_FP8 = "neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8"
|
57
61
|
DEFAULT_MODEL_NAME_FOR_ACCURACY_TEST_FP8 = "neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8"
|
@@ -72,6 +76,10 @@ DEFAULT_MODEL_NAME_FOR_TEST_W8A8_WITH_MOE = "nytopop/Qwen3-30B-A3B.w8a8"
|
|
72
76
|
DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST = "meta-llama/Llama-2-7b-chat-hf"
|
73
77
|
DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST = "lmsys/sglang-EAGLE-llama2-chat-7B"
|
74
78
|
DEFAULT_MODEL_NAME_FOR_TEST_EAGLE3 = "jamesliu1/sglang-EAGLE3-Llama-3.1-Instruct-8B"
|
79
|
+
DEFAULT_STANDALONE_SPECULATIVE_TARGET_MODEL_FOR_TEST = (
|
80
|
+
"meta-llama/Llama-3.1-8B-Instruct"
|
81
|
+
)
|
82
|
+
DEFAULT_STANDALONE_SPECULATIVE_DRAFT_MODEL_FOR_TEST = "meta-llama/Llama-3.2-1B-Instruct"
|
75
83
|
|
76
84
|
# Other use cases
|
77
85
|
DEFAULT_MODEL_NAME_FOR_TEST_LOCAL_ATTENTION = (
|
@@ -466,6 +474,25 @@ def try_cached_model(model_repo: str):
|
|
466
474
|
return model_dir if model_dir else model_repo
|
467
475
|
|
468
476
|
|
477
|
+
def popen_with_error_check(command: list[str], allow_exit: bool = False):
|
478
|
+
process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
479
|
+
|
480
|
+
def _run_and_check():
|
481
|
+
stdout, stderr = process.communicate()
|
482
|
+
|
483
|
+
while process.poll() is None:
|
484
|
+
time.sleep(5)
|
485
|
+
|
486
|
+
if not allow_exit or process.returncode != 0:
|
487
|
+
raise Exception(
|
488
|
+
f"{command} exited with code {process.returncode}\n{stdout=}\n{stderr=}"
|
489
|
+
)
|
490
|
+
|
491
|
+
t = threading.Thread(target=_run_and_check)
|
492
|
+
t.start()
|
493
|
+
return process
|
494
|
+
|
495
|
+
|
469
496
|
def popen_launch_server(
|
470
497
|
model: str,
|
471
498
|
base_url: str,
|
sglang/utils.py
CHANGED
@@ -457,6 +457,7 @@ def wait_for_server(base_url: str, timeout: int = None) -> None:
|
|
457
457
|
NOTE: Typically, the server runs in a separate terminal.
|
458
458
|
In this notebook, we run the server and notebook code together, so their outputs are combined.
|
459
459
|
To improve clarity, the server logs are displayed in the original black color, while the notebook outputs are highlighted in blue.
|
460
|
+
To reduce the log length, we set the log level to warning for the server, the default log level is info.
|
460
461
|
We are running those notebooks in a CI environment, so the throughput is not representative of the actual performance.
|
461
462
|
"""
|
462
463
|
)
|
@@ -471,11 +472,22 @@ def wait_for_server(base_url: str, timeout: int = None) -> None:
|
|
471
472
|
class TypeBasedDispatcher:
|
472
473
|
def __init__(self, mapping: List[Tuple[Type, Callable]]):
|
473
474
|
self._mapping = mapping
|
475
|
+
self._fallback_fn = None
|
476
|
+
|
477
|
+
def add_fallback_fn(self, fallback_fn: Callable):
|
478
|
+
self._fallback_fn = fallback_fn
|
479
|
+
|
480
|
+
def __iadd__(self, other: "TypeBasedDispatcher"):
|
481
|
+
self._mapping.extend(other._mapping)
|
482
|
+
return self
|
474
483
|
|
475
484
|
def __call__(self, obj: Any):
|
476
485
|
for ty, fn in self._mapping:
|
477
486
|
if isinstance(obj, ty):
|
478
487
|
return fn(obj)
|
488
|
+
|
489
|
+
if self._fallback_fn is not None:
|
490
|
+
return self._fallback_fn(obj)
|
479
491
|
raise ValueError(f"Invalid object: {obj}")
|
480
492
|
|
481
493
|
|
sglang/version.py
CHANGED
@@ -1 +1 @@
|
|
1
|
-
__version__ = "0.5.
|
1
|
+
__version__ = "0.5.3rc0"
|