sglang 0.5.2rc1__py3-none-any.whl → 0.5.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +7 -9
- sglang/bench_one_batch_server.py +330 -31
- sglang/bench_serving.py +267 -32
- sglang/global_config.py +2 -2
- sglang/lang/backend/runtime_endpoint.py +1 -1
- sglang/lang/interpreter.py +1 -1
- sglang/launch_server.py +14 -0
- sglang/profiler.py +2 -2
- sglang/srt/batch_invariant_ops/__init__.py +27 -0
- sglang/srt/batch_invariant_ops/batch_invariant_ops.py +549 -0
- sglang/srt/configs/__init__.py +8 -0
- sglang/srt/configs/device_config.py +3 -1
- sglang/srt/configs/dots_ocr.py +64 -0
- sglang/srt/configs/dots_vlm.py +139 -0
- sglang/srt/configs/falcon_h1.py +360 -0
- sglang/srt/configs/internvl.py +6 -0
- sglang/srt/configs/load_config.py +9 -0
- sglang/srt/configs/model_config.py +181 -82
- sglang/srt/configs/qwen3_next.py +326 -0
- sglang/srt/configs/qwen3_vl.py +586 -0
- sglang/srt/connector/__init__.py +8 -1
- sglang/srt/connector/remote_instance.py +82 -0
- sglang/srt/constrained/base_grammar_backend.py +49 -12
- sglang/srt/constrained/llguidance_backend.py +0 -1
- sglang/srt/constrained/outlines_backend.py +0 -1
- sglang/srt/constrained/outlines_jump_forward.py +1 -1
- sglang/srt/constrained/xgrammar_backend.py +30 -9
- sglang/srt/custom_op.py +11 -1
- sglang/srt/debug_utils/dump_comparator.py +81 -44
- sglang/srt/debug_utils/dump_loader.py +97 -0
- sglang/srt/debug_utils/dumper.py +21 -6
- sglang/srt/debug_utils/text_comparator.py +73 -11
- sglang/srt/disaggregation/ascend/conn.py +2 -2
- sglang/srt/disaggregation/ascend/transfer_engine.py +47 -9
- sglang/srt/disaggregation/base/conn.py +1 -1
- sglang/srt/disaggregation/common/conn.py +279 -108
- sglang/srt/disaggregation/decode.py +71 -19
- sglang/srt/disaggregation/decode_kvcache_offload_manager.py +185 -0
- sglang/srt/disaggregation/decode_schedule_batch_mixin.py +29 -17
- sglang/srt/disaggregation/fake/conn.py +1 -1
- sglang/srt/disaggregation/mini_lb.py +6 -445
- sglang/srt/disaggregation/mooncake/conn.py +55 -537
- sglang/srt/disaggregation/nixl/conn.py +326 -53
- sglang/srt/disaggregation/prefill.py +36 -17
- sglang/srt/disaggregation/utils.py +40 -54
- sglang/srt/distributed/device_communicators/all_reduce_utils.py +16 -0
- sglang/srt/distributed/device_communicators/shm_broadcast.py +4 -2
- sglang/srt/distributed/device_communicators/symm_mem.py +164 -0
- sglang/srt/distributed/parallel_state.py +192 -113
- sglang/srt/entrypoints/engine.py +59 -18
- sglang/srt/entrypoints/grpc_request_manager.py +855 -0
- sglang/srt/entrypoints/grpc_server.py +810 -0
- sglang/srt/entrypoints/http_server.py +132 -57
- sglang/srt/entrypoints/openai/protocol.py +115 -7
- sglang/srt/entrypoints/openai/serving_base.py +65 -3
- sglang/srt/entrypoints/openai/serving_chat.py +207 -58
- sglang/srt/entrypoints/openai/serving_completions.py +17 -4
- sglang/srt/entrypoints/openai/serving_embedding.py +10 -4
- sglang/srt/entrypoints/openai/serving_rerank.py +3 -1
- sglang/srt/entrypoints/openai/serving_responses.py +49 -4
- sglang/srt/entrypoints/openai/serving_score.py +1 -0
- sglang/srt/environ.py +285 -0
- sglang/srt/eplb/eplb_manager.py +2 -2
- sglang/srt/eplb/expert_distribution.py +26 -13
- sglang/srt/eplb/expert_location.py +38 -8
- sglang/srt/eplb/expert_location_updater.py +1 -1
- sglang/srt/function_call/base_format_detector.py +3 -6
- sglang/srt/function_call/ebnf_composer.py +11 -9
- sglang/srt/function_call/function_call_parser.py +9 -2
- sglang/srt/function_call/glm4_moe_detector.py +4 -4
- sglang/srt/function_call/gpt_oss_detector.py +24 -1
- sglang/srt/function_call/json_array_parser.py +63 -0
- sglang/srt/function_call/kimik2_detector.py +17 -4
- sglang/srt/function_call/qwen3_coder_detector.py +1 -1
- sglang/srt/function_call/utils.py +96 -5
- sglang/srt/grpc/__init__.py +1 -0
- sglang/srt/grpc/compile_proto.py +245 -0
- sglang/srt/grpc/sglang_scheduler_pb2.py +111 -0
- sglang/srt/grpc/sglang_scheduler_pb2.pyi +434 -0
- sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +239 -0
- sglang/srt/layers/activation.py +143 -9
- sglang/srt/layers/attention/aiter_backend.py +106 -82
- sglang/srt/layers/attention/ascend_backend.py +115 -9
- sglang/srt/layers/attention/attention_registry.py +206 -0
- sglang/srt/layers/attention/base_attn_backend.py +12 -3
- sglang/srt/layers/attention/cutlass_mla_backend.py +3 -3
- sglang/srt/layers/attention/dual_chunk_flashattention_backend.py +1 -1
- sglang/srt/layers/attention/fla/chunk.py +242 -0
- sglang/srt/layers/attention/fla/chunk_delta_h.py +314 -0
- sglang/srt/layers/attention/fla/chunk_o.py +178 -0
- sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +151 -0
- sglang/srt/layers/attention/fla/cumsum.py +300 -0
- sglang/srt/layers/attention/fla/fused_recurrent.py +640 -0
- sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +232 -0
- sglang/srt/layers/attention/fla/index.py +37 -0
- sglang/srt/layers/attention/fla/l2norm.py +150 -0
- sglang/srt/layers/attention/fla/layernorm_gated.py +326 -0
- sglang/srt/layers/attention/fla/op.py +66 -0
- sglang/srt/layers/attention/fla/solve_tril.py +465 -0
- sglang/srt/layers/attention/fla/utils.py +331 -0
- sglang/srt/layers/attention/fla/wy_fast.py +158 -0
- sglang/srt/layers/attention/flashattention_backend.py +41 -8
- sglang/srt/layers/attention/flashinfer_backend.py +118 -198
- sglang/srt/layers/attention/flashinfer_mla_backend.py +27 -27
- sglang/srt/layers/attention/flashmla_backend.py +7 -5
- sglang/srt/layers/attention/hybrid_attn_backend.py +68 -53
- sglang/srt/layers/attention/hybrid_linear_attn_backend.py +602 -0
- sglang/srt/layers/attention/intel_amx_backend.py +3 -0
- sglang/srt/layers/attention/mamba/causal_conv1d.py +129 -0
- sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +969 -0
- sglang/srt/layers/attention/mamba/mamba.py +629 -0
- sglang/srt/layers/attention/mamba/mamba_utils.py +81 -0
- sglang/srt/layers/attention/mamba/ops/__init__.py +2 -0
- sglang/srt/layers/attention/mamba/ops/layernorm_gated.py +172 -0
- sglang/srt/layers/attention/mamba/ops/mamba_ssm.py +442 -0
- sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +264 -0
- sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +622 -0
- sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +757 -0
- sglang/srt/layers/attention/mamba/ops/ssd_combined.py +262 -0
- sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +275 -0
- sglang/srt/layers/attention/npu_ops/mla_preprocess.py +393 -0
- sglang/srt/layers/attention/nsa/dequant_k_cache.py +163 -0
- sglang/srt/layers/attention/nsa/index_buf_accessor.py +354 -0
- sglang/srt/layers/attention/nsa/nsa_indexer.py +761 -0
- sglang/srt/layers/attention/nsa/quant_k_cache.py +255 -0
- sglang/srt/layers/attention/nsa/tilelang_kernel.py +785 -0
- sglang/srt/layers/attention/nsa/transform_index.py +144 -0
- sglang/srt/layers/attention/nsa/utils.py +24 -0
- sglang/srt/layers/attention/nsa_backend.py +887 -0
- sglang/srt/layers/attention/tbo_backend.py +6 -6
- sglang/srt/layers/attention/torch_flex_backend.py +325 -0
- sglang/srt/layers/attention/torch_native_backend.py +12 -6
- sglang/srt/layers/attention/triton_backend.py +57 -7
- sglang/srt/layers/attention/trtllm_mha_backend.py +5 -7
- sglang/srt/layers/attention/trtllm_mla_backend.py +276 -39
- sglang/srt/layers/attention/vision.py +58 -0
- sglang/srt/layers/attention/wave_backend.py +4 -4
- sglang/srt/layers/attention/wave_ops/decode_attention.py +2 -4
- sglang/srt/layers/attention/wave_ops/extend_attention.py +1 -3
- sglang/srt/layers/communicator.py +53 -7
- sglang/srt/layers/dp_attention.py +41 -2
- sglang/srt/layers/elementwise.py +3 -1
- sglang/srt/layers/layernorm.py +34 -15
- sglang/srt/layers/linear.py +55 -7
- sglang/srt/layers/logits_processor.py +44 -12
- sglang/srt/layers/moe/__init__.py +2 -1
- sglang/srt/layers/moe/cutlass_w4a8_moe.py +3 -3
- sglang/srt/layers/moe/ep_moe/kernels.py +2 -2
- sglang/srt/layers/moe/ep_moe/layer.py +256 -63
- sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +183 -0
- sglang/srt/layers/moe/fused_moe_native.py +5 -3
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_3_1/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=352,device_name=NVIDIA_RTX_5880_Ada_Generation,dtype=fp8_w8a8.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=512,device_name=NVIDIA_H20.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/{E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json → E=257,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json } +29 -29
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=64,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +5 -2
- sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +7 -3
- sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_kernels.py +23 -20
- sglang/srt/layers/moe/fused_moe_triton/layer.py +71 -70
- sglang/srt/layers/moe/moe_runner/__init__.py +2 -1
- sglang/srt/layers/moe/moe_runner/base.py +274 -1
- sglang/srt/layers/moe/moe_runner/runner.py +80 -0
- sglang/srt/layers/moe/moe_runner/triton.py +448 -0
- sglang/srt/layers/moe/token_dispatcher/__init__.py +16 -4
- sglang/srt/layers/moe/token_dispatcher/{base_dispatcher.py → base.py} +67 -17
- sglang/srt/layers/moe/token_dispatcher/deepep.py +118 -56
- sglang/srt/layers/moe/token_dispatcher/standard.py +44 -2
- sglang/srt/layers/moe/topk.py +30 -9
- sglang/srt/layers/moe/utils.py +22 -7
- sglang/srt/layers/parameter.py +23 -6
- sglang/srt/layers/quantization/awq.py +19 -7
- sglang/srt/layers/quantization/base_config.py +11 -6
- sglang/srt/layers/quantization/blockwise_int8.py +38 -27
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +1 -0
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +50 -30
- sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +2 -0
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +13 -1
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +173 -0
- sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +2 -10
- sglang/srt/layers/quantization/deep_gemm_wrapper/entrypoint.py +27 -0
- sglang/srt/layers/quantization/fp8.py +78 -49
- sglang/srt/layers/quantization/fp8_utils.py +51 -32
- sglang/srt/layers/quantization/gptq.py +25 -17
- sglang/srt/layers/quantization/modelopt_quant.py +225 -57
- sglang/srt/layers/quantization/moe_wna16.py +21 -18
- sglang/srt/layers/quantization/mxfp4.py +77 -42
- sglang/srt/layers/quantization/quark/quark_moe.py +48 -30
- sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +49 -30
- sglang/srt/layers/quantization/quark/utils.py +97 -0
- sglang/srt/layers/quantization/rocm_mxfp4_utils.py +13 -0
- sglang/srt/layers/quantization/unquant.py +135 -47
- sglang/srt/layers/quantization/w4afp8.py +26 -17
- sglang/srt/layers/quantization/w8a8_fp8.py +35 -20
- sglang/srt/layers/quantization/w8a8_int8.py +91 -41
- sglang/srt/layers/rocm_linear_utils.py +44 -0
- sglang/srt/layers/rotary_embedding.py +78 -49
- sglang/srt/layers/sampler.py +213 -21
- sglang/srt/layers/utils.py +23 -0
- sglang/srt/lora/backend/base_backend.py +50 -8
- sglang/srt/lora/backend/chunked_backend.py +348 -0
- sglang/srt/lora/backend/triton_backend.py +99 -5
- sglang/srt/lora/layers.py +32 -0
- sglang/srt/lora/lora.py +8 -3
- sglang/srt/lora/lora_manager.py +52 -118
- sglang/srt/lora/mem_pool.py +25 -11
- sglang/srt/lora/triton_ops/__init__.py +4 -0
- sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +214 -0
- sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +174 -0
- sglang/srt/lora/utils.py +22 -11
- sglang/srt/managers/async_dynamic_batch_tokenizer.py +170 -0
- sglang/srt/managers/cache_controller.py +215 -314
- sglang/srt/managers/data_parallel_controller.py +115 -80
- sglang/srt/managers/detokenizer_manager.py +19 -15
- sglang/srt/managers/disagg_service.py +46 -0
- sglang/srt/managers/io_struct.py +340 -109
- sglang/srt/managers/mm_utils.py +44 -6
- sglang/srt/managers/multi_tokenizer_mixin.py +358 -404
- sglang/srt/managers/multimodal_processor.py +1 -2
- sglang/srt/managers/overlap_utils.py +53 -0
- sglang/srt/managers/schedule_batch.py +240 -138
- sglang/srt/managers/schedule_policy.py +147 -19
- sglang/srt/managers/scheduler.py +501 -304
- sglang/srt/managers/scheduler_input_blocker.py +1 -1
- sglang/srt/managers/scheduler_metrics_mixin.py +119 -40
- sglang/srt/managers/scheduler_output_processor_mixin.py +75 -22
- sglang/srt/managers/scheduler_profiler_mixin.py +6 -6
- sglang/srt/managers/scheduler_update_weights_mixin.py +7 -0
- sglang/srt/managers/template_manager.py +3 -3
- sglang/srt/managers/tokenizer_communicator_mixin.py +675 -0
- sglang/srt/managers/tokenizer_manager.py +321 -632
- sglang/srt/managers/tp_worker.py +81 -22
- sglang/srt/managers/tp_worker_overlap_thread.py +71 -56
- sglang/srt/managers/utils.py +1 -45
- sglang/srt/mem_cache/allocator.py +15 -21
- sglang/srt/mem_cache/allocator_ascend.py +41 -27
- sglang/srt/mem_cache/base_prefix_cache.py +1 -1
- sglang/srt/mem_cache/chunk_cache.py +8 -1
- sglang/srt/mem_cache/evict_policy.py +23 -0
- sglang/srt/mem_cache/hicache_storage.py +58 -34
- sglang/srt/mem_cache/hiradix_cache.py +227 -80
- sglang/srt/mem_cache/memory_pool.py +535 -58
- sglang/srt/mem_cache/memory_pool_host.py +239 -223
- sglang/srt/mem_cache/radix_cache.py +222 -73
- sglang/srt/mem_cache/radix_cache_cpp.py +11 -8
- sglang/srt/mem_cache/storage/__init__.py +10 -0
- sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +151 -0
- sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +109 -0
- sglang/srt/mem_cache/storage/backend_factory.py +223 -0
- sglang/srt/mem_cache/storage/eic/eic_storage.py +778 -0
- sglang/srt/mem_cache/storage/eic/test_unit.py +115 -0
- sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +164 -0
- sglang/srt/mem_cache/storage/hf3fs/{client_hf3fs.py → hf3fs_usrbio_client.py} +5 -1
- sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +268 -63
- sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +284 -0
- sglang/srt/mem_cache/storage/lmcache/unit_test.py +121 -0
- sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +198 -30
- sglang/srt/mem_cache/storage/mooncake_store/test_mooncake_store.py +161 -0
- sglang/srt/mem_cache/swa_radix_cache.py +25 -36
- sglang/srt/metrics/collector.py +519 -132
- sglang/srt/metrics/func_timer.py +2 -7
- sglang/srt/metrics/startup_func_log_and_timer.py +150 -0
- sglang/srt/metrics/utils.py +55 -0
- sglang/srt/model_executor/cpu_graph_runner.py +640 -0
- sglang/srt/model_executor/cuda_graph_runner.py +52 -37
- sglang/srt/model_executor/forward_batch_info.py +98 -57
- sglang/srt/model_executor/model_runner.py +433 -158
- sglang/srt/model_executor/npu_graph_runner.py +12 -5
- sglang/srt/model_loader/__init__.py +9 -3
- sglang/srt/model_loader/loader.py +133 -5
- sglang/srt/model_loader/remote_instance_weight_loader_utils.py +69 -0
- sglang/srt/model_loader/weight_utils.py +158 -3
- sglang/srt/models/apertus.py +686 -0
- sglang/srt/models/bailing_moe.py +820 -217
- sglang/srt/models/bailing_moe_nextn.py +168 -0
- sglang/srt/models/deepseek_nextn.py +6 -1
- sglang/srt/models/deepseek_v2.py +833 -152
- sglang/srt/models/dots_ocr.py +173 -0
- sglang/srt/models/dots_vlm.py +174 -0
- sglang/srt/models/dots_vlm_vit.py +337 -0
- sglang/srt/models/ernie4.py +1 -1
- sglang/srt/models/falcon_h1.py +576 -0
- sglang/srt/models/gemma3_causal.py +0 -2
- sglang/srt/models/gemma3_mm.py +1 -1
- sglang/srt/models/gemma3n_mm.py +2 -2
- sglang/srt/models/glm4_moe.py +14 -5
- sglang/srt/models/glm4_moe_nextn.py +2 -2
- sglang/srt/models/glm4v.py +5 -3
- sglang/srt/models/glm4v_moe.py +4 -1
- sglang/srt/models/gpt_oss.py +8 -31
- sglang/srt/models/internvl.py +28 -0
- sglang/srt/models/kimi_vl_moonvit.py +2 -2
- sglang/srt/models/llama.py +4 -0
- sglang/srt/models/llama4.py +9 -0
- sglang/srt/models/llama_eagle3.py +13 -0
- sglang/srt/models/longcat_flash.py +3 -3
- sglang/srt/models/longcat_flash_nextn.py +1 -1
- sglang/srt/models/minicpmv.py +165 -3
- sglang/srt/models/mllama4.py +40 -4
- sglang/srt/models/opt.py +637 -0
- sglang/srt/models/qwen2_5_vl.py +29 -5
- sglang/srt/models/qwen2_audio.py +1 -1
- sglang/srt/models/qwen2_moe.py +124 -14
- sglang/srt/models/qwen2_vl.py +1 -1
- sglang/srt/models/qwen3.py +26 -5
- sglang/srt/models/qwen3_moe.py +71 -12
- sglang/srt/models/qwen3_next.py +1069 -0
- sglang/srt/models/qwen3_next_mtp.py +112 -0
- sglang/srt/models/qwen3_vl.py +787 -0
- sglang/srt/models/qwen3_vl_moe.py +471 -0
- sglang/srt/models/registry.py +15 -3
- sglang/srt/models/sarashina2_vision.py +269 -0
- sglang/srt/models/solar.py +505 -0
- sglang/srt/models/starcoder2.py +357 -0
- sglang/srt/models/step3_vl.py +1 -1
- sglang/srt/models/torch_native_llama.py +10 -3
- sglang/srt/models/utils.py +51 -0
- sglang/srt/multimodal/processors/base_processor.py +15 -7
- sglang/srt/multimodal/processors/dots_vlm.py +98 -0
- sglang/srt/multimodal/processors/glm4v.py +9 -9
- sglang/srt/multimodal/processors/internvl.py +153 -129
- sglang/srt/multimodal/processors/qwen_vl.py +23 -6
- sglang/srt/multimodal/processors/sarashina2_vision.py +81 -0
- sglang/srt/offloader.py +27 -3
- sglang/srt/{jinja_template_utils.py → parser/jinja_template_utils.py} +6 -0
- sglang/srt/{reasoning_parser.py → parser/reasoning_parser.py} +1 -1
- sglang/srt/sampling/sampling_batch_info.py +38 -17
- sglang/srt/sampling/sampling_params.py +7 -0
- sglang/srt/server_args.py +1030 -254
- sglang/srt/server_args_config_parser.py +146 -0
- sglang/srt/single_batch_overlap.py +151 -0
- sglang/srt/speculative/cpp_ngram/ngram.cpp +374 -0
- sglang/srt/speculative/cpp_ngram/ngram.h +110 -0
- sglang/srt/speculative/cpp_ngram/ngram_cache.py +138 -0
- sglang/srt/speculative/cpp_ngram/ngram_cache_binding.cpp +43 -0
- sglang/srt/speculative/cpp_ngram/param.h +125 -0
- sglang/srt/speculative/cpp_ngram/queue.h +71 -0
- sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +7 -1
- sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +13 -2
- sglang/srt/speculative/{eagle_utils.py → eagle_info.py} +207 -757
- sglang/srt/speculative/eagle_worker.py +253 -136
- sglang/srt/speculative/ngram_utils.py +428 -0
- sglang/srt/speculative/ngram_worker.py +245 -0
- sglang/srt/speculative/spec_info.py +52 -0
- sglang/srt/speculative/spec_utils.py +606 -0
- sglang/srt/speculative/standalone_worker.py +109 -0
- sglang/srt/torch_memory_saver_adapter.py +5 -7
- sglang/srt/tracing/trace.py +578 -0
- sglang/srt/two_batch_overlap.py +8 -5
- sglang/srt/utils/__init__.py +2 -0
- sglang/srt/{utils.py → utils/common.py} +445 -77
- sglang/srt/{hf_transformers_utils.py → utils/hf_transformers_utils.py} +53 -5
- sglang/srt/{patch_torch.py → utils/patch_torch.py} +8 -0
- sglang/srt/utils/rpd_utils.py +452 -0
- sglang/srt/utils/slow_rank_detector.py +71 -0
- sglang/srt/warmup.py +8 -4
- sglang/srt/weight_sync/utils.py +2 -2
- sglang/test/attention/test_trtllm_mla_backend.py +169 -5
- sglang/test/few_shot_gsm8k.py +1 -0
- sglang/test/get_logits_ut.py +57 -0
- sglang/test/run_eval.py +79 -11
- sglang/test/runners.py +5 -1
- sglang/test/simple_eval_common.py +5 -2
- sglang/test/simple_eval_mmmu_vlm.py +441 -0
- sglang/test/test_block_fp8.py +2 -2
- sglang/test/test_cutlass_moe.py +24 -6
- sglang/test/test_deterministic.py +297 -0
- sglang/test/test_disaggregation_utils.py +77 -0
- sglang/test/test_fp4_moe.py +370 -1
- sglang/test/test_programs.py +1 -1
- sglang/test/test_utils.py +383 -5
- sglang/utils.py +22 -1
- sglang/version.py +1 -1
- {sglang-0.5.2rc1.dist-info → sglang-0.5.3.dist-info}/METADATA +69 -124
- {sglang-0.5.2rc1.dist-info → sglang-0.5.3.dist-info}/RECORD +392 -258
- sglang/srt/disaggregation/launch_lb.py +0 -118
- sglang/srt/mem_cache/lora_radix_cache.py +0 -421
- sglang/srt/mem_cache/storage/mooncake_store/unit_test.py +0 -40
- /sglang/srt/{model_parallel.py → layers/model_parallel.py} +0 -0
- /sglang/srt/{code_completion_parser.py → parser/code_completion_parser.py} +0 -0
- /sglang/srt/{conversation.py → parser/conversation.py} +0 -0
- /sglang/srt/{harmony_parser.py → parser/harmony_parser.py} +0 -0
- /sglang/srt/{poll_based_barrier.py → utils/poll_based_barrier.py} +0 -0
- {sglang-0.5.2rc1.dist-info → sglang-0.5.3.dist-info}/WHEEL +0 -0
- {sglang-0.5.2rc1.dist-info → sglang-0.5.3.dist-info}/licenses/LICENSE +0 -0
- {sglang-0.5.2rc1.dist-info → sglang-0.5.3.dist-info}/top_level.txt +0 -0
@@ -22,6 +22,8 @@ from typing import TYPE_CHECKING, List, Optional
|
|
22
22
|
import torch
|
23
23
|
from torch.nn.parameter import Parameter
|
24
24
|
|
25
|
+
from sglang.srt.layers.moe import MoeRunner, MoeRunnerBackend, MoeRunnerConfig
|
26
|
+
from sglang.srt.layers.moe.moe_runner.triton import TritonMoeQuantInfo
|
25
27
|
from sglang.srt.layers.moe.utils import get_moe_runner_backend
|
26
28
|
from sglang.srt.layers.quantization.base_config import (
|
27
29
|
FusedMoEMethodBase,
|
@@ -59,8 +61,10 @@ if is_flashinfer_available():
|
|
59
61
|
logger = logging.getLogger(__name__)
|
60
62
|
|
61
63
|
if TYPE_CHECKING:
|
62
|
-
from sglang.srt.layers.moe.
|
63
|
-
|
64
|
+
from sglang.srt.layers.moe.token_dispatcher import (
|
65
|
+
CombineInput,
|
66
|
+
StandardDispatchOutput,
|
67
|
+
)
|
64
68
|
|
65
69
|
_is_hip = is_hip()
|
66
70
|
|
@@ -283,7 +287,7 @@ class Mxfp4MoEMethod(FusedMoEMethodBase):
|
|
283
287
|
layer: torch.nn.Module,
|
284
288
|
num_experts: int,
|
285
289
|
hidden_size: int,
|
286
|
-
|
290
|
+
intermediate_size_per_partition: int,
|
287
291
|
params_dtype: torch.dtype,
|
288
292
|
with_bias: bool = False,
|
289
293
|
**extra_weight_attrs,
|
@@ -296,26 +300,26 @@ class Mxfp4MoEMethod(FusedMoEMethodBase):
|
|
296
300
|
|
297
301
|
# pad the intermediate size to be a multiple of 2 * mxfp4_block
|
298
302
|
# for to hold non-uniform sharded tensor as well as swizzling
|
299
|
-
intermediate_size_per_partition_after_pad =
|
303
|
+
intermediate_size_per_partition_after_pad = intermediate_size_per_partition
|
300
304
|
if _is_sm100_supported:
|
301
305
|
if self.use_flashinfer:
|
302
306
|
intermediate_size_per_partition_after_pad = round_up(
|
303
|
-
|
307
|
+
intermediate_size_per_partition, 256
|
304
308
|
)
|
305
309
|
hidden_size = round_up(hidden_size, 256)
|
306
310
|
else:
|
307
311
|
intermediate_size_per_partition_after_pad = round_up(
|
308
|
-
|
312
|
+
intermediate_size_per_partition, 64
|
309
313
|
)
|
310
314
|
elif has_triton_kernels:
|
311
315
|
# TODO: this is a hack to make
|
312
316
|
# intermediate_size_per_partition_after_pad the same as the
|
313
317
|
# per_rank_intermediate_size during weight loading
|
314
318
|
intermediate_size_per_partition_after_pad = round_up(
|
315
|
-
|
319
|
+
intermediate_size_per_partition, mxfp4_block
|
316
320
|
)
|
317
321
|
|
318
|
-
self.
|
322
|
+
self.intermediate_size_per_partition = intermediate_size_per_partition_after_pad
|
319
323
|
|
320
324
|
self.hidden_size = hidden_size
|
321
325
|
# Fused gate_up_proj (column parallel)
|
@@ -410,31 +414,35 @@ class Mxfp4MoEMethod(FusedMoEMethodBase):
|
|
410
414
|
assert (
|
411
415
|
layer.w13_weight.dim() == 3
|
412
416
|
and layer.w13_weight.shape[0] == self.num_experts
|
413
|
-
and layer.w13_weight.shape[1]
|
417
|
+
and layer.w13_weight.shape[1]
|
418
|
+
== self.intermediate_size_per_partition * 2
|
414
419
|
and layer.w13_weight.shape[2] == self.hidden_size // 2
|
415
420
|
)
|
416
421
|
assert (
|
417
422
|
layer.w13_weight_scale.dim() == 3
|
418
423
|
and layer.w13_weight_scale.shape[0] == self.num_experts
|
419
|
-
and layer.w13_weight_scale.shape[1]
|
424
|
+
and layer.w13_weight_scale.shape[1]
|
425
|
+
== self.intermediate_size_per_partition * 2
|
420
426
|
and layer.w13_weight_scale.shape[2] == self.hidden_size // sf_block_size
|
421
427
|
)
|
422
428
|
assert (
|
423
429
|
layer.w2_weight.dim() == 3
|
424
430
|
and layer.w2_weight.shape[0] == self.num_experts
|
425
431
|
and layer.w2_weight.shape[1] == self.hidden_size
|
426
|
-
and layer.w2_weight.shape[2]
|
432
|
+
and layer.w2_weight.shape[2]
|
433
|
+
== self.intermediate_size_per_partition // 2
|
427
434
|
)
|
428
435
|
assert (
|
429
436
|
layer.w2_weight_scale.dim() == 3
|
430
437
|
and layer.w2_weight_scale.shape[1] == self.hidden_size
|
431
438
|
and layer.w2_weight_scale.shape[2]
|
432
|
-
== self.
|
439
|
+
== self.intermediate_size_per_partition // sf_block_size
|
433
440
|
)
|
434
441
|
assert (
|
435
442
|
layer.w13_weight_bias.dim() == 2
|
436
443
|
and layer.w13_weight_bias.shape[0] == self.num_experts
|
437
|
-
and layer.w13_weight_bias.shape[1]
|
444
|
+
and layer.w13_weight_bias.shape[1]
|
445
|
+
== self.intermediate_size_per_partition * 2
|
438
446
|
)
|
439
447
|
assert (
|
440
448
|
layer.w2_weight_bias.dim() == 2
|
@@ -511,7 +519,7 @@ class Mxfp4MoEMethod(FusedMoEMethodBase):
|
|
511
519
|
torch.stack(gemm1_scales_mxfp4_shuffled)
|
512
520
|
.reshape(
|
513
521
|
self.num_experts,
|
514
|
-
2 * self.
|
522
|
+
2 * self.intermediate_size_per_partition,
|
515
523
|
self.hidden_size // sf_block_size,
|
516
524
|
)
|
517
525
|
.view(torch.float8_e4m3fn)
|
@@ -523,7 +531,7 @@ class Mxfp4MoEMethod(FusedMoEMethodBase):
|
|
523
531
|
.reshape(
|
524
532
|
self.num_experts,
|
525
533
|
self.hidden_size,
|
526
|
-
self.
|
534
|
+
self.intermediate_size_per_partition // sf_block_size,
|
527
535
|
)
|
528
536
|
.view(torch.float8_e4m3fn)
|
529
537
|
)
|
@@ -613,16 +621,26 @@ class Mxfp4MoEMethod(FusedMoEMethodBase):
|
|
613
621
|
|
614
622
|
return tile_tokens_dim
|
615
623
|
|
624
|
+
def create_moe_runner(
|
625
|
+
self, layer: torch.nn.Module, moe_runner_config: MoeRunnerConfig
|
626
|
+
):
|
627
|
+
self.moe_runner_config = moe_runner_config
|
628
|
+
self.runner = MoeRunner(MoeRunnerBackend.TRITON, moe_runner_config)
|
629
|
+
|
616
630
|
def apply(
|
617
631
|
self,
|
618
632
|
layer: torch.nn.Module,
|
619
|
-
|
620
|
-
|
621
|
-
moe_runner_config: MoeRunnerConfig,
|
622
|
-
) -> torch.Tensor:
|
633
|
+
dispatch_output: StandardDispatchOutput,
|
634
|
+
) -> CombineInput:
|
623
635
|
|
636
|
+
from sglang.srt.layers.moe.token_dispatcher import StandardCombineInput
|
624
637
|
from sglang.srt.layers.moe.topk import TopKOutputChecker
|
625
638
|
|
639
|
+
x = dispatch_output.hidden_states
|
640
|
+
topk_output = dispatch_output.topk_output
|
641
|
+
|
642
|
+
moe_runner_config = self.moe_runner_config
|
643
|
+
|
626
644
|
if self.use_flashinfer:
|
627
645
|
# When bf16 mode is enabled, we don't need to quantize the input,
|
628
646
|
# TRT-LLM automatically handles quantization in the kernel implementation and pipelines it with GEMM operations,
|
@@ -674,7 +692,7 @@ class Mxfp4MoEMethod(FusedMoEMethodBase):
|
|
674
692
|
top_k,
|
675
693
|
None, # n_group # TODO: support n_group
|
676
694
|
None, # topk_group # TODO: support topk_group
|
677
|
-
self.
|
695
|
+
self.intermediate_size_per_partition, # padded to multiple of 256
|
678
696
|
layer.moe_ep_rank * layer.num_local_experts, # local_expert_offset
|
679
697
|
layer.num_local_experts, # local num experts
|
680
698
|
None,
|
@@ -682,14 +700,14 @@ class Mxfp4MoEMethod(FusedMoEMethodBase):
|
|
682
700
|
1, # routing_method_type, renormalize
|
683
701
|
True, # do finalize
|
684
702
|
)[0]
|
685
|
-
return trtllm_gen_output
|
703
|
+
return StandardCombineInput(hidden_states=trtllm_gen_output)
|
686
704
|
|
687
705
|
if self.use_triton_kernels:
|
688
706
|
assert (
|
689
707
|
layer.moe_ep_size == 1
|
690
708
|
), "Expert parallel is not supported when using triton kernels"
|
691
709
|
if self.with_bias:
|
692
|
-
|
710
|
+
output = self.triton_kernel_moe_with_bias_forward(
|
693
711
|
hidden_states=x,
|
694
712
|
w1=self.w13_weight_triton_tensor,
|
695
713
|
w1_pcg=self.w13_precision_config,
|
@@ -701,25 +719,22 @@ class Mxfp4MoEMethod(FusedMoEMethodBase):
|
|
701
719
|
moe_runner_config=moe_runner_config,
|
702
720
|
)
|
703
721
|
else:
|
704
|
-
|
722
|
+
output = self.triton_kernel_moe_forward(
|
705
723
|
hidden_states=x,
|
706
724
|
w1=layer.w13_weight,
|
707
725
|
w2=layer.w2_weight,
|
708
726
|
topk_output=topk_output,
|
709
727
|
moe_runner_config=moe_runner_config,
|
710
728
|
)
|
729
|
+
return StandardCombineInput(hidden_states=output)
|
711
730
|
else:
|
712
|
-
|
713
|
-
|
714
|
-
|
715
|
-
|
716
|
-
|
717
|
-
w2=layer.w2_weight,
|
718
|
-
topk_output=topk_output,
|
719
|
-
moe_runner_config=moe_runner_config,
|
720
|
-
b1=layer.w13_weight_bias,
|
721
|
-
b2=layer.w2_weight_bias,
|
731
|
+
quant_info = TritonMoeQuantInfo(
|
732
|
+
w13_weight=layer.w13_weight,
|
733
|
+
w2_weight=layer.w2_weight,
|
734
|
+
b13=getattr(layer, "w13_weight_bias", None),
|
735
|
+
b2=getattr(layer, "w2_weight_bias", None),
|
722
736
|
)
|
737
|
+
return self.runner.run(dispatch_output, quant_info)
|
723
738
|
|
724
739
|
|
725
740
|
class Mxfp4DynamicQuantMoEMethod(FusedMoEMethodBase):
|
@@ -798,7 +813,7 @@ class Mxfp4DynamicQuantMoEMethod(FusedMoEMethodBase):
|
|
798
813
|
|
799
814
|
return w, mx_scales
|
800
815
|
|
801
|
-
def process_weights_after_loading(self, layer: Module) -> None:
|
816
|
+
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
|
802
817
|
w13, w13_mx_scales = self.mxfp4_quantize(layer.w13_weight.data)
|
803
818
|
w2, w2_mx_scales = self.mxfp4_quantize(layer.w2_weight.data)
|
804
819
|
|
@@ -808,19 +823,38 @@ class Mxfp4DynamicQuantMoEMethod(FusedMoEMethodBase):
|
|
808
823
|
layer.w2_weight = torch.nn.Parameter(w2, requires_grad=False)
|
809
824
|
layer.w2_weight_scale = torch.nn.Parameter(w2_mx_scales, requires_grad=False)
|
810
825
|
|
826
|
+
def create_moe_runner(
|
827
|
+
self, layer: torch.nn.Module, moe_runner_config: MoeRunnerConfig
|
828
|
+
):
|
829
|
+
self.moe_runner_config = moe_runner_config
|
830
|
+
|
811
831
|
def apply(
|
812
832
|
self,
|
813
833
|
layer: torch.nn.Module,
|
814
|
-
|
815
|
-
|
816
|
-
|
817
|
-
|
834
|
+
dispatch_output: StandardDispatchOutput,
|
835
|
+
) -> CombineInput:
|
836
|
+
from sglang.srt.layers.moe.token_dispatcher import StandardCombineInput
|
837
|
+
|
838
|
+
x = dispatch_output.hidden_states
|
839
|
+
topk_output = dispatch_output.topk_output
|
840
|
+
|
818
841
|
topk_weights, topk_ids, _ = topk_output
|
842
|
+
if _is_hip:
|
843
|
+
topk_weights = topk_weights.to(
|
844
|
+
torch.float32
|
845
|
+
) # aiter's moe_sorting requires topk_weights to be FP32
|
846
|
+
|
847
|
+
if hasattr(torch, "float4_e2m1fn_x2"):
|
848
|
+
w13_weight = layer.w13_weight.view(torch.float4_e2m1fn_x2)
|
849
|
+
w2_weight = layer.w2_weight.view(torch.float4_e2m1fn_x2)
|
850
|
+
else:
|
851
|
+
w13_weight = layer.w13_weight
|
852
|
+
w2_weight = layer.w2_weight
|
819
853
|
|
820
|
-
|
854
|
+
output = fused_moe(
|
821
855
|
x,
|
822
|
-
|
823
|
-
|
856
|
+
w13_weight,
|
857
|
+
w2_weight,
|
824
858
|
topk_weights,
|
825
859
|
topk_ids,
|
826
860
|
quant_type=QuantType.per_1x32,
|
@@ -828,8 +862,9 @@ class Mxfp4DynamicQuantMoEMethod(FusedMoEMethodBase):
|
|
828
862
|
w2_scale=layer.w2_weight_scale,
|
829
863
|
activation=(
|
830
864
|
ActivationType.Silu
|
831
|
-
if moe_runner_config.activation == "silu"
|
865
|
+
if self.moe_runner_config.activation == "silu"
|
832
866
|
else ActivationType.Gelu
|
833
867
|
),
|
834
868
|
doweight_stage1=False,
|
835
869
|
)
|
870
|
+
return StandardCombineInput(hidden_states=output)
|
@@ -10,40 +10,37 @@ from aiter import ActivationType, QuantType, biased_grouped_topk
|
|
10
10
|
from aiter.fused_moe import fused_moe
|
11
11
|
from aiter.utility.fp4_utils import e8m0_shuffle
|
12
12
|
|
13
|
-
from sglang.srt.
|
13
|
+
from sglang.srt.layers.moe import MoeRunnerConfig
|
14
|
+
from sglang.srt.layers.quantization.base_config import FusedMoEMethodBase
|
15
|
+
from sglang.srt.utils import get_bool_env_var, is_hip, mxfp_supported, set_weight_attrs
|
16
|
+
|
17
|
+
if TYPE_CHECKING:
|
18
|
+
from sglang.srt.layers.moe.token_dispatcher import (
|
19
|
+
CombineInput,
|
20
|
+
StandardDispatchOutput,
|
21
|
+
)
|
22
|
+
from sglang.srt.layers.quantization.quark.quark import QuarkConfig
|
14
23
|
|
15
24
|
logger = logging.getLogger(__name__)
|
16
25
|
|
26
|
+
_is_hip = is_hip()
|
27
|
+
|
17
28
|
__all__ = ["QuarkMoEMethod", "QuarkW4A4MXFp4MoEMethod"]
|
18
29
|
|
19
30
|
OCP_MX_BLOCK_SIZE = 32
|
20
31
|
|
21
32
|
if TYPE_CHECKING:
|
22
|
-
from sglang.srt.layers.
|
23
|
-
|
24
|
-
|
25
|
-
class QuarkMoEMethod:
|
26
|
-
|
27
|
-
|
28
|
-
|
29
|
-
if not hasattr(cls, "_initialized"):
|
30
|
-
original_init = cls.__init__
|
31
|
-
new_cls = type(
|
32
|
-
cls.__name__,
|
33
|
-
(FusedMoEMethodBase,),
|
34
|
-
{
|
35
|
-
"__init__": original_init,
|
36
|
-
**{k: v for k, v in cls.__dict__.items() if k != "__dict__"},
|
37
|
-
},
|
38
|
-
)
|
39
|
-
obj = super(new_cls, new_cls).__new__(new_cls)
|
40
|
-
obj.__init__(*args, **kwargs)
|
41
|
-
return obj
|
42
|
-
return super().__new__(cls)
|
33
|
+
from sglang.srt.layers.quantization import QuarkConfig
|
34
|
+
|
35
|
+
|
36
|
+
class QuarkMoEMethod(FusedMoEMethodBase):
|
37
|
+
|
38
|
+
def __init__(self, quant_config: QuarkConfig):
|
39
|
+
self.quant_config = quant_config
|
43
40
|
|
44
41
|
@staticmethod
|
45
42
|
def get_moe_method(
|
46
|
-
quant_config:
|
43
|
+
quant_config: QuarkConfig, # type: ignore # noqa E501 # noqa F821
|
47
44
|
module: torch.nn.Module,
|
48
45
|
layer_name: str,
|
49
46
|
) -> "QuarkMoEMethod":
|
@@ -170,19 +167,39 @@ class QuarkW4A4MXFp4MoEMethod(QuarkMoEMethod):
|
|
170
167
|
# layer.w2_weight_scale = torch.nn.Parameter(w2_weight_scale, requires_grad=False)
|
171
168
|
layer.w2_weight_scale.data = w2_weight_scale.view(s0, s1, -1)
|
172
169
|
|
170
|
+
def create_moe_runner(
|
171
|
+
self, layer: torch.nn.Module, moe_runner_config: MoeRunnerConfig
|
172
|
+
):
|
173
|
+
self.moe_runner_config = moe_runner_config
|
174
|
+
|
173
175
|
def apply(
|
174
176
|
self,
|
175
177
|
layer: torch.nn.Module,
|
176
|
-
|
177
|
-
|
178
|
-
|
179
|
-
|
178
|
+
dispatch_output: StandardDispatchOutput,
|
179
|
+
) -> CombineInput:
|
180
|
+
|
181
|
+
from sglang.srt.layers.moe.token_dispatcher import StandardCombineInput
|
182
|
+
|
183
|
+
x = dispatch_output.hidden_states
|
184
|
+
topk_output = dispatch_output.topk_output
|
185
|
+
moe_runner_config = self.moe_runner_config
|
180
186
|
topk_weights, topk_ids, _ = topk_output
|
187
|
+
if _is_hip:
|
188
|
+
topk_weights = topk_weights.to(
|
189
|
+
torch.float32
|
190
|
+
) # aiter's moe_sorting requires topk_weights to be FP32
|
191
|
+
|
192
|
+
if hasattr(torch, "float4_e2m1fn_x2"):
|
193
|
+
w13_weight = layer.w13_weight.view(torch.float4_e2m1fn_x2)
|
194
|
+
w2_weight = layer.w2_weight.view(torch.float4_e2m1fn_x2)
|
195
|
+
else:
|
196
|
+
w13_weight = layer.w13_weight
|
197
|
+
w2_weight = layer.w2_weight
|
181
198
|
|
182
|
-
|
199
|
+
output = fused_moe(
|
183
200
|
x,
|
184
|
-
|
185
|
-
|
201
|
+
w13_weight,
|
202
|
+
w2_weight,
|
186
203
|
topk_weights,
|
187
204
|
topk_ids,
|
188
205
|
quant_type=QuantType.per_1x32,
|
@@ -195,3 +212,4 @@ class QuarkW4A4MXFp4MoEMethod(QuarkMoEMethod):
|
|
195
212
|
),
|
196
213
|
doweight_stage1=False,
|
197
214
|
)
|
215
|
+
return StandardCombineInput(hidden_states=output)
|
@@ -8,6 +8,7 @@ import torch.nn.functional as F
|
|
8
8
|
from aiter.ops.gemm_op_a4w4 import gemm_a4w4
|
9
9
|
from aiter.ops.shuffle import shuffle_weight
|
10
10
|
from aiter.ops.triton.gemm_afp4wfp4 import gemm_afp4wfp4
|
11
|
+
from aiter.ops.triton.gemm_afp4wfp4_pre_quant_atomic import gemm_afp4wfp4_pre_quant
|
11
12
|
from aiter.ops.triton.quant import dynamic_mxfp4_quant
|
12
13
|
from aiter.utility import dtypes
|
13
14
|
from aiter.utility.fp4_utils import e8m0_shuffle
|
@@ -38,15 +39,6 @@ class QuarkW4A4MXFP4(QuarkScheme):
|
|
38
39
|
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
|
39
40
|
return
|
40
41
|
|
41
|
-
# for aiter implement
|
42
|
-
# wshuffle = shuffle_weight(layer.weight.data, layout=(16, 16))
|
43
|
-
# w_scales_shuffle = e8m0_shuffle(layer.weight_scale.data).view(dtypes.fp8_e8m0)
|
44
|
-
|
45
|
-
# layer.weight = torch.nn.Parameter(wshuffle,
|
46
|
-
# requires_grad=False)
|
47
|
-
# layer.weight_scale = torch.nn.Parameter(w_scales_shuffle,
|
48
|
-
# requires_grad=False)
|
49
|
-
|
50
42
|
def create_weights(
|
51
43
|
self,
|
52
44
|
layer: torch.nn.Module,
|
@@ -93,26 +85,53 @@ class QuarkW4A4MXFP4(QuarkScheme):
|
|
93
85
|
x: torch.Tensor,
|
94
86
|
bias: Optional[torch.Tensor] = None,
|
95
87
|
) -> torch.Tensor:
|
96
|
-
|
97
|
-
|
98
|
-
|
99
|
-
|
100
|
-
|
101
|
-
|
102
|
-
|
103
|
-
|
104
|
-
|
105
|
-
|
106
|
-
|
107
|
-
|
108
|
-
|
109
|
-
|
110
|
-
|
111
|
-
|
112
|
-
|
113
|
-
|
88
|
+
# This path does not have support for bias currently
|
89
|
+
assert bias is None, "bias is not supported"
|
90
|
+
|
91
|
+
three_d = False
|
92
|
+
x_s = None
|
93
|
+
y = None
|
94
|
+
if isinstance(x, tuple):
|
95
|
+
assert len(x) in [
|
96
|
+
2,
|
97
|
+
3,
|
98
|
+
], "For tuple input, only (x, x_s) or (x, x_s, y) formats are accepted"
|
99
|
+
if len(x) == 2:
|
100
|
+
x, x_s = x
|
101
|
+
elif len(x) == 3:
|
102
|
+
x, x_s, y = x
|
103
|
+
|
104
|
+
use_fused_quant_gemm = (
|
105
|
+
x_s is None and y is not None and layer.weight.shape[0] == y.shape[1]
|
114
106
|
)
|
115
107
|
|
116
|
-
|
117
|
-
|
118
|
-
|
108
|
+
if x.dim() == 3:
|
109
|
+
three_d = True
|
110
|
+
x = x.view(-1, x.shape[-1])
|
111
|
+
output_shape = [*x.shape[:-1], layer.weight.shape[0]]
|
112
|
+
|
113
|
+
# use_fused_quant_gemm = true, x_q is a bf16/fp16 num
|
114
|
+
# x_s is not None = true, x_q is uint8 num
|
115
|
+
if use_fused_quant_gemm or x_s is not None:
|
116
|
+
x_q = x
|
117
|
+
else:
|
118
|
+
x_q, x_s = dynamic_mxfp4_quant(x)
|
119
|
+
|
120
|
+
if y is None:
|
121
|
+
y = torch.empty(
|
122
|
+
x_q.shape[0],
|
123
|
+
layer.weight.shape[0],
|
124
|
+
device=x_q.device,
|
125
|
+
dtype=self.out_dtype,
|
126
|
+
)
|
127
|
+
|
128
|
+
if use_fused_quant_gemm:
|
129
|
+
gemm_afp4wfp4_pre_quant(x_q, layer.weight, layer.weight_scale, y.dtype, y)
|
130
|
+
y = y.to(x.dtype)
|
131
|
+
else:
|
132
|
+
gemm_afp4wfp4(x_q, layer.weight, x_s, layer.weight_scale, self.out_dtype, y)
|
133
|
+
|
134
|
+
if three_d:
|
135
|
+
return y.view(*output_shape)
|
136
|
+
|
137
|
+
return y
|
@@ -5,6 +5,10 @@ from collections.abc import Iterable, Mapping
|
|
5
5
|
from types import MappingProxyType
|
6
6
|
from typing import Any, Optional
|
7
7
|
|
8
|
+
import torch
|
9
|
+
from aiter.ops.triton.quant import dynamic_mxfp4_quant
|
10
|
+
from torch import nn
|
11
|
+
|
8
12
|
|
9
13
|
def deep_compare(dict1: Any, dict2: Any) -> bool:
|
10
14
|
if type(dict1) is not type(dict2):
|
@@ -105,3 +109,96 @@ def _is_equal_or_regex_match(
|
|
105
109
|
elif target == value:
|
106
110
|
return True
|
107
111
|
return False
|
112
|
+
|
113
|
+
|
114
|
+
# utility for tensor dims > 2 cases
|
115
|
+
def b_dynamic_mxfp4_quant(x):
|
116
|
+
h, b, d = x.shape
|
117
|
+
x, x_scales = dynamic_mxfp4_quant(x.reshape(-1, d))
|
118
|
+
return x.view(h, b, d // 2), x_scales.view(h, b, d // 32)
|
119
|
+
|
120
|
+
|
121
|
+
def mxfp4_to_f32(x, is_threed):
|
122
|
+
# 2 because we pack fp4 in uint8.
|
123
|
+
x = x.repeat_interleave(2, dim=-1)
|
124
|
+
if is_threed:
|
125
|
+
x[..., ::2] = x[..., ::2] & 0xF
|
126
|
+
x[..., 1::2] = x[..., 1::2] >> 4
|
127
|
+
else:
|
128
|
+
x[:, ::2] = x[:, ::2] & 0xF
|
129
|
+
x[:, 1::2] = x[:, 1::2] >> 4
|
130
|
+
|
131
|
+
mxfp4_list = [
|
132
|
+
0.0,
|
133
|
+
0.5,
|
134
|
+
1.0,
|
135
|
+
1.5,
|
136
|
+
2.0,
|
137
|
+
3.0,
|
138
|
+
4.0,
|
139
|
+
6.0,
|
140
|
+
-0.0,
|
141
|
+
-0.5,
|
142
|
+
-1.0,
|
143
|
+
-1.5,
|
144
|
+
-2.0,
|
145
|
+
-3.0,
|
146
|
+
-4.0,
|
147
|
+
-6.0,
|
148
|
+
]
|
149
|
+
mxfp4_in_f32 = torch.tensor(mxfp4_list, dtype=torch.float32, device="cuda")
|
150
|
+
return mxfp4_in_f32[x.long()]
|
151
|
+
|
152
|
+
|
153
|
+
def e8m0_to_f32(x):
|
154
|
+
# Convert the input tensor `x` (assumed to be in e8m0 format) to float32.
|
155
|
+
# e8m0 is a custom 8-bit floating point format with 8 bits for exponent, 0 for mantissa.
|
156
|
+
# This means the value is essentially 2^(exponent - 127), similar to how IEEE-754 stores floats.
|
157
|
+
|
158
|
+
# Convert x to float32 for computation, and compute the power of 2 by subtracting the bias (127).
|
159
|
+
x_f32 = 2 ** ((x.to(torch.float32)) - 127)
|
160
|
+
|
161
|
+
# If the exponent value was 255 (i.e., 2^(128)), this is a special case usually used to represent NaN or Inf.
|
162
|
+
# Since this custom format has no mantissa, treat 2^128 as NaN.
|
163
|
+
x_f32[x_f32 == 128] = float("nan")
|
164
|
+
return x_f32
|
165
|
+
|
166
|
+
|
167
|
+
def quark_post_load_weights(self_attn: nn.Module, w: torch.Tensor, quant_format: str):
|
168
|
+
if "mxfp4" in quant_format:
|
169
|
+
# when dtype is bf16, the processing flow is to dynamic quantize bf16 tensor to uint8 tensor
|
170
|
+
# do w_kc (bf16) first to get the w_kc(uint8) w_s_kc(uint8)
|
171
|
+
# and w_vc repeating the same procedure of w_kc to get w_vc(uint8) w_s_vc(uint8)
|
172
|
+
if w.dtype == torch.bfloat16:
|
173
|
+
w_kc, w_vc = w.unflatten(
|
174
|
+
0, (-1, self_attn.qk_nope_head_dim + self_attn.v_head_dim)
|
175
|
+
).split([self_attn.qk_nope_head_dim, self_attn.v_head_dim], dim=1)
|
176
|
+
w_kc, w_s_kc = b_dynamic_mxfp4_quant(w_kc.transpose(-2, -1))
|
177
|
+
w_kc = w_kc.transpose(-2, -1)
|
178
|
+
w_s_kc = w_s_kc.transpose(-2, -1)
|
179
|
+
w_vc, w_s_vc = b_dynamic_mxfp4_quant(w_vc)
|
180
|
+
w_s_kc = w_s_kc.transpose(1, 2).contiguous().transpose(1, 2)
|
181
|
+
w_s_vc = w_s_vc.contiguous().transpose(1, 2)
|
182
|
+
elif w.dtype == torch.uint8: # static quant for mxfp4
|
183
|
+
# when dtype is uint8, it means the w has been quantized to mxfp4 format
|
184
|
+
# but we must separate it to w_kc and w_vc.
|
185
|
+
# The quantized tensor size is only half of original tensor size
|
186
|
+
# and the scaling factor is 1/32, the transpose behavior will be not correct
|
187
|
+
# need to upcast it to fp32 to separate w to w_kc and w_vc
|
188
|
+
# to ensure the following transpose behavior is correct
|
189
|
+
# and then do mxfp4 quant again
|
190
|
+
w = mxfp4_to_f32(w, True).to(torch.bfloat16)
|
191
|
+
w_scales = self_attn.kv_b_proj.weight_scale.repeat_interleave(32, dim=-1)
|
192
|
+
w_scales = e8m0_to_f32(w_scales).to(torch.bfloat16)
|
193
|
+
w = w * w_scales
|
194
|
+
w_kc, w_vc = w.unflatten(
|
195
|
+
0, (-1, (self_attn.qk_nope_head_dim + self_attn.v_head_dim))
|
196
|
+
).split([self_attn.qk_nope_head_dim, self_attn.v_head_dim], dim=1)
|
197
|
+
w_kc, w_s_kc = b_dynamic_mxfp4_quant(w_kc.transpose(-2, -1))
|
198
|
+
w_kc = w_kc.transpose(-2, -1)
|
199
|
+
w_s_kc = w_s_kc.transpose(-2, -1)
|
200
|
+
w_vc, w_s_vc = b_dynamic_mxfp4_quant(w_vc)
|
201
|
+
w_s_kc = w_s_kc.transpose(1, 2).contiguous().transpose(1, 2)
|
202
|
+
w_s_vc = w_s_vc.contiguous().transpose(1, 2)
|
203
|
+
|
204
|
+
return w_kc, w_s_kc, w_vc, w_s_vc
|
@@ -0,0 +1,13 @@
|
|
1
|
+
from aiter.ops.triton.batched_gemm_afp4wfp4_pre_quant import (
|
2
|
+
batched_gemm_afp4wfp4_pre_quant,
|
3
|
+
)
|
4
|
+
from aiter.ops.triton.fused_mxfp4_quant import (
|
5
|
+
fused_flatten_mxfp4_quant,
|
6
|
+
fused_rms_mxfp4_quant,
|
7
|
+
)
|
8
|
+
|
9
|
+
__all__ = [
|
10
|
+
"fused_rms_mxfp4_quant",
|
11
|
+
"fused_flatten_mxfp4_quant",
|
12
|
+
"batched_gemm_afp4wfp4_pre_quant",
|
13
|
+
]
|