sglang 0.5.2rc1__py3-none-any.whl → 0.5.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (395) hide show
  1. sglang/bench_one_batch.py +7 -9
  2. sglang/bench_one_batch_server.py +330 -31
  3. sglang/bench_serving.py +267 -32
  4. sglang/global_config.py +2 -2
  5. sglang/lang/backend/runtime_endpoint.py +1 -1
  6. sglang/lang/interpreter.py +1 -1
  7. sglang/launch_server.py +14 -0
  8. sglang/profiler.py +2 -2
  9. sglang/srt/batch_invariant_ops/__init__.py +27 -0
  10. sglang/srt/batch_invariant_ops/batch_invariant_ops.py +549 -0
  11. sglang/srt/configs/__init__.py +8 -0
  12. sglang/srt/configs/device_config.py +3 -1
  13. sglang/srt/configs/dots_ocr.py +64 -0
  14. sglang/srt/configs/dots_vlm.py +139 -0
  15. sglang/srt/configs/falcon_h1.py +360 -0
  16. sglang/srt/configs/internvl.py +6 -0
  17. sglang/srt/configs/load_config.py +9 -0
  18. sglang/srt/configs/model_config.py +181 -82
  19. sglang/srt/configs/qwen3_next.py +326 -0
  20. sglang/srt/configs/qwen3_vl.py +586 -0
  21. sglang/srt/connector/__init__.py +8 -1
  22. sglang/srt/connector/remote_instance.py +82 -0
  23. sglang/srt/constrained/base_grammar_backend.py +49 -12
  24. sglang/srt/constrained/llguidance_backend.py +0 -1
  25. sglang/srt/constrained/outlines_backend.py +0 -1
  26. sglang/srt/constrained/outlines_jump_forward.py +1 -1
  27. sglang/srt/constrained/xgrammar_backend.py +30 -9
  28. sglang/srt/custom_op.py +11 -1
  29. sglang/srt/debug_utils/dump_comparator.py +81 -44
  30. sglang/srt/debug_utils/dump_loader.py +97 -0
  31. sglang/srt/debug_utils/dumper.py +21 -6
  32. sglang/srt/debug_utils/text_comparator.py +73 -11
  33. sglang/srt/disaggregation/ascend/conn.py +2 -2
  34. sglang/srt/disaggregation/ascend/transfer_engine.py +47 -9
  35. sglang/srt/disaggregation/base/conn.py +1 -1
  36. sglang/srt/disaggregation/common/conn.py +279 -108
  37. sglang/srt/disaggregation/decode.py +71 -19
  38. sglang/srt/disaggregation/decode_kvcache_offload_manager.py +185 -0
  39. sglang/srt/disaggregation/decode_schedule_batch_mixin.py +29 -17
  40. sglang/srt/disaggregation/fake/conn.py +1 -1
  41. sglang/srt/disaggregation/mini_lb.py +6 -445
  42. sglang/srt/disaggregation/mooncake/conn.py +55 -537
  43. sglang/srt/disaggregation/nixl/conn.py +326 -53
  44. sglang/srt/disaggregation/prefill.py +36 -17
  45. sglang/srt/disaggregation/utils.py +40 -54
  46. sglang/srt/distributed/device_communicators/all_reduce_utils.py +16 -0
  47. sglang/srt/distributed/device_communicators/shm_broadcast.py +4 -2
  48. sglang/srt/distributed/device_communicators/symm_mem.py +164 -0
  49. sglang/srt/distributed/parallel_state.py +192 -113
  50. sglang/srt/entrypoints/engine.py +59 -18
  51. sglang/srt/entrypoints/grpc_request_manager.py +855 -0
  52. sglang/srt/entrypoints/grpc_server.py +810 -0
  53. sglang/srt/entrypoints/http_server.py +132 -57
  54. sglang/srt/entrypoints/openai/protocol.py +115 -7
  55. sglang/srt/entrypoints/openai/serving_base.py +65 -3
  56. sglang/srt/entrypoints/openai/serving_chat.py +207 -58
  57. sglang/srt/entrypoints/openai/serving_completions.py +17 -4
  58. sglang/srt/entrypoints/openai/serving_embedding.py +10 -4
  59. sglang/srt/entrypoints/openai/serving_rerank.py +3 -1
  60. sglang/srt/entrypoints/openai/serving_responses.py +49 -4
  61. sglang/srt/entrypoints/openai/serving_score.py +1 -0
  62. sglang/srt/environ.py +285 -0
  63. sglang/srt/eplb/eplb_manager.py +2 -2
  64. sglang/srt/eplb/expert_distribution.py +26 -13
  65. sglang/srt/eplb/expert_location.py +38 -8
  66. sglang/srt/eplb/expert_location_updater.py +1 -1
  67. sglang/srt/function_call/base_format_detector.py +3 -6
  68. sglang/srt/function_call/ebnf_composer.py +11 -9
  69. sglang/srt/function_call/function_call_parser.py +9 -2
  70. sglang/srt/function_call/glm4_moe_detector.py +4 -4
  71. sglang/srt/function_call/gpt_oss_detector.py +24 -1
  72. sglang/srt/function_call/json_array_parser.py +63 -0
  73. sglang/srt/function_call/kimik2_detector.py +17 -4
  74. sglang/srt/function_call/qwen3_coder_detector.py +1 -1
  75. sglang/srt/function_call/utils.py +96 -5
  76. sglang/srt/grpc/__init__.py +1 -0
  77. sglang/srt/grpc/compile_proto.py +245 -0
  78. sglang/srt/grpc/sglang_scheduler_pb2.py +111 -0
  79. sglang/srt/grpc/sglang_scheduler_pb2.pyi +434 -0
  80. sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +239 -0
  81. sglang/srt/layers/activation.py +143 -9
  82. sglang/srt/layers/attention/aiter_backend.py +106 -82
  83. sglang/srt/layers/attention/ascend_backend.py +115 -9
  84. sglang/srt/layers/attention/attention_registry.py +206 -0
  85. sglang/srt/layers/attention/base_attn_backend.py +12 -3
  86. sglang/srt/layers/attention/cutlass_mla_backend.py +3 -3
  87. sglang/srt/layers/attention/dual_chunk_flashattention_backend.py +1 -1
  88. sglang/srt/layers/attention/fla/chunk.py +242 -0
  89. sglang/srt/layers/attention/fla/chunk_delta_h.py +314 -0
  90. sglang/srt/layers/attention/fla/chunk_o.py +178 -0
  91. sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +151 -0
  92. sglang/srt/layers/attention/fla/cumsum.py +300 -0
  93. sglang/srt/layers/attention/fla/fused_recurrent.py +640 -0
  94. sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +232 -0
  95. sglang/srt/layers/attention/fla/index.py +37 -0
  96. sglang/srt/layers/attention/fla/l2norm.py +150 -0
  97. sglang/srt/layers/attention/fla/layernorm_gated.py +326 -0
  98. sglang/srt/layers/attention/fla/op.py +66 -0
  99. sglang/srt/layers/attention/fla/solve_tril.py +465 -0
  100. sglang/srt/layers/attention/fla/utils.py +331 -0
  101. sglang/srt/layers/attention/fla/wy_fast.py +158 -0
  102. sglang/srt/layers/attention/flashattention_backend.py +41 -8
  103. sglang/srt/layers/attention/flashinfer_backend.py +118 -198
  104. sglang/srt/layers/attention/flashinfer_mla_backend.py +27 -27
  105. sglang/srt/layers/attention/flashmla_backend.py +7 -5
  106. sglang/srt/layers/attention/hybrid_attn_backend.py +68 -53
  107. sglang/srt/layers/attention/hybrid_linear_attn_backend.py +602 -0
  108. sglang/srt/layers/attention/intel_amx_backend.py +3 -0
  109. sglang/srt/layers/attention/mamba/causal_conv1d.py +129 -0
  110. sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +969 -0
  111. sglang/srt/layers/attention/mamba/mamba.py +629 -0
  112. sglang/srt/layers/attention/mamba/mamba_utils.py +81 -0
  113. sglang/srt/layers/attention/mamba/ops/__init__.py +2 -0
  114. sglang/srt/layers/attention/mamba/ops/layernorm_gated.py +172 -0
  115. sglang/srt/layers/attention/mamba/ops/mamba_ssm.py +442 -0
  116. sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +264 -0
  117. sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +622 -0
  118. sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +757 -0
  119. sglang/srt/layers/attention/mamba/ops/ssd_combined.py +262 -0
  120. sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +275 -0
  121. sglang/srt/layers/attention/npu_ops/mla_preprocess.py +393 -0
  122. sglang/srt/layers/attention/nsa/dequant_k_cache.py +163 -0
  123. sglang/srt/layers/attention/nsa/index_buf_accessor.py +354 -0
  124. sglang/srt/layers/attention/nsa/nsa_indexer.py +761 -0
  125. sglang/srt/layers/attention/nsa/quant_k_cache.py +255 -0
  126. sglang/srt/layers/attention/nsa/tilelang_kernel.py +785 -0
  127. sglang/srt/layers/attention/nsa/transform_index.py +144 -0
  128. sglang/srt/layers/attention/nsa/utils.py +24 -0
  129. sglang/srt/layers/attention/nsa_backend.py +887 -0
  130. sglang/srt/layers/attention/tbo_backend.py +6 -6
  131. sglang/srt/layers/attention/torch_flex_backend.py +325 -0
  132. sglang/srt/layers/attention/torch_native_backend.py +12 -6
  133. sglang/srt/layers/attention/triton_backend.py +57 -7
  134. sglang/srt/layers/attention/trtllm_mha_backend.py +5 -7
  135. sglang/srt/layers/attention/trtllm_mla_backend.py +276 -39
  136. sglang/srt/layers/attention/vision.py +58 -0
  137. sglang/srt/layers/attention/wave_backend.py +4 -4
  138. sglang/srt/layers/attention/wave_ops/decode_attention.py +2 -4
  139. sglang/srt/layers/attention/wave_ops/extend_attention.py +1 -3
  140. sglang/srt/layers/communicator.py +53 -7
  141. sglang/srt/layers/dp_attention.py +41 -2
  142. sglang/srt/layers/elementwise.py +3 -1
  143. sglang/srt/layers/layernorm.py +34 -15
  144. sglang/srt/layers/linear.py +55 -7
  145. sglang/srt/layers/logits_processor.py +44 -12
  146. sglang/srt/layers/moe/__init__.py +2 -1
  147. sglang/srt/layers/moe/cutlass_w4a8_moe.py +3 -3
  148. sglang/srt/layers/moe/ep_moe/kernels.py +2 -2
  149. sglang/srt/layers/moe/ep_moe/layer.py +256 -63
  150. sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +183 -0
  151. sglang/srt/layers/moe/fused_moe_native.py +5 -3
  152. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_3_1/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  153. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=352,device_name=NVIDIA_RTX_5880_Ada_Generation,dtype=fp8_w8a8.json +146 -0
  154. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  155. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=512,device_name=NVIDIA_H20.json +146 -0
  156. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/{E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json → E=257,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json } +29 -29
  157. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  158. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  159. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
  160. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  161. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  162. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  163. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
  164. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=64,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  165. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
  166. sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +5 -2
  167. sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +7 -3
  168. sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_kernels.py +23 -20
  169. sglang/srt/layers/moe/fused_moe_triton/layer.py +71 -70
  170. sglang/srt/layers/moe/moe_runner/__init__.py +2 -1
  171. sglang/srt/layers/moe/moe_runner/base.py +274 -1
  172. sglang/srt/layers/moe/moe_runner/runner.py +80 -0
  173. sglang/srt/layers/moe/moe_runner/triton.py +448 -0
  174. sglang/srt/layers/moe/token_dispatcher/__init__.py +16 -4
  175. sglang/srt/layers/moe/token_dispatcher/{base_dispatcher.py → base.py} +67 -17
  176. sglang/srt/layers/moe/token_dispatcher/deepep.py +118 -56
  177. sglang/srt/layers/moe/token_dispatcher/standard.py +44 -2
  178. sglang/srt/layers/moe/topk.py +30 -9
  179. sglang/srt/layers/moe/utils.py +22 -7
  180. sglang/srt/layers/parameter.py +23 -6
  181. sglang/srt/layers/quantization/awq.py +19 -7
  182. sglang/srt/layers/quantization/base_config.py +11 -6
  183. sglang/srt/layers/quantization/blockwise_int8.py +38 -27
  184. sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +1 -0
  185. sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +50 -30
  186. sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +2 -0
  187. sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +13 -1
  188. sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +173 -0
  189. sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +2 -10
  190. sglang/srt/layers/quantization/deep_gemm_wrapper/entrypoint.py +27 -0
  191. sglang/srt/layers/quantization/fp8.py +78 -49
  192. sglang/srt/layers/quantization/fp8_utils.py +51 -32
  193. sglang/srt/layers/quantization/gptq.py +25 -17
  194. sglang/srt/layers/quantization/modelopt_quant.py +225 -57
  195. sglang/srt/layers/quantization/moe_wna16.py +21 -18
  196. sglang/srt/layers/quantization/mxfp4.py +77 -42
  197. sglang/srt/layers/quantization/quark/quark_moe.py +48 -30
  198. sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +49 -30
  199. sglang/srt/layers/quantization/quark/utils.py +97 -0
  200. sglang/srt/layers/quantization/rocm_mxfp4_utils.py +13 -0
  201. sglang/srt/layers/quantization/unquant.py +135 -47
  202. sglang/srt/layers/quantization/w4afp8.py +26 -17
  203. sglang/srt/layers/quantization/w8a8_fp8.py +35 -20
  204. sglang/srt/layers/quantization/w8a8_int8.py +91 -41
  205. sglang/srt/layers/rocm_linear_utils.py +44 -0
  206. sglang/srt/layers/rotary_embedding.py +78 -49
  207. sglang/srt/layers/sampler.py +213 -21
  208. sglang/srt/layers/utils.py +23 -0
  209. sglang/srt/lora/backend/base_backend.py +50 -8
  210. sglang/srt/lora/backend/chunked_backend.py +348 -0
  211. sglang/srt/lora/backend/triton_backend.py +99 -5
  212. sglang/srt/lora/layers.py +32 -0
  213. sglang/srt/lora/lora.py +8 -3
  214. sglang/srt/lora/lora_manager.py +52 -118
  215. sglang/srt/lora/mem_pool.py +25 -11
  216. sglang/srt/lora/triton_ops/__init__.py +4 -0
  217. sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +214 -0
  218. sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +174 -0
  219. sglang/srt/lora/utils.py +22 -11
  220. sglang/srt/managers/async_dynamic_batch_tokenizer.py +170 -0
  221. sglang/srt/managers/cache_controller.py +215 -314
  222. sglang/srt/managers/data_parallel_controller.py +115 -80
  223. sglang/srt/managers/detokenizer_manager.py +19 -15
  224. sglang/srt/managers/disagg_service.py +46 -0
  225. sglang/srt/managers/io_struct.py +340 -109
  226. sglang/srt/managers/mm_utils.py +44 -6
  227. sglang/srt/managers/multi_tokenizer_mixin.py +358 -404
  228. sglang/srt/managers/multimodal_processor.py +1 -2
  229. sglang/srt/managers/overlap_utils.py +53 -0
  230. sglang/srt/managers/schedule_batch.py +240 -138
  231. sglang/srt/managers/schedule_policy.py +147 -19
  232. sglang/srt/managers/scheduler.py +501 -304
  233. sglang/srt/managers/scheduler_input_blocker.py +1 -1
  234. sglang/srt/managers/scheduler_metrics_mixin.py +119 -40
  235. sglang/srt/managers/scheduler_output_processor_mixin.py +75 -22
  236. sglang/srt/managers/scheduler_profiler_mixin.py +6 -6
  237. sglang/srt/managers/scheduler_update_weights_mixin.py +7 -0
  238. sglang/srt/managers/template_manager.py +3 -3
  239. sglang/srt/managers/tokenizer_communicator_mixin.py +675 -0
  240. sglang/srt/managers/tokenizer_manager.py +321 -632
  241. sglang/srt/managers/tp_worker.py +81 -22
  242. sglang/srt/managers/tp_worker_overlap_thread.py +71 -56
  243. sglang/srt/managers/utils.py +1 -45
  244. sglang/srt/mem_cache/allocator.py +15 -21
  245. sglang/srt/mem_cache/allocator_ascend.py +41 -27
  246. sglang/srt/mem_cache/base_prefix_cache.py +1 -1
  247. sglang/srt/mem_cache/chunk_cache.py +8 -1
  248. sglang/srt/mem_cache/evict_policy.py +23 -0
  249. sglang/srt/mem_cache/hicache_storage.py +58 -34
  250. sglang/srt/mem_cache/hiradix_cache.py +227 -80
  251. sglang/srt/mem_cache/memory_pool.py +535 -58
  252. sglang/srt/mem_cache/memory_pool_host.py +239 -223
  253. sglang/srt/mem_cache/radix_cache.py +222 -73
  254. sglang/srt/mem_cache/radix_cache_cpp.py +11 -8
  255. sglang/srt/mem_cache/storage/__init__.py +10 -0
  256. sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +151 -0
  257. sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +109 -0
  258. sglang/srt/mem_cache/storage/backend_factory.py +223 -0
  259. sglang/srt/mem_cache/storage/eic/eic_storage.py +778 -0
  260. sglang/srt/mem_cache/storage/eic/test_unit.py +115 -0
  261. sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +164 -0
  262. sglang/srt/mem_cache/storage/hf3fs/{client_hf3fs.py → hf3fs_usrbio_client.py} +5 -1
  263. sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +268 -63
  264. sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +284 -0
  265. sglang/srt/mem_cache/storage/lmcache/unit_test.py +121 -0
  266. sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +198 -30
  267. sglang/srt/mem_cache/storage/mooncake_store/test_mooncake_store.py +161 -0
  268. sglang/srt/mem_cache/swa_radix_cache.py +25 -36
  269. sglang/srt/metrics/collector.py +519 -132
  270. sglang/srt/metrics/func_timer.py +2 -7
  271. sglang/srt/metrics/startup_func_log_and_timer.py +150 -0
  272. sglang/srt/metrics/utils.py +55 -0
  273. sglang/srt/model_executor/cpu_graph_runner.py +640 -0
  274. sglang/srt/model_executor/cuda_graph_runner.py +52 -37
  275. sglang/srt/model_executor/forward_batch_info.py +98 -57
  276. sglang/srt/model_executor/model_runner.py +433 -158
  277. sglang/srt/model_executor/npu_graph_runner.py +12 -5
  278. sglang/srt/model_loader/__init__.py +9 -3
  279. sglang/srt/model_loader/loader.py +133 -5
  280. sglang/srt/model_loader/remote_instance_weight_loader_utils.py +69 -0
  281. sglang/srt/model_loader/weight_utils.py +158 -3
  282. sglang/srt/models/apertus.py +686 -0
  283. sglang/srt/models/bailing_moe.py +820 -217
  284. sglang/srt/models/bailing_moe_nextn.py +168 -0
  285. sglang/srt/models/deepseek_nextn.py +6 -1
  286. sglang/srt/models/deepseek_v2.py +833 -152
  287. sglang/srt/models/dots_ocr.py +173 -0
  288. sglang/srt/models/dots_vlm.py +174 -0
  289. sglang/srt/models/dots_vlm_vit.py +337 -0
  290. sglang/srt/models/ernie4.py +1 -1
  291. sglang/srt/models/falcon_h1.py +576 -0
  292. sglang/srt/models/gemma3_causal.py +0 -2
  293. sglang/srt/models/gemma3_mm.py +1 -1
  294. sglang/srt/models/gemma3n_mm.py +2 -2
  295. sglang/srt/models/glm4_moe.py +14 -5
  296. sglang/srt/models/glm4_moe_nextn.py +2 -2
  297. sglang/srt/models/glm4v.py +5 -3
  298. sglang/srt/models/glm4v_moe.py +4 -1
  299. sglang/srt/models/gpt_oss.py +8 -31
  300. sglang/srt/models/internvl.py +28 -0
  301. sglang/srt/models/kimi_vl_moonvit.py +2 -2
  302. sglang/srt/models/llama.py +4 -0
  303. sglang/srt/models/llama4.py +9 -0
  304. sglang/srt/models/llama_eagle3.py +13 -0
  305. sglang/srt/models/longcat_flash.py +3 -3
  306. sglang/srt/models/longcat_flash_nextn.py +1 -1
  307. sglang/srt/models/minicpmv.py +165 -3
  308. sglang/srt/models/mllama4.py +40 -4
  309. sglang/srt/models/opt.py +637 -0
  310. sglang/srt/models/qwen2_5_vl.py +29 -5
  311. sglang/srt/models/qwen2_audio.py +1 -1
  312. sglang/srt/models/qwen2_moe.py +124 -14
  313. sglang/srt/models/qwen2_vl.py +1 -1
  314. sglang/srt/models/qwen3.py +26 -5
  315. sglang/srt/models/qwen3_moe.py +71 -12
  316. sglang/srt/models/qwen3_next.py +1069 -0
  317. sglang/srt/models/qwen3_next_mtp.py +112 -0
  318. sglang/srt/models/qwen3_vl.py +787 -0
  319. sglang/srt/models/qwen3_vl_moe.py +471 -0
  320. sglang/srt/models/registry.py +15 -3
  321. sglang/srt/models/sarashina2_vision.py +269 -0
  322. sglang/srt/models/solar.py +505 -0
  323. sglang/srt/models/starcoder2.py +357 -0
  324. sglang/srt/models/step3_vl.py +1 -1
  325. sglang/srt/models/torch_native_llama.py +10 -3
  326. sglang/srt/models/utils.py +51 -0
  327. sglang/srt/multimodal/processors/base_processor.py +15 -7
  328. sglang/srt/multimodal/processors/dots_vlm.py +98 -0
  329. sglang/srt/multimodal/processors/glm4v.py +9 -9
  330. sglang/srt/multimodal/processors/internvl.py +153 -129
  331. sglang/srt/multimodal/processors/qwen_vl.py +23 -6
  332. sglang/srt/multimodal/processors/sarashina2_vision.py +81 -0
  333. sglang/srt/offloader.py +27 -3
  334. sglang/srt/{jinja_template_utils.py → parser/jinja_template_utils.py} +6 -0
  335. sglang/srt/{reasoning_parser.py → parser/reasoning_parser.py} +1 -1
  336. sglang/srt/sampling/sampling_batch_info.py +38 -17
  337. sglang/srt/sampling/sampling_params.py +7 -0
  338. sglang/srt/server_args.py +1030 -254
  339. sglang/srt/server_args_config_parser.py +146 -0
  340. sglang/srt/single_batch_overlap.py +151 -0
  341. sglang/srt/speculative/cpp_ngram/ngram.cpp +374 -0
  342. sglang/srt/speculative/cpp_ngram/ngram.h +110 -0
  343. sglang/srt/speculative/cpp_ngram/ngram_cache.py +138 -0
  344. sglang/srt/speculative/cpp_ngram/ngram_cache_binding.cpp +43 -0
  345. sglang/srt/speculative/cpp_ngram/param.h +125 -0
  346. sglang/srt/speculative/cpp_ngram/queue.h +71 -0
  347. sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +7 -1
  348. sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +13 -2
  349. sglang/srt/speculative/{eagle_utils.py → eagle_info.py} +207 -757
  350. sglang/srt/speculative/eagle_worker.py +253 -136
  351. sglang/srt/speculative/ngram_utils.py +428 -0
  352. sglang/srt/speculative/ngram_worker.py +245 -0
  353. sglang/srt/speculative/spec_info.py +52 -0
  354. sglang/srt/speculative/spec_utils.py +606 -0
  355. sglang/srt/speculative/standalone_worker.py +109 -0
  356. sglang/srt/torch_memory_saver_adapter.py +5 -7
  357. sglang/srt/tracing/trace.py +578 -0
  358. sglang/srt/two_batch_overlap.py +8 -5
  359. sglang/srt/utils/__init__.py +2 -0
  360. sglang/srt/{utils.py → utils/common.py} +445 -77
  361. sglang/srt/{hf_transformers_utils.py → utils/hf_transformers_utils.py} +53 -5
  362. sglang/srt/{patch_torch.py → utils/patch_torch.py} +8 -0
  363. sglang/srt/utils/rpd_utils.py +452 -0
  364. sglang/srt/utils/slow_rank_detector.py +71 -0
  365. sglang/srt/warmup.py +8 -4
  366. sglang/srt/weight_sync/utils.py +2 -2
  367. sglang/test/attention/test_trtllm_mla_backend.py +169 -5
  368. sglang/test/few_shot_gsm8k.py +1 -0
  369. sglang/test/get_logits_ut.py +57 -0
  370. sglang/test/run_eval.py +79 -11
  371. sglang/test/runners.py +5 -1
  372. sglang/test/simple_eval_common.py +5 -2
  373. sglang/test/simple_eval_mmmu_vlm.py +441 -0
  374. sglang/test/test_block_fp8.py +2 -2
  375. sglang/test/test_cutlass_moe.py +24 -6
  376. sglang/test/test_deterministic.py +297 -0
  377. sglang/test/test_disaggregation_utils.py +77 -0
  378. sglang/test/test_fp4_moe.py +370 -1
  379. sglang/test/test_programs.py +1 -1
  380. sglang/test/test_utils.py +383 -5
  381. sglang/utils.py +22 -1
  382. sglang/version.py +1 -1
  383. {sglang-0.5.2rc1.dist-info → sglang-0.5.3.dist-info}/METADATA +69 -124
  384. {sglang-0.5.2rc1.dist-info → sglang-0.5.3.dist-info}/RECORD +392 -258
  385. sglang/srt/disaggregation/launch_lb.py +0 -118
  386. sglang/srt/mem_cache/lora_radix_cache.py +0 -421
  387. sglang/srt/mem_cache/storage/mooncake_store/unit_test.py +0 -40
  388. /sglang/srt/{model_parallel.py → layers/model_parallel.py} +0 -0
  389. /sglang/srt/{code_completion_parser.py → parser/code_completion_parser.py} +0 -0
  390. /sglang/srt/{conversation.py → parser/conversation.py} +0 -0
  391. /sglang/srt/{harmony_parser.py → parser/harmony_parser.py} +0 -0
  392. /sglang/srt/{poll_based_barrier.py → utils/poll_based_barrier.py} +0 -0
  393. {sglang-0.5.2rc1.dist-info → sglang-0.5.3.dist-info}/WHEEL +0 -0
  394. {sglang-0.5.2rc1.dist-info → sglang-0.5.3.dist-info}/licenses/LICENSE +0 -0
  395. {sglang-0.5.2rc1.dist-info → sglang-0.5.3.dist-info}/top_level.txt +0 -0
@@ -22,6 +22,8 @@ from typing import TYPE_CHECKING, List, Optional
22
22
  import torch
23
23
  from torch.nn.parameter import Parameter
24
24
 
25
+ from sglang.srt.layers.moe import MoeRunner, MoeRunnerBackend, MoeRunnerConfig
26
+ from sglang.srt.layers.moe.moe_runner.triton import TritonMoeQuantInfo
25
27
  from sglang.srt.layers.moe.utils import get_moe_runner_backend
26
28
  from sglang.srt.layers.quantization.base_config import (
27
29
  FusedMoEMethodBase,
@@ -59,8 +61,10 @@ if is_flashinfer_available():
59
61
  logger = logging.getLogger(__name__)
60
62
 
61
63
  if TYPE_CHECKING:
62
- from sglang.srt.layers.moe.moe_runner import MoeRunnerConfig
63
- from sglang.srt.layers.moe.topk import TopKOutput
64
+ from sglang.srt.layers.moe.token_dispatcher import (
65
+ CombineInput,
66
+ StandardDispatchOutput,
67
+ )
64
68
 
65
69
  _is_hip = is_hip()
66
70
 
@@ -283,7 +287,7 @@ class Mxfp4MoEMethod(FusedMoEMethodBase):
283
287
  layer: torch.nn.Module,
284
288
  num_experts: int,
285
289
  hidden_size: int,
286
- intermediate_size: int,
290
+ intermediate_size_per_partition: int,
287
291
  params_dtype: torch.dtype,
288
292
  with_bias: bool = False,
289
293
  **extra_weight_attrs,
@@ -296,26 +300,26 @@ class Mxfp4MoEMethod(FusedMoEMethodBase):
296
300
 
297
301
  # pad the intermediate size to be a multiple of 2 * mxfp4_block
298
302
  # for to hold non-uniform sharded tensor as well as swizzling
299
- intermediate_size_per_partition_after_pad = intermediate_size
303
+ intermediate_size_per_partition_after_pad = intermediate_size_per_partition
300
304
  if _is_sm100_supported:
301
305
  if self.use_flashinfer:
302
306
  intermediate_size_per_partition_after_pad = round_up(
303
- intermediate_size, 256
307
+ intermediate_size_per_partition, 256
304
308
  )
305
309
  hidden_size = round_up(hidden_size, 256)
306
310
  else:
307
311
  intermediate_size_per_partition_after_pad = round_up(
308
- intermediate_size, 64
312
+ intermediate_size_per_partition, 64
309
313
  )
310
314
  elif has_triton_kernels:
311
315
  # TODO: this is a hack to make
312
316
  # intermediate_size_per_partition_after_pad the same as the
313
317
  # per_rank_intermediate_size during weight loading
314
318
  intermediate_size_per_partition_after_pad = round_up(
315
- intermediate_size, mxfp4_block
319
+ intermediate_size_per_partition, mxfp4_block
316
320
  )
317
321
 
318
- self.intermediate_size = intermediate_size_per_partition_after_pad
322
+ self.intermediate_size_per_partition = intermediate_size_per_partition_after_pad
319
323
 
320
324
  self.hidden_size = hidden_size
321
325
  # Fused gate_up_proj (column parallel)
@@ -410,31 +414,35 @@ class Mxfp4MoEMethod(FusedMoEMethodBase):
410
414
  assert (
411
415
  layer.w13_weight.dim() == 3
412
416
  and layer.w13_weight.shape[0] == self.num_experts
413
- and layer.w13_weight.shape[1] == self.intermediate_size * 2
417
+ and layer.w13_weight.shape[1]
418
+ == self.intermediate_size_per_partition * 2
414
419
  and layer.w13_weight.shape[2] == self.hidden_size // 2
415
420
  )
416
421
  assert (
417
422
  layer.w13_weight_scale.dim() == 3
418
423
  and layer.w13_weight_scale.shape[0] == self.num_experts
419
- and layer.w13_weight_scale.shape[1] == self.intermediate_size * 2
424
+ and layer.w13_weight_scale.shape[1]
425
+ == self.intermediate_size_per_partition * 2
420
426
  and layer.w13_weight_scale.shape[2] == self.hidden_size // sf_block_size
421
427
  )
422
428
  assert (
423
429
  layer.w2_weight.dim() == 3
424
430
  and layer.w2_weight.shape[0] == self.num_experts
425
431
  and layer.w2_weight.shape[1] == self.hidden_size
426
- and layer.w2_weight.shape[2] == self.intermediate_size // 2
432
+ and layer.w2_weight.shape[2]
433
+ == self.intermediate_size_per_partition // 2
427
434
  )
428
435
  assert (
429
436
  layer.w2_weight_scale.dim() == 3
430
437
  and layer.w2_weight_scale.shape[1] == self.hidden_size
431
438
  and layer.w2_weight_scale.shape[2]
432
- == self.intermediate_size // sf_block_size
439
+ == self.intermediate_size_per_partition // sf_block_size
433
440
  )
434
441
  assert (
435
442
  layer.w13_weight_bias.dim() == 2
436
443
  and layer.w13_weight_bias.shape[0] == self.num_experts
437
- and layer.w13_weight_bias.shape[1] == self.intermediate_size * 2
444
+ and layer.w13_weight_bias.shape[1]
445
+ == self.intermediate_size_per_partition * 2
438
446
  )
439
447
  assert (
440
448
  layer.w2_weight_bias.dim() == 2
@@ -511,7 +519,7 @@ class Mxfp4MoEMethod(FusedMoEMethodBase):
511
519
  torch.stack(gemm1_scales_mxfp4_shuffled)
512
520
  .reshape(
513
521
  self.num_experts,
514
- 2 * self.intermediate_size,
522
+ 2 * self.intermediate_size_per_partition,
515
523
  self.hidden_size // sf_block_size,
516
524
  )
517
525
  .view(torch.float8_e4m3fn)
@@ -523,7 +531,7 @@ class Mxfp4MoEMethod(FusedMoEMethodBase):
523
531
  .reshape(
524
532
  self.num_experts,
525
533
  self.hidden_size,
526
- self.intermediate_size // sf_block_size,
534
+ self.intermediate_size_per_partition // sf_block_size,
527
535
  )
528
536
  .view(torch.float8_e4m3fn)
529
537
  )
@@ -613,16 +621,26 @@ class Mxfp4MoEMethod(FusedMoEMethodBase):
613
621
 
614
622
  return tile_tokens_dim
615
623
 
624
+ def create_moe_runner(
625
+ self, layer: torch.nn.Module, moe_runner_config: MoeRunnerConfig
626
+ ):
627
+ self.moe_runner_config = moe_runner_config
628
+ self.runner = MoeRunner(MoeRunnerBackend.TRITON, moe_runner_config)
629
+
616
630
  def apply(
617
631
  self,
618
632
  layer: torch.nn.Module,
619
- x: torch.Tensor,
620
- topk_output: TopKOutput,
621
- moe_runner_config: MoeRunnerConfig,
622
- ) -> torch.Tensor:
633
+ dispatch_output: StandardDispatchOutput,
634
+ ) -> CombineInput:
623
635
 
636
+ from sglang.srt.layers.moe.token_dispatcher import StandardCombineInput
624
637
  from sglang.srt.layers.moe.topk import TopKOutputChecker
625
638
 
639
+ x = dispatch_output.hidden_states
640
+ topk_output = dispatch_output.topk_output
641
+
642
+ moe_runner_config = self.moe_runner_config
643
+
626
644
  if self.use_flashinfer:
627
645
  # When bf16 mode is enabled, we don't need to quantize the input,
628
646
  # TRT-LLM automatically handles quantization in the kernel implementation and pipelines it with GEMM operations,
@@ -674,7 +692,7 @@ class Mxfp4MoEMethod(FusedMoEMethodBase):
674
692
  top_k,
675
693
  None, # n_group # TODO: support n_group
676
694
  None, # topk_group # TODO: support topk_group
677
- self.intermediate_size, # padded to multiple of 256
695
+ self.intermediate_size_per_partition, # padded to multiple of 256
678
696
  layer.moe_ep_rank * layer.num_local_experts, # local_expert_offset
679
697
  layer.num_local_experts, # local num experts
680
698
  None,
@@ -682,14 +700,14 @@ class Mxfp4MoEMethod(FusedMoEMethodBase):
682
700
  1, # routing_method_type, renormalize
683
701
  True, # do finalize
684
702
  )[0]
685
- return trtllm_gen_output
703
+ return StandardCombineInput(hidden_states=trtllm_gen_output)
686
704
 
687
705
  if self.use_triton_kernels:
688
706
  assert (
689
707
  layer.moe_ep_size == 1
690
708
  ), "Expert parallel is not supported when using triton kernels"
691
709
  if self.with_bias:
692
- return self.triton_kernel_moe_with_bias_forward(
710
+ output = self.triton_kernel_moe_with_bias_forward(
693
711
  hidden_states=x,
694
712
  w1=self.w13_weight_triton_tensor,
695
713
  w1_pcg=self.w13_precision_config,
@@ -701,25 +719,22 @@ class Mxfp4MoEMethod(FusedMoEMethodBase):
701
719
  moe_runner_config=moe_runner_config,
702
720
  )
703
721
  else:
704
- return self.triton_kernel_moe_forward(
722
+ output = self.triton_kernel_moe_forward(
705
723
  hidden_states=x,
706
724
  w1=layer.w13_weight,
707
725
  w2=layer.w2_weight,
708
726
  topk_output=topk_output,
709
727
  moe_runner_config=moe_runner_config,
710
728
  )
729
+ return StandardCombineInput(hidden_states=output)
711
730
  else:
712
- from sglang.srt.layers.moe.fused_moe_triton.fused_moe import fused_experts
713
-
714
- return fused_experts(
715
- hidden_states=x,
716
- w1=layer.w13_weight,
717
- w2=layer.w2_weight,
718
- topk_output=topk_output,
719
- moe_runner_config=moe_runner_config,
720
- b1=layer.w13_weight_bias,
721
- b2=layer.w2_weight_bias,
731
+ quant_info = TritonMoeQuantInfo(
732
+ w13_weight=layer.w13_weight,
733
+ w2_weight=layer.w2_weight,
734
+ b13=getattr(layer, "w13_weight_bias", None),
735
+ b2=getattr(layer, "w2_weight_bias", None),
722
736
  )
737
+ return self.runner.run(dispatch_output, quant_info)
723
738
 
724
739
 
725
740
  class Mxfp4DynamicQuantMoEMethod(FusedMoEMethodBase):
@@ -798,7 +813,7 @@ class Mxfp4DynamicQuantMoEMethod(FusedMoEMethodBase):
798
813
 
799
814
  return w, mx_scales
800
815
 
801
- def process_weights_after_loading(self, layer: Module) -> None:
816
+ def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
802
817
  w13, w13_mx_scales = self.mxfp4_quantize(layer.w13_weight.data)
803
818
  w2, w2_mx_scales = self.mxfp4_quantize(layer.w2_weight.data)
804
819
 
@@ -808,19 +823,38 @@ class Mxfp4DynamicQuantMoEMethod(FusedMoEMethodBase):
808
823
  layer.w2_weight = torch.nn.Parameter(w2, requires_grad=False)
809
824
  layer.w2_weight_scale = torch.nn.Parameter(w2_mx_scales, requires_grad=False)
810
825
 
826
+ def create_moe_runner(
827
+ self, layer: torch.nn.Module, moe_runner_config: MoeRunnerConfig
828
+ ):
829
+ self.moe_runner_config = moe_runner_config
830
+
811
831
  def apply(
812
832
  self,
813
833
  layer: torch.nn.Module,
814
- x: torch.Tensor,
815
- topk_output: TopKOutput,
816
- moe_runner_config: MoeRunnerConfig,
817
- ) -> torch.Tensor:
834
+ dispatch_output: StandardDispatchOutput,
835
+ ) -> CombineInput:
836
+ from sglang.srt.layers.moe.token_dispatcher import StandardCombineInput
837
+
838
+ x = dispatch_output.hidden_states
839
+ topk_output = dispatch_output.topk_output
840
+
818
841
  topk_weights, topk_ids, _ = topk_output
842
+ if _is_hip:
843
+ topk_weights = topk_weights.to(
844
+ torch.float32
845
+ ) # aiter's moe_sorting requires topk_weights to be FP32
846
+
847
+ if hasattr(torch, "float4_e2m1fn_x2"):
848
+ w13_weight = layer.w13_weight.view(torch.float4_e2m1fn_x2)
849
+ w2_weight = layer.w2_weight.view(torch.float4_e2m1fn_x2)
850
+ else:
851
+ w13_weight = layer.w13_weight
852
+ w2_weight = layer.w2_weight
819
853
 
820
- return fused_moe(
854
+ output = fused_moe(
821
855
  x,
822
- layer.w13_weight,
823
- layer.w2_weight,
856
+ w13_weight,
857
+ w2_weight,
824
858
  topk_weights,
825
859
  topk_ids,
826
860
  quant_type=QuantType.per_1x32,
@@ -828,8 +862,9 @@ class Mxfp4DynamicQuantMoEMethod(FusedMoEMethodBase):
828
862
  w2_scale=layer.w2_weight_scale,
829
863
  activation=(
830
864
  ActivationType.Silu
831
- if moe_runner_config.activation == "silu"
865
+ if self.moe_runner_config.activation == "silu"
832
866
  else ActivationType.Gelu
833
867
  ),
834
868
  doweight_stage1=False,
835
869
  )
870
+ return StandardCombineInput(hidden_states=output)
@@ -10,40 +10,37 @@ from aiter import ActivationType, QuantType, biased_grouped_topk
10
10
  from aiter.fused_moe import fused_moe
11
11
  from aiter.utility.fp4_utils import e8m0_shuffle
12
12
 
13
- from sglang.srt.utils import get_bool_env_var, mxfp_supported, set_weight_attrs
13
+ from sglang.srt.layers.moe import MoeRunnerConfig
14
+ from sglang.srt.layers.quantization.base_config import FusedMoEMethodBase
15
+ from sglang.srt.utils import get_bool_env_var, is_hip, mxfp_supported, set_weight_attrs
16
+
17
+ if TYPE_CHECKING:
18
+ from sglang.srt.layers.moe.token_dispatcher import (
19
+ CombineInput,
20
+ StandardDispatchOutput,
21
+ )
22
+ from sglang.srt.layers.quantization.quark.quark import QuarkConfig
14
23
 
15
24
  logger = logging.getLogger(__name__)
16
25
 
26
+ _is_hip = is_hip()
27
+
17
28
  __all__ = ["QuarkMoEMethod", "QuarkW4A4MXFp4MoEMethod"]
18
29
 
19
30
  OCP_MX_BLOCK_SIZE = 32
20
31
 
21
32
  if TYPE_CHECKING:
22
- from sglang.srt.layers.moe.topk import TopKOutput
23
-
24
-
25
- class QuarkMoEMethod:
26
- def __new__(cls, *args, **kwargs):
27
- from sglang.srt.layers.quantization.base_config import FusedMoEMethodBase
28
-
29
- if not hasattr(cls, "_initialized"):
30
- original_init = cls.__init__
31
- new_cls = type(
32
- cls.__name__,
33
- (FusedMoEMethodBase,),
34
- {
35
- "__init__": original_init,
36
- **{k: v for k, v in cls.__dict__.items() if k != "__dict__"},
37
- },
38
- )
39
- obj = super(new_cls, new_cls).__new__(new_cls)
40
- obj.__init__(*args, **kwargs)
41
- return obj
42
- return super().__new__(cls)
33
+ from sglang.srt.layers.quantization import QuarkConfig
34
+
35
+
36
+ class QuarkMoEMethod(FusedMoEMethodBase):
37
+
38
+ def __init__(self, quant_config: QuarkConfig):
39
+ self.quant_config = quant_config
43
40
 
44
41
  @staticmethod
45
42
  def get_moe_method(
46
- quant_config: "QuarkConfig", # type: ignore # noqa E501 # noqa F821
43
+ quant_config: QuarkConfig, # type: ignore # noqa E501 # noqa F821
47
44
  module: torch.nn.Module,
48
45
  layer_name: str,
49
46
  ) -> "QuarkMoEMethod":
@@ -170,19 +167,39 @@ class QuarkW4A4MXFp4MoEMethod(QuarkMoEMethod):
170
167
  # layer.w2_weight_scale = torch.nn.Parameter(w2_weight_scale, requires_grad=False)
171
168
  layer.w2_weight_scale.data = w2_weight_scale.view(s0, s1, -1)
172
169
 
170
+ def create_moe_runner(
171
+ self, layer: torch.nn.Module, moe_runner_config: MoeRunnerConfig
172
+ ):
173
+ self.moe_runner_config = moe_runner_config
174
+
173
175
  def apply(
174
176
  self,
175
177
  layer: torch.nn.Module,
176
- x: torch.Tensor,
177
- topk_output: TopKOutput,
178
- moe_runner_config: MoeRunnerConfig,
179
- ) -> torch.Tensor:
178
+ dispatch_output: StandardDispatchOutput,
179
+ ) -> CombineInput:
180
+
181
+ from sglang.srt.layers.moe.token_dispatcher import StandardCombineInput
182
+
183
+ x = dispatch_output.hidden_states
184
+ topk_output = dispatch_output.topk_output
185
+ moe_runner_config = self.moe_runner_config
180
186
  topk_weights, topk_ids, _ = topk_output
187
+ if _is_hip:
188
+ topk_weights = topk_weights.to(
189
+ torch.float32
190
+ ) # aiter's moe_sorting requires topk_weights to be FP32
191
+
192
+ if hasattr(torch, "float4_e2m1fn_x2"):
193
+ w13_weight = layer.w13_weight.view(torch.float4_e2m1fn_x2)
194
+ w2_weight = layer.w2_weight.view(torch.float4_e2m1fn_x2)
195
+ else:
196
+ w13_weight = layer.w13_weight
197
+ w2_weight = layer.w2_weight
181
198
 
182
- return fused_moe(
199
+ output = fused_moe(
183
200
  x,
184
- layer.w13_weight,
185
- layer.w2_weight,
201
+ w13_weight,
202
+ w2_weight,
186
203
  topk_weights,
187
204
  topk_ids,
188
205
  quant_type=QuantType.per_1x32,
@@ -195,3 +212,4 @@ class QuarkW4A4MXFp4MoEMethod(QuarkMoEMethod):
195
212
  ),
196
213
  doweight_stage1=False,
197
214
  )
215
+ return StandardCombineInput(hidden_states=output)
@@ -8,6 +8,7 @@ import torch.nn.functional as F
8
8
  from aiter.ops.gemm_op_a4w4 import gemm_a4w4
9
9
  from aiter.ops.shuffle import shuffle_weight
10
10
  from aiter.ops.triton.gemm_afp4wfp4 import gemm_afp4wfp4
11
+ from aiter.ops.triton.gemm_afp4wfp4_pre_quant_atomic import gemm_afp4wfp4_pre_quant
11
12
  from aiter.ops.triton.quant import dynamic_mxfp4_quant
12
13
  from aiter.utility import dtypes
13
14
  from aiter.utility.fp4_utils import e8m0_shuffle
@@ -38,15 +39,6 @@ class QuarkW4A4MXFP4(QuarkScheme):
38
39
  def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
39
40
  return
40
41
 
41
- # for aiter implement
42
- # wshuffle = shuffle_weight(layer.weight.data, layout=(16, 16))
43
- # w_scales_shuffle = e8m0_shuffle(layer.weight_scale.data).view(dtypes.fp8_e8m0)
44
-
45
- # layer.weight = torch.nn.Parameter(wshuffle,
46
- # requires_grad=False)
47
- # layer.weight_scale = torch.nn.Parameter(w_scales_shuffle,
48
- # requires_grad=False)
49
-
50
42
  def create_weights(
51
43
  self,
52
44
  layer: torch.nn.Module,
@@ -93,26 +85,53 @@ class QuarkW4A4MXFP4(QuarkScheme):
93
85
  x: torch.Tensor,
94
86
  bias: Optional[torch.Tensor] = None,
95
87
  ) -> torch.Tensor:
96
-
97
- out_dtype = x.dtype
98
- # M = x.shape[0]
99
- # N = layer.weight.shape[0]
100
-
101
- # quant_func = aiter.get_triton_quant(aiter.QuantType.per_1x32)
102
- # x, x_scales_shuffle = quant_func(x, shuffle=True)
103
-
104
- # y = torch.zeros((M + 255) // 256 * 256, N, device=x.device, dtype=self.out_dtype)
105
-
106
- # out = gemm_a4w4(x, layer.weight.data, x_scales_shuffle, layer.weight_scale.data, y, bias=bias)
107
-
108
- # return out[:M]
109
-
110
- # triton implement
111
- x_q, x_s = dynamic_mxfp4_quant(x)
112
- y = torch.empty(
113
- x_q.shape[0], layer.weight.shape[0], device=x_q.device, dtype=out_dtype
88
+ # This path does not have support for bias currently
89
+ assert bias is None, "bias is not supported"
90
+
91
+ three_d = False
92
+ x_s = None
93
+ y = None
94
+ if isinstance(x, tuple):
95
+ assert len(x) in [
96
+ 2,
97
+ 3,
98
+ ], "For tuple input, only (x, x_s) or (x, x_s, y) formats are accepted"
99
+ if len(x) == 2:
100
+ x, x_s = x
101
+ elif len(x) == 3:
102
+ x, x_s, y = x
103
+
104
+ use_fused_quant_gemm = (
105
+ x_s is None and y is not None and layer.weight.shape[0] == y.shape[1]
114
106
  )
115
107
 
116
- out = gemm_afp4wfp4(x_q, layer.weight, x_s, layer.weight_scale, out_dtype, y)
117
-
118
- return out
108
+ if x.dim() == 3:
109
+ three_d = True
110
+ x = x.view(-1, x.shape[-1])
111
+ output_shape = [*x.shape[:-1], layer.weight.shape[0]]
112
+
113
+ # use_fused_quant_gemm = true, x_q is a bf16/fp16 num
114
+ # x_s is not None = true, x_q is uint8 num
115
+ if use_fused_quant_gemm or x_s is not None:
116
+ x_q = x
117
+ else:
118
+ x_q, x_s = dynamic_mxfp4_quant(x)
119
+
120
+ if y is None:
121
+ y = torch.empty(
122
+ x_q.shape[0],
123
+ layer.weight.shape[0],
124
+ device=x_q.device,
125
+ dtype=self.out_dtype,
126
+ )
127
+
128
+ if use_fused_quant_gemm:
129
+ gemm_afp4wfp4_pre_quant(x_q, layer.weight, layer.weight_scale, y.dtype, y)
130
+ y = y.to(x.dtype)
131
+ else:
132
+ gemm_afp4wfp4(x_q, layer.weight, x_s, layer.weight_scale, self.out_dtype, y)
133
+
134
+ if three_d:
135
+ return y.view(*output_shape)
136
+
137
+ return y
@@ -5,6 +5,10 @@ from collections.abc import Iterable, Mapping
5
5
  from types import MappingProxyType
6
6
  from typing import Any, Optional
7
7
 
8
+ import torch
9
+ from aiter.ops.triton.quant import dynamic_mxfp4_quant
10
+ from torch import nn
11
+
8
12
 
9
13
  def deep_compare(dict1: Any, dict2: Any) -> bool:
10
14
  if type(dict1) is not type(dict2):
@@ -105,3 +109,96 @@ def _is_equal_or_regex_match(
105
109
  elif target == value:
106
110
  return True
107
111
  return False
112
+
113
+
114
+ # utility for tensor dims > 2 cases
115
+ def b_dynamic_mxfp4_quant(x):
116
+ h, b, d = x.shape
117
+ x, x_scales = dynamic_mxfp4_quant(x.reshape(-1, d))
118
+ return x.view(h, b, d // 2), x_scales.view(h, b, d // 32)
119
+
120
+
121
+ def mxfp4_to_f32(x, is_threed):
122
+ # 2 because we pack fp4 in uint8.
123
+ x = x.repeat_interleave(2, dim=-1)
124
+ if is_threed:
125
+ x[..., ::2] = x[..., ::2] & 0xF
126
+ x[..., 1::2] = x[..., 1::2] >> 4
127
+ else:
128
+ x[:, ::2] = x[:, ::2] & 0xF
129
+ x[:, 1::2] = x[:, 1::2] >> 4
130
+
131
+ mxfp4_list = [
132
+ 0.0,
133
+ 0.5,
134
+ 1.0,
135
+ 1.5,
136
+ 2.0,
137
+ 3.0,
138
+ 4.0,
139
+ 6.0,
140
+ -0.0,
141
+ -0.5,
142
+ -1.0,
143
+ -1.5,
144
+ -2.0,
145
+ -3.0,
146
+ -4.0,
147
+ -6.0,
148
+ ]
149
+ mxfp4_in_f32 = torch.tensor(mxfp4_list, dtype=torch.float32, device="cuda")
150
+ return mxfp4_in_f32[x.long()]
151
+
152
+
153
+ def e8m0_to_f32(x):
154
+ # Convert the input tensor `x` (assumed to be in e8m0 format) to float32.
155
+ # e8m0 is a custom 8-bit floating point format with 8 bits for exponent, 0 for mantissa.
156
+ # This means the value is essentially 2^(exponent - 127), similar to how IEEE-754 stores floats.
157
+
158
+ # Convert x to float32 for computation, and compute the power of 2 by subtracting the bias (127).
159
+ x_f32 = 2 ** ((x.to(torch.float32)) - 127)
160
+
161
+ # If the exponent value was 255 (i.e., 2^(128)), this is a special case usually used to represent NaN or Inf.
162
+ # Since this custom format has no mantissa, treat 2^128 as NaN.
163
+ x_f32[x_f32 == 128] = float("nan")
164
+ return x_f32
165
+
166
+
167
+ def quark_post_load_weights(self_attn: nn.Module, w: torch.Tensor, quant_format: str):
168
+ if "mxfp4" in quant_format:
169
+ # when dtype is bf16, the processing flow is to dynamic quantize bf16 tensor to uint8 tensor
170
+ # do w_kc (bf16) first to get the w_kc(uint8) w_s_kc(uint8)
171
+ # and w_vc repeating the same procedure of w_kc to get w_vc(uint8) w_s_vc(uint8)
172
+ if w.dtype == torch.bfloat16:
173
+ w_kc, w_vc = w.unflatten(
174
+ 0, (-1, self_attn.qk_nope_head_dim + self_attn.v_head_dim)
175
+ ).split([self_attn.qk_nope_head_dim, self_attn.v_head_dim], dim=1)
176
+ w_kc, w_s_kc = b_dynamic_mxfp4_quant(w_kc.transpose(-2, -1))
177
+ w_kc = w_kc.transpose(-2, -1)
178
+ w_s_kc = w_s_kc.transpose(-2, -1)
179
+ w_vc, w_s_vc = b_dynamic_mxfp4_quant(w_vc)
180
+ w_s_kc = w_s_kc.transpose(1, 2).contiguous().transpose(1, 2)
181
+ w_s_vc = w_s_vc.contiguous().transpose(1, 2)
182
+ elif w.dtype == torch.uint8: # static quant for mxfp4
183
+ # when dtype is uint8, it means the w has been quantized to mxfp4 format
184
+ # but we must separate it to w_kc and w_vc.
185
+ # The quantized tensor size is only half of original tensor size
186
+ # and the scaling factor is 1/32, the transpose behavior will be not correct
187
+ # need to upcast it to fp32 to separate w to w_kc and w_vc
188
+ # to ensure the following transpose behavior is correct
189
+ # and then do mxfp4 quant again
190
+ w = mxfp4_to_f32(w, True).to(torch.bfloat16)
191
+ w_scales = self_attn.kv_b_proj.weight_scale.repeat_interleave(32, dim=-1)
192
+ w_scales = e8m0_to_f32(w_scales).to(torch.bfloat16)
193
+ w = w * w_scales
194
+ w_kc, w_vc = w.unflatten(
195
+ 0, (-1, (self_attn.qk_nope_head_dim + self_attn.v_head_dim))
196
+ ).split([self_attn.qk_nope_head_dim, self_attn.v_head_dim], dim=1)
197
+ w_kc, w_s_kc = b_dynamic_mxfp4_quant(w_kc.transpose(-2, -1))
198
+ w_kc = w_kc.transpose(-2, -1)
199
+ w_s_kc = w_s_kc.transpose(-2, -1)
200
+ w_vc, w_s_vc = b_dynamic_mxfp4_quant(w_vc)
201
+ w_s_kc = w_s_kc.transpose(1, 2).contiguous().transpose(1, 2)
202
+ w_s_vc = w_s_vc.contiguous().transpose(1, 2)
203
+
204
+ return w_kc, w_s_kc, w_vc, w_s_vc
@@ -0,0 +1,13 @@
1
+ from aiter.ops.triton.batched_gemm_afp4wfp4_pre_quant import (
2
+ batched_gemm_afp4wfp4_pre_quant,
3
+ )
4
+ from aiter.ops.triton.fused_mxfp4_quant import (
5
+ fused_flatten_mxfp4_quant,
6
+ fused_rms_mxfp4_quant,
7
+ )
8
+
9
+ __all__ = [
10
+ "fused_rms_mxfp4_quant",
11
+ "fused_flatten_mxfp4_quant",
12
+ "batched_gemm_afp4wfp4_pre_quant",
13
+ ]