sglang 0.5.1.post3__py3-none-any.whl → 0.5.2rc0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (83) hide show
  1. sglang/bench_one_batch.py +3 -0
  2. sglang/srt/configs/__init__.py +2 -0
  3. sglang/srt/configs/longcat_flash.py +104 -0
  4. sglang/srt/configs/model_config.py +12 -0
  5. sglang/srt/connector/__init__.py +1 -1
  6. sglang/srt/connector/base_connector.py +1 -2
  7. sglang/srt/connector/redis.py +2 -2
  8. sglang/srt/connector/serde/__init__.py +1 -1
  9. sglang/srt/connector/serde/safe_serde.py +4 -3
  10. sglang/srt/disaggregation/ascend/conn.py +75 -0
  11. sglang/srt/disaggregation/launch_lb.py +0 -13
  12. sglang/srt/disaggregation/mini_lb.py +33 -8
  13. sglang/srt/disaggregation/prefill.py +1 -1
  14. sglang/srt/distributed/parallel_state.py +24 -14
  15. sglang/srt/entrypoints/engine.py +19 -12
  16. sglang/srt/entrypoints/http_server.py +174 -34
  17. sglang/srt/entrypoints/openai/protocol.py +60 -0
  18. sglang/srt/eplb/eplb_manager.py +26 -2
  19. sglang/srt/eplb/expert_distribution.py +29 -2
  20. sglang/srt/hf_transformers_utils.py +10 -0
  21. sglang/srt/layers/activation.py +12 -0
  22. sglang/srt/layers/attention/ascend_backend.py +240 -109
  23. sglang/srt/layers/attention/hybrid_attn_backend.py +53 -21
  24. sglang/srt/layers/attention/trtllm_mla_backend.py +25 -10
  25. sglang/srt/layers/layernorm.py +28 -3
  26. sglang/srt/layers/linear.py +3 -2
  27. sglang/srt/layers/logits_processor.py +1 -1
  28. sglang/srt/layers/moe/ep_moe/kernels.py +74 -0
  29. sglang/srt/layers/moe/ep_moe/layer.py +12 -6
  30. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=129,N=352,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
  31. sglang/srt/layers/moe/topk.py +35 -12
  32. sglang/srt/layers/quantization/deep_gemm_wrapper/compile_utils.py +1 -1
  33. sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +0 -3
  34. sglang/srt/layers/quantization/modelopt_quant.py +7 -0
  35. sglang/srt/layers/quantization/mxfp4.py +9 -4
  36. sglang/srt/layers/quantization/utils.py +13 -0
  37. sglang/srt/layers/quantization/w8a8_int8.py +7 -3
  38. sglang/srt/layers/rotary_embedding.py +28 -1
  39. sglang/srt/layers/sampler.py +29 -5
  40. sglang/srt/managers/cache_controller.py +62 -96
  41. sglang/srt/managers/detokenizer_manager.py +43 -2
  42. sglang/srt/managers/io_struct.py +27 -0
  43. sglang/srt/managers/mm_utils.py +5 -1
  44. sglang/srt/managers/multi_tokenizer_mixin.py +591 -0
  45. sglang/srt/managers/scheduler.py +36 -2
  46. sglang/srt/managers/scheduler_output_processor_mixin.py +20 -18
  47. sglang/srt/managers/scheduler_update_weights_mixin.py +8 -1
  48. sglang/srt/managers/tokenizer_manager.py +86 -39
  49. sglang/srt/mem_cache/chunk_cache.py +1 -1
  50. sglang/srt/mem_cache/hicache_storage.py +20 -3
  51. sglang/srt/mem_cache/hiradix_cache.py +75 -68
  52. sglang/srt/mem_cache/lora_radix_cache.py +1 -1
  53. sglang/srt/mem_cache/memory_pool.py +4 -0
  54. sglang/srt/mem_cache/memory_pool_host.py +2 -4
  55. sglang/srt/mem_cache/radix_cache.py +5 -4
  56. sglang/srt/mem_cache/radix_cache_cpp.py +1 -1
  57. sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +33 -7
  58. sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +2 -1
  59. sglang/srt/mem_cache/swa_radix_cache.py +1 -1
  60. sglang/srt/model_executor/model_runner.py +5 -4
  61. sglang/srt/model_loader/loader.py +15 -24
  62. sglang/srt/model_loader/utils.py +12 -0
  63. sglang/srt/models/deepseek_v2.py +26 -10
  64. sglang/srt/models/gpt_oss.py +0 -14
  65. sglang/srt/models/llama_eagle3.py +4 -0
  66. sglang/srt/models/longcat_flash.py +1015 -0
  67. sglang/srt/models/longcat_flash_nextn.py +691 -0
  68. sglang/srt/models/qwen2.py +26 -3
  69. sglang/srt/models/qwen2_5_vl.py +65 -41
  70. sglang/srt/models/qwen2_moe.py +22 -2
  71. sglang/srt/models/transformers.py +1 -1
  72. sglang/srt/multimodal/processors/base_processor.py +4 -2
  73. sglang/srt/sampling/penaltylib/orchestrator.py +14 -2
  74. sglang/srt/server_args.py +112 -55
  75. sglang/srt/speculative/eagle_worker.py +28 -8
  76. sglang/srt/utils.py +14 -0
  77. sglang/test/attention/test_trtllm_mla_backend.py +12 -3
  78. sglang/version.py +1 -1
  79. {sglang-0.5.1.post3.dist-info → sglang-0.5.2rc0.dist-info}/METADATA +5 -5
  80. {sglang-0.5.1.post3.dist-info → sglang-0.5.2rc0.dist-info}/RECORD +83 -78
  81. {sglang-0.5.1.post3.dist-info → sglang-0.5.2rc0.dist-info}/WHEEL +0 -0
  82. {sglang-0.5.1.post3.dist-info → sglang-0.5.2rc0.dist-info}/licenses/LICENSE +0 -0
  83. {sglang-0.5.1.post3.dist-info → sglang-0.5.2rc0.dist-info}/top_level.txt +0 -0
@@ -23,6 +23,7 @@ import json
23
23
  import logging
24
24
  import multiprocessing as multiprocessing
25
25
  import os
26
+ import tempfile
26
27
  import threading
27
28
  import time
28
29
  from http import HTTPStatus
@@ -91,11 +92,18 @@ from sglang.srt.managers.io_struct import (
91
92
  UpdateWeightVersionReqInput,
92
93
  VertexGenerateReqInput,
93
94
  )
95
+ from sglang.srt.managers.multi_tokenizer_mixin import (
96
+ MultiTokenizerManager,
97
+ deserialize_data,
98
+ get_main_process_id,
99
+ read_from_shared_memory,
100
+ write_data_for_multi_tokenizer,
101
+ )
94
102
  from sglang.srt.managers.template_manager import TemplateManager
95
103
  from sglang.srt.managers.tokenizer_manager import ServerStatus, TokenizerManager
96
104
  from sglang.srt.metrics.func_timer import enable_func_timer
97
105
  from sglang.srt.reasoning_parser import ReasoningParser
98
- from sglang.srt.server_args import ServerArgs
106
+ from sglang.srt.server_args import PortArgs, ServerArgs
99
107
  from sglang.srt.utils import (
100
108
  add_api_key_middleware,
101
109
  add_prometheus_middleware,
@@ -130,8 +138,79 @@ def set_global_state(global_state: _GlobalState):
130
138
  _global_state = global_state
131
139
 
132
140
 
141
+ # Function to set up all middlewares for multi-tokenizer compatibility
142
+ def setup_middlewares(api_key: Optional[str], enable_metrics: bool):
143
+ """Setup all middlewares for both single and multi-process modes"""
144
+ worker_pid = os.getpid()
145
+
146
+ if api_key:
147
+ add_api_key_middleware(app, api_key)
148
+ logger.info(f"Worker {worker_pid} added API key middleware")
149
+
150
+ if enable_metrics:
151
+ add_prometheus_middleware(app)
152
+ enable_func_timer()
153
+ logger.info(f"Worker {worker_pid} added prometheus middleware")
154
+
155
+
156
+ async def init_multi_tokenizer() -> ServerArgs:
157
+ """Read args information from shm and init tokenizer manager for current process"""
158
+ pid = os.getpid()
159
+ main_pid = get_main_process_id()
160
+ logger.info(f"current worker_id: {pid}, main processID: {main_pid}")
161
+
162
+ # Read configuration from shared memory
163
+ port_args_data = read_from_shared_memory(f"port_args_{main_pid}")
164
+ server_args_data = read_from_shared_memory(f"server_args_{main_pid}")
165
+ scheduler_info_data = read_from_shared_memory(f"scheduler_info_{main_pid}")
166
+ port_args, server_args = deserialize_data(port_args_data, server_args_data)
167
+ scheduler_info = scheduler_info_data
168
+
169
+ port_args.tokenizer_ipc_name = (
170
+ f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}"
171
+ )
172
+
173
+ # Launch multi-tokenizer manager process
174
+ tokenizer_manager = MultiTokenizerManager(server_args, port_args)
175
+ template_manager = TemplateManager()
176
+ template_manager.initialize_templates(
177
+ tokenizer_manager=tokenizer_manager,
178
+ model_path=server_args.model_path,
179
+ chat_template=server_args.chat_template,
180
+ completion_template=server_args.completion_template,
181
+ )
182
+ # Register this tokenizer with the main tokenizer manager
183
+ await tokenizer_manager.register_to_main_tokenizer_manager()
184
+
185
+ tokenizer_manager.max_req_input_len = scheduler_info["max_req_input_len"]
186
+ set_global_state(
187
+ _GlobalState(
188
+ tokenizer_manager=tokenizer_manager,
189
+ template_manager=template_manager,
190
+ scheduler_info=scheduler_info,
191
+ )
192
+ )
193
+ return server_args
194
+
195
+
133
196
  @asynccontextmanager
134
197
  async def lifespan(fast_api_app: FastAPI):
198
+ server_args = getattr(fast_api_app, "server_args", None)
199
+ if server_args is None:
200
+ # Initialize multi-tokenizer support for worker processes
201
+ fast_api_app.server_args = await init_multi_tokenizer()
202
+ setup_middlewares(
203
+ fast_api_app.server_args.api_key, fast_api_app.server_args.enable_metrics
204
+ )
205
+ fast_api_app.warmup_thread = threading.Thread(
206
+ target=_wait_and_warmup,
207
+ args=(
208
+ fast_api_app.server_args,
209
+ None, # pipe_finish_writer not needed in worker
210
+ None, # launch_callback not needed in worker
211
+ ),
212
+ )
213
+
135
214
  # Initialize OpenAI serving handlers
136
215
  fast_api_app.state.openai_serving_completion = OpenAIServingCompletion(
137
216
  _global_state.tokenizer_manager, _global_state.template_manager
@@ -191,7 +270,15 @@ async def lifespan(fast_api_app: FastAPI):
191
270
  warmup_thread = getattr(fast_api_app, "warmup_thread", None)
192
271
  if warmup_thread is not None:
193
272
  warmup_thread.start()
194
- yield
273
+
274
+ try:
275
+ yield
276
+ finally:
277
+ if server_args.tokenizer_worker_num > 1:
278
+ pid = os.getpid()
279
+ logger.info(f"uvicorn worker {pid} ending...")
280
+ warmup_thread.join()
281
+ logger.info(f"uvicorn worker {pid} ended.")
195
282
 
196
283
 
197
284
  # Fast API
@@ -480,6 +567,16 @@ async def flush_cache():
480
567
  )
481
568
 
482
569
 
570
+ @app.api_route("/clear_hicache_storage_backend", methods=["GET", "POST"])
571
+ async def clear_hicache_storage_backend():
572
+ """Clear the hierarchical cache storage backend."""
573
+ ret = await _global_state.tokenizer_manager.clear_hicache_storage()
574
+ return Response(
575
+ content="Hierarchical cache storage backend cleared.\n",
576
+ status_code=200 if ret.success else HTTPStatus.BAD_REQUEST,
577
+ )
578
+
579
+
483
580
  @app.api_route("/start_profile", methods=["GET", "POST"])
484
581
  async def start_profile_async(obj: Optional[ProfileReqInput] = None):
485
582
  """Start profiling."""
@@ -1068,9 +1165,19 @@ def launch_server(
1068
1165
  1. The HTTP server, Engine, and TokenizerManager both run in the main process.
1069
1166
  2. Inter-process communication is done through IPC (each process uses a different port) via the ZMQ library.
1070
1167
  """
1071
- tokenizer_manager, template_manager, scheduler_info = _launch_subprocesses(
1072
- server_args=server_args
1073
- )
1168
+ if server_args.tokenizer_worker_num > 1:
1169
+ port_args = PortArgs.init_new(server_args)
1170
+ port_args.tokenizer_worker_ipc_name = (
1171
+ f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}"
1172
+ )
1173
+ tokenizer_manager, template_manager, scheduler_info = _launch_subprocesses(
1174
+ server_args=server_args, port_args=port_args
1175
+ )
1176
+ else:
1177
+ tokenizer_manager, template_manager, scheduler_info = _launch_subprocesses(
1178
+ server_args=server_args,
1179
+ )
1180
+
1074
1181
  set_global_state(
1075
1182
  _GlobalState(
1076
1183
  tokenizer_manager=tokenizer_manager,
@@ -1079,42 +1186,75 @@ def launch_server(
1079
1186
  )
1080
1187
  )
1081
1188
 
1082
- # Add api key authorization
1083
- if server_args.api_key:
1084
- add_api_key_middleware(app, server_args.api_key)
1085
-
1086
- # Add prometheus middleware
1087
- if server_args.enable_metrics:
1088
- add_prometheus_middleware(app)
1089
- enable_func_timer()
1090
-
1091
- # Send a warmup request - we will create the thread launch it
1092
- # in the lifespan after all other warmups have fired.
1093
- warmup_thread = threading.Thread(
1094
- target=_wait_and_warmup,
1095
- args=(
1096
- server_args,
1097
- pipe_finish_writer,
1098
- launch_callback,
1099
- ),
1100
- )
1101
- app.warmup_thread = warmup_thread
1189
+ if server_args.tokenizer_worker_num > 1:
1190
+ port_args_shm, server_args_shm, scheduler_info_shm = (
1191
+ write_data_for_multi_tokenizer(
1192
+ port_args,
1193
+ server_args,
1194
+ scheduler_info,
1195
+ )
1196
+ )
1197
+ else:
1198
+ # Add api key authorization
1199
+ if server_args.api_key:
1200
+ add_api_key_middleware(app, server_args.api_key)
1201
+
1202
+ # Add prometheus middleware
1203
+ if server_args.enable_metrics:
1204
+ add_prometheus_middleware(app)
1205
+ enable_func_timer()
1206
+
1207
+ # Send a warmup request - we will create the thread launch it
1208
+ # in the lifespan after all other warmups have fired.
1209
+ warmup_thread = threading.Thread(
1210
+ target=_wait_and_warmup,
1211
+ args=(
1212
+ server_args,
1213
+ pipe_finish_writer,
1214
+ launch_callback,
1215
+ ),
1216
+ )
1217
+ app.warmup_thread = warmup_thread
1102
1218
 
1103
1219
  try:
1104
1220
  # Update logging configs
1105
1221
  set_uvicorn_logging_configs()
1106
1222
  app.server_args = server_args
1107
1223
  # Listen for HTTP requests
1108
- uvicorn.run(
1109
- app,
1110
- host=server_args.host,
1111
- port=server_args.port,
1112
- log_level=server_args.log_level_http or server_args.log_level,
1113
- timeout_keep_alive=5,
1114
- loop="uvloop",
1115
- )
1224
+ if server_args.tokenizer_worker_num > 1:
1225
+ from uvicorn.config import LOGGING_CONFIG
1226
+
1227
+ LOGGING_CONFIG["loggers"]["sglang.srt.entrypoints.http_server"] = {
1228
+ "handlers": ["default"],
1229
+ "level": "INFO",
1230
+ "propagate": False,
1231
+ }
1232
+ uvicorn.run(
1233
+ "sglang.srt.entrypoints.http_server:app",
1234
+ host=server_args.host,
1235
+ port=server_args.port,
1236
+ log_level=server_args.log_level_http or server_args.log_level,
1237
+ timeout_keep_alive=5,
1238
+ loop="uvloop",
1239
+ workers=server_args.tokenizer_worker_num,
1240
+ )
1241
+ else:
1242
+ uvicorn.run(
1243
+ app,
1244
+ host=server_args.host,
1245
+ port=server_args.port,
1246
+ log_level=server_args.log_level_http or server_args.log_level,
1247
+ timeout_keep_alive=5,
1248
+ loop="uvloop",
1249
+ )
1116
1250
  finally:
1117
- warmup_thread.join()
1251
+ if server_args.tokenizer_worker_num > 1:
1252
+ port_args_shm.unlink()
1253
+ server_args_shm.unlink()
1254
+ scheduler_info_shm.unlink()
1255
+ _global_state.tokenizer_manager.clear_tokenizer_mapping()
1256
+ else:
1257
+ warmup_thread.join()
1118
1258
 
1119
1259
 
1120
1260
  def _execute_server_warmup(
@@ -460,6 +460,66 @@ class ChatCompletionRequest(BaseModel):
460
460
  values["tool_choice"] = "auto"
461
461
  return values
462
462
 
463
+ @model_validator(mode="before")
464
+ @classmethod
465
+ def normalize_reasoning_inputs(cls, values: Dict):
466
+ r = values.get("reasoning")
467
+ if r is None:
468
+ return values
469
+
470
+ if isinstance(r, dict):
471
+ effort = r.get("effort") or r.get("reasoning_effort")
472
+ if effort in {"low", "medium", "high"}:
473
+ values["reasoning_effort"] = effort
474
+
475
+ enabled = (
476
+ r.get("enabled")
477
+ if r.get("enabled") is not None
478
+ else r.get("enable", False)
479
+ )
480
+ if isinstance(enabled, str):
481
+ enabled = enabled.strip().lower() in {"1", "true", "yes", "y", "on"}
482
+ if enabled:
483
+ ctk = values.get("chat_template_kwargs")
484
+ if not isinstance(ctk, dict):
485
+ ctk = {}
486
+ ctk.setdefault("thinking", True)
487
+ values["chat_template_kwargs"] = ctk
488
+
489
+ return values
490
+
491
+ @model_validator(mode="before")
492
+ @classmethod
493
+ def set_json_schema(cls, values):
494
+ response_format = values.get("response_format")
495
+ if not response_format:
496
+ return values
497
+
498
+ if response_format.get("type") != "json_schema":
499
+ return values
500
+
501
+ schema = response_format.pop("schema", None)
502
+ json_schema = response_format.get("json_schema")
503
+
504
+ if json_schema:
505
+ return values
506
+
507
+ if schema:
508
+ name_ = schema.get("title", "Schema")
509
+ strict_ = False
510
+ if "properties" in schema and "strict" in schema["properties"]:
511
+ item = schema["properties"].pop("strict", None)
512
+ if item and item.get("default", False):
513
+ strict_ = True
514
+
515
+ response_format["json_schema"] = {
516
+ "name": name_,
517
+ "schema": schema,
518
+ "strict": strict_,
519
+ }
520
+
521
+ return values
522
+
463
523
  # Extra parameters for SRT backend only and will be ignored by OpenAI models.
464
524
  top_k: int = -1
465
525
  min_p: float = 0.0
@@ -58,9 +58,18 @@ class EPLBManager:
58
58
  torch.cuda.synchronize()
59
59
  time_start = time.time()
60
60
 
61
- logical_count = get_global_expert_distribution_recorder().dump_record(
61
+ dump_record_output = get_global_expert_distribution_recorder().dump_record(
62
62
  output_mode="object"
63
- )["logical_count"]
63
+ )
64
+ logical_count = dump_record_output["logical_count"]
65
+ average_utilization_rate_over_window = dump_record_output[
66
+ "average_utilization_rate_over_window"
67
+ ]
68
+
69
+ # Check whether rebalancing is needed
70
+ if not self._check_rebalance_needed(average_utilization_rate_over_window):
71
+ return
72
+
64
73
  expert_location_metadata = ExpertLocationMetadata.init_by_eplb(
65
74
  self._server_args, self._model_runner.model_config, logical_count
66
75
  )
@@ -81,6 +90,21 @@ class EPLBManager:
81
90
  msg += f" time={time_end - time_start:.3f}s"
82
91
  logger.info(msg)
83
92
 
93
+ def _check_rebalance_needed(self, average_utilization_rate_over_window):
94
+ if average_utilization_rate_over_window is None:
95
+ return True
96
+
97
+ if (
98
+ average_utilization_rate_over_window
99
+ > self._server_args.eplb_min_rebalancing_utilization_threshold
100
+ ):
101
+ logger.info(
102
+ f"[EPLBManager] Skipped ep rebalancing: current GPU utilization {average_utilization_rate_over_window:.2f} > minimum rebalance threshold {self._server_args.eplb_min_rebalancing_utilization_threshold:.2f}"
103
+ )
104
+ return False
105
+
106
+ return True
107
+
84
108
  def _compute_update_layer_ids_chunks(self) -> List[List[int]]:
85
109
  all_layer_ids = sorted(
86
110
  list(self._model_runner.model.routed_experts_weights_of_layer.keys())
@@ -12,6 +12,7 @@
12
12
  # limitations under the License.
13
13
  # ==============================================================================
14
14
  import logging
15
+ import math
15
16
  import os
16
17
  import time
17
18
  from abc import ABC
@@ -614,8 +615,8 @@ class _UtilizationRateAccumulatorMixin(_Accumulator):
614
615
  self._enable = self._server_args.enable_expert_distribution_metrics
615
616
 
616
617
  if self._enable:
617
- window_sizes = [10, 100, 1000]
618
- self._history = _DequeCollection(maxlens=window_sizes)
618
+ self.window_sizes = [10, 100, 1000]
619
+ self._history = _DequeCollection(maxlens=self.window_sizes)
619
620
  self._rank = torch.distributed.get_rank()
620
621
 
621
622
  def append(
@@ -787,6 +788,7 @@ class _StatAccumulator(_UtilizationRateAccumulatorMixin):
787
788
  output = dict(
788
789
  rank=self._rank,
789
790
  logical_count=logical_count_of_buffered_step,
791
+ average_utilization_rate_over_window=self._get_global_average_utilization_rate(),
790
792
  )
791
793
 
792
794
  if output_mode == "file":
@@ -797,6 +799,31 @@ class _StatAccumulator(_UtilizationRateAccumulatorMixin):
797
799
  else:
798
800
  raise NotImplementedError
799
801
 
802
+ def _get_global_average_utilization_rate(self):
803
+ if not self._enable or math.isclose(
804
+ self._server_args.eplb_min_rebalancing_utilization_threshold, 1.0
805
+ ):
806
+ return None
807
+
808
+ if self._rank == 0:
809
+ utilization_mean_rates = self._history.mean()
810
+ window_index = self.window_sizes[-1]
811
+ average_utilization_rate_over_window = (
812
+ utilization_mean_rates[window_index]
813
+ if window_index in utilization_mean_rates
814
+ else 0
815
+ )
816
+
817
+ avg_rate_tensor = torch.tensor(
818
+ [average_utilization_rate_over_window],
819
+ dtype=torch.float32,
820
+ device="cuda",
821
+ )
822
+ else:
823
+ avg_rate_tensor = torch.empty(1, dtype=torch.float32, device="cuda")
824
+ torch.distributed.broadcast(avg_rate_tensor, src=0)
825
+ return avg_rate_tensor.item()
826
+
800
827
 
801
828
  def _dump_to_file(name, data):
802
829
  save_dir = Path(os.environ.get("SGLANG_EXPERT_DISTRIBUTION_RECORDER_DIR", "/tmp"))
@@ -40,6 +40,7 @@ from sglang.srt.configs import (
40
40
  DeepseekVL2Config,
41
41
  ExaoneConfig,
42
42
  KimiVLConfig,
43
+ LongcatFlashConfig,
43
44
  MultiModalityConfig,
44
45
  Step3VLConfig,
45
46
  )
@@ -56,6 +57,7 @@ _CONFIG_REGISTRY: Dict[str, Type[PretrainedConfig]] = {
56
57
  KimiVLConfig.model_type: KimiVLConfig,
57
58
  InternVLChatConfig.model_type: InternVLChatConfig,
58
59
  Step3VLConfig.model_type: Step3VLConfig,
60
+ LongcatFlashConfig.model_type: LongcatFlashConfig,
59
61
  }
60
62
 
61
63
  for name, cls in _CONFIG_REGISTRY.items():
@@ -126,6 +128,14 @@ def get_config(
126
128
  kwargs["gguf_file"] = model
127
129
  model = Path(model).parent
128
130
 
131
+ if is_remote_url(model):
132
+ # BaseConnector implements __del__() to clean up the local dir.
133
+ # Since config files need to exist all the time, so we DO NOT use
134
+ # with statement to avoid closing the client.
135
+ client = create_remote_connector(model)
136
+ client.pull_files(ignore_pattern=["*.pt", "*.safetensors", "*.bin"])
137
+ model = client.get_local_dir()
138
+
129
139
  config = AutoConfig.from_pretrained(
130
140
  model, trust_remote_code=trust_remote_code, revision=revision, **kwargs
131
141
  )
@@ -103,6 +103,15 @@ class GeluAndMul(CustomOp):
103
103
  raise RuntimeError("GeluAndMul only support tanh or none")
104
104
  return out
105
105
 
106
+ def forward_npu(self, x: torch.Tensor) -> torch.Tensor:
107
+ y_npu, gelu_npu = torch_npu.npu_geglu(
108
+ x,
109
+ dim=-1,
110
+ approximate=1 if self.approximate == "tanh" else 0,
111
+ activate_left=True,
112
+ )
113
+ return y_npu
114
+
106
115
 
107
116
  class NewGELU(CustomOp):
108
117
  def forward_native(self, x: torch.Tensor) -> torch.Tensor:
@@ -137,6 +146,9 @@ class QuickGELU(CustomOp):
137
146
  gelu_quick(x, out)
138
147
  return out
139
148
 
149
+ def forward_npu(self, x: torch.Tensor) -> torch.Tensor:
150
+ return torch_npu.npu_fast_gelu(x)
151
+
140
152
 
141
153
  class ScaledActivation(nn.Module):
142
154
  """An activation function with post-scale parameters.