sglang 0.5.1.post2__py3-none-any.whl → 0.5.2rc0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (107) hide show
  1. sglang/bench_one_batch.py +3 -0
  2. sglang/bench_one_batch_server.py +79 -53
  3. sglang/bench_serving.py +186 -14
  4. sglang/profiler.py +0 -1
  5. sglang/srt/configs/__init__.py +2 -0
  6. sglang/srt/configs/longcat_flash.py +104 -0
  7. sglang/srt/configs/model_config.py +12 -0
  8. sglang/srt/connector/__init__.py +1 -1
  9. sglang/srt/connector/base_connector.py +1 -2
  10. sglang/srt/connector/redis.py +2 -2
  11. sglang/srt/connector/serde/__init__.py +1 -1
  12. sglang/srt/connector/serde/safe_serde.py +4 -3
  13. sglang/srt/conversation.py +38 -5
  14. sglang/srt/disaggregation/ascend/conn.py +75 -0
  15. sglang/srt/disaggregation/launch_lb.py +0 -13
  16. sglang/srt/disaggregation/mini_lb.py +33 -8
  17. sglang/srt/disaggregation/prefill.py +1 -1
  18. sglang/srt/distributed/parallel_state.py +24 -14
  19. sglang/srt/entrypoints/engine.py +19 -12
  20. sglang/srt/entrypoints/http_server.py +174 -34
  21. sglang/srt/entrypoints/openai/protocol.py +87 -24
  22. sglang/srt/entrypoints/openai/serving_chat.py +50 -9
  23. sglang/srt/entrypoints/openai/serving_completions.py +15 -0
  24. sglang/srt/eplb/eplb_manager.py +26 -2
  25. sglang/srt/eplb/expert_distribution.py +29 -2
  26. sglang/srt/function_call/deepseekv31_detector.py +222 -0
  27. sglang/srt/function_call/function_call_parser.py +2 -0
  28. sglang/srt/function_call/gpt_oss_detector.py +144 -256
  29. sglang/srt/harmony_parser.py +588 -0
  30. sglang/srt/hf_transformers_utils.py +26 -7
  31. sglang/srt/layers/activation.py +12 -0
  32. sglang/srt/layers/attention/ascend_backend.py +374 -136
  33. sglang/srt/layers/attention/flashattention_backend.py +241 -7
  34. sglang/srt/layers/attention/flashinfer_backend.py +5 -2
  35. sglang/srt/layers/attention/flashinfer_mla_backend.py +5 -2
  36. sglang/srt/layers/attention/hybrid_attn_backend.py +53 -21
  37. sglang/srt/layers/attention/trtllm_mla_backend.py +25 -10
  38. sglang/srt/layers/communicator.py +1 -2
  39. sglang/srt/layers/layernorm.py +28 -3
  40. sglang/srt/layers/linear.py +3 -2
  41. sglang/srt/layers/logits_processor.py +1 -1
  42. sglang/srt/layers/moe/cutlass_moe.py +0 -8
  43. sglang/srt/layers/moe/ep_moe/kernels.py +74 -0
  44. sglang/srt/layers/moe/ep_moe/layer.py +13 -13
  45. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=129,N=352,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
  46. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=257,N=64,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  47. sglang/srt/layers/moe/topk.py +35 -12
  48. sglang/srt/layers/quantization/deep_gemm_wrapper/compile_utils.py +133 -235
  49. sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +5 -10
  50. sglang/srt/layers/quantization/deep_gemm_wrapper/entrypoint.py +5 -23
  51. sglang/srt/layers/quantization/fp8.py +2 -1
  52. sglang/srt/layers/quantization/fp8_kernel.py +2 -2
  53. sglang/srt/layers/quantization/fp8_utils.py +2 -2
  54. sglang/srt/layers/quantization/modelopt_quant.py +7 -0
  55. sglang/srt/layers/quantization/mxfp4.py +25 -27
  56. sglang/srt/layers/quantization/mxfp4_tensor.py +3 -1
  57. sglang/srt/layers/quantization/utils.py +13 -0
  58. sglang/srt/layers/quantization/w8a8_int8.py +7 -3
  59. sglang/srt/layers/rotary_embedding.py +28 -1
  60. sglang/srt/layers/sampler.py +29 -5
  61. sglang/srt/layers/utils.py +0 -14
  62. sglang/srt/managers/cache_controller.py +237 -204
  63. sglang/srt/managers/detokenizer_manager.py +48 -2
  64. sglang/srt/managers/io_struct.py +57 -0
  65. sglang/srt/managers/mm_utils.py +5 -1
  66. sglang/srt/managers/multi_tokenizer_mixin.py +591 -0
  67. sglang/srt/managers/scheduler.py +94 -9
  68. sglang/srt/managers/scheduler_output_processor_mixin.py +20 -18
  69. sglang/srt/managers/scheduler_update_weights_mixin.py +8 -1
  70. sglang/srt/managers/tokenizer_manager.py +122 -42
  71. sglang/srt/mem_cache/chunk_cache.py +1 -1
  72. sglang/srt/mem_cache/hicache_storage.py +51 -23
  73. sglang/srt/mem_cache/hiradix_cache.py +87 -71
  74. sglang/srt/mem_cache/lora_radix_cache.py +1 -1
  75. sglang/srt/mem_cache/memory_pool.py +77 -14
  76. sglang/srt/mem_cache/memory_pool_host.py +4 -5
  77. sglang/srt/mem_cache/radix_cache.py +6 -4
  78. sglang/srt/mem_cache/radix_cache_cpp.py +1 -1
  79. sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +38 -20
  80. sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +87 -82
  81. sglang/srt/mem_cache/swa_radix_cache.py +1 -1
  82. sglang/srt/model_executor/model_runner.py +6 -5
  83. sglang/srt/model_loader/loader.py +15 -24
  84. sglang/srt/model_loader/utils.py +12 -0
  85. sglang/srt/models/deepseek_v2.py +38 -13
  86. sglang/srt/models/gpt_oss.py +2 -15
  87. sglang/srt/models/llama_eagle3.py +4 -0
  88. sglang/srt/models/longcat_flash.py +1015 -0
  89. sglang/srt/models/longcat_flash_nextn.py +691 -0
  90. sglang/srt/models/qwen2.py +26 -3
  91. sglang/srt/models/qwen2_5_vl.py +66 -41
  92. sglang/srt/models/qwen2_moe.py +22 -2
  93. sglang/srt/models/transformers.py +1 -1
  94. sglang/srt/multimodal/processors/base_processor.py +4 -2
  95. sglang/srt/reasoning_parser.py +56 -300
  96. sglang/srt/sampling/penaltylib/orchestrator.py +14 -2
  97. sglang/srt/server_args.py +122 -56
  98. sglang/srt/speculative/eagle_worker.py +28 -8
  99. sglang/srt/tokenizer/tiktoken_tokenizer.py +6 -1
  100. sglang/srt/utils.py +73 -5
  101. sglang/test/attention/test_trtllm_mla_backend.py +12 -3
  102. sglang/version.py +1 -1
  103. {sglang-0.5.1.post2.dist-info → sglang-0.5.2rc0.dist-info}/METADATA +7 -6
  104. {sglang-0.5.1.post2.dist-info → sglang-0.5.2rc0.dist-info}/RECORD +107 -99
  105. {sglang-0.5.1.post2.dist-info → sglang-0.5.2rc0.dist-info}/WHEEL +0 -0
  106. {sglang-0.5.1.post2.dist-info → sglang-0.5.2rc0.dist-info}/licenses/LICENSE +0 -0
  107. {sglang-0.5.1.post2.dist-info → sglang-0.5.2rc0.dist-info}/top_level.txt +0 -0
@@ -23,6 +23,7 @@ import json
23
23
  import logging
24
24
  import multiprocessing as multiprocessing
25
25
  import os
26
+ import tempfile
26
27
  import threading
27
28
  import time
28
29
  from http import HTTPStatus
@@ -91,11 +92,18 @@ from sglang.srt.managers.io_struct import (
91
92
  UpdateWeightVersionReqInput,
92
93
  VertexGenerateReqInput,
93
94
  )
95
+ from sglang.srt.managers.multi_tokenizer_mixin import (
96
+ MultiTokenizerManager,
97
+ deserialize_data,
98
+ get_main_process_id,
99
+ read_from_shared_memory,
100
+ write_data_for_multi_tokenizer,
101
+ )
94
102
  from sglang.srt.managers.template_manager import TemplateManager
95
103
  from sglang.srt.managers.tokenizer_manager import ServerStatus, TokenizerManager
96
104
  from sglang.srt.metrics.func_timer import enable_func_timer
97
105
  from sglang.srt.reasoning_parser import ReasoningParser
98
- from sglang.srt.server_args import ServerArgs
106
+ from sglang.srt.server_args import PortArgs, ServerArgs
99
107
  from sglang.srt.utils import (
100
108
  add_api_key_middleware,
101
109
  add_prometheus_middleware,
@@ -130,8 +138,79 @@ def set_global_state(global_state: _GlobalState):
130
138
  _global_state = global_state
131
139
 
132
140
 
141
+ # Function to set up all middlewares for multi-tokenizer compatibility
142
+ def setup_middlewares(api_key: Optional[str], enable_metrics: bool):
143
+ """Setup all middlewares for both single and multi-process modes"""
144
+ worker_pid = os.getpid()
145
+
146
+ if api_key:
147
+ add_api_key_middleware(app, api_key)
148
+ logger.info(f"Worker {worker_pid} added API key middleware")
149
+
150
+ if enable_metrics:
151
+ add_prometheus_middleware(app)
152
+ enable_func_timer()
153
+ logger.info(f"Worker {worker_pid} added prometheus middleware")
154
+
155
+
156
+ async def init_multi_tokenizer() -> ServerArgs:
157
+ """Read args information from shm and init tokenizer manager for current process"""
158
+ pid = os.getpid()
159
+ main_pid = get_main_process_id()
160
+ logger.info(f"current worker_id: {pid}, main processID: {main_pid}")
161
+
162
+ # Read configuration from shared memory
163
+ port_args_data = read_from_shared_memory(f"port_args_{main_pid}")
164
+ server_args_data = read_from_shared_memory(f"server_args_{main_pid}")
165
+ scheduler_info_data = read_from_shared_memory(f"scheduler_info_{main_pid}")
166
+ port_args, server_args = deserialize_data(port_args_data, server_args_data)
167
+ scheduler_info = scheduler_info_data
168
+
169
+ port_args.tokenizer_ipc_name = (
170
+ f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}"
171
+ )
172
+
173
+ # Launch multi-tokenizer manager process
174
+ tokenizer_manager = MultiTokenizerManager(server_args, port_args)
175
+ template_manager = TemplateManager()
176
+ template_manager.initialize_templates(
177
+ tokenizer_manager=tokenizer_manager,
178
+ model_path=server_args.model_path,
179
+ chat_template=server_args.chat_template,
180
+ completion_template=server_args.completion_template,
181
+ )
182
+ # Register this tokenizer with the main tokenizer manager
183
+ await tokenizer_manager.register_to_main_tokenizer_manager()
184
+
185
+ tokenizer_manager.max_req_input_len = scheduler_info["max_req_input_len"]
186
+ set_global_state(
187
+ _GlobalState(
188
+ tokenizer_manager=tokenizer_manager,
189
+ template_manager=template_manager,
190
+ scheduler_info=scheduler_info,
191
+ )
192
+ )
193
+ return server_args
194
+
195
+
133
196
  @asynccontextmanager
134
197
  async def lifespan(fast_api_app: FastAPI):
198
+ server_args = getattr(fast_api_app, "server_args", None)
199
+ if server_args is None:
200
+ # Initialize multi-tokenizer support for worker processes
201
+ fast_api_app.server_args = await init_multi_tokenizer()
202
+ setup_middlewares(
203
+ fast_api_app.server_args.api_key, fast_api_app.server_args.enable_metrics
204
+ )
205
+ fast_api_app.warmup_thread = threading.Thread(
206
+ target=_wait_and_warmup,
207
+ args=(
208
+ fast_api_app.server_args,
209
+ None, # pipe_finish_writer not needed in worker
210
+ None, # launch_callback not needed in worker
211
+ ),
212
+ )
213
+
135
214
  # Initialize OpenAI serving handlers
136
215
  fast_api_app.state.openai_serving_completion = OpenAIServingCompletion(
137
216
  _global_state.tokenizer_manager, _global_state.template_manager
@@ -191,7 +270,15 @@ async def lifespan(fast_api_app: FastAPI):
191
270
  warmup_thread = getattr(fast_api_app, "warmup_thread", None)
192
271
  if warmup_thread is not None:
193
272
  warmup_thread.start()
194
- yield
273
+
274
+ try:
275
+ yield
276
+ finally:
277
+ if server_args.tokenizer_worker_num > 1:
278
+ pid = os.getpid()
279
+ logger.info(f"uvicorn worker {pid} ending...")
280
+ warmup_thread.join()
281
+ logger.info(f"uvicorn worker {pid} ended.")
195
282
 
196
283
 
197
284
  # Fast API
@@ -480,6 +567,16 @@ async def flush_cache():
480
567
  )
481
568
 
482
569
 
570
+ @app.api_route("/clear_hicache_storage_backend", methods=["GET", "POST"])
571
+ async def clear_hicache_storage_backend():
572
+ """Clear the hierarchical cache storage backend."""
573
+ ret = await _global_state.tokenizer_manager.clear_hicache_storage()
574
+ return Response(
575
+ content="Hierarchical cache storage backend cleared.\n",
576
+ status_code=200 if ret.success else HTTPStatus.BAD_REQUEST,
577
+ )
578
+
579
+
483
580
  @app.api_route("/start_profile", methods=["GET", "POST"])
484
581
  async def start_profile_async(obj: Optional[ProfileReqInput] = None):
485
582
  """Start profiling."""
@@ -1068,9 +1165,19 @@ def launch_server(
1068
1165
  1. The HTTP server, Engine, and TokenizerManager both run in the main process.
1069
1166
  2. Inter-process communication is done through IPC (each process uses a different port) via the ZMQ library.
1070
1167
  """
1071
- tokenizer_manager, template_manager, scheduler_info = _launch_subprocesses(
1072
- server_args=server_args
1073
- )
1168
+ if server_args.tokenizer_worker_num > 1:
1169
+ port_args = PortArgs.init_new(server_args)
1170
+ port_args.tokenizer_worker_ipc_name = (
1171
+ f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}"
1172
+ )
1173
+ tokenizer_manager, template_manager, scheduler_info = _launch_subprocesses(
1174
+ server_args=server_args, port_args=port_args
1175
+ )
1176
+ else:
1177
+ tokenizer_manager, template_manager, scheduler_info = _launch_subprocesses(
1178
+ server_args=server_args,
1179
+ )
1180
+
1074
1181
  set_global_state(
1075
1182
  _GlobalState(
1076
1183
  tokenizer_manager=tokenizer_manager,
@@ -1079,42 +1186,75 @@ def launch_server(
1079
1186
  )
1080
1187
  )
1081
1188
 
1082
- # Add api key authorization
1083
- if server_args.api_key:
1084
- add_api_key_middleware(app, server_args.api_key)
1085
-
1086
- # Add prometheus middleware
1087
- if server_args.enable_metrics:
1088
- add_prometheus_middleware(app)
1089
- enable_func_timer()
1090
-
1091
- # Send a warmup request - we will create the thread launch it
1092
- # in the lifespan after all other warmups have fired.
1093
- warmup_thread = threading.Thread(
1094
- target=_wait_and_warmup,
1095
- args=(
1096
- server_args,
1097
- pipe_finish_writer,
1098
- launch_callback,
1099
- ),
1100
- )
1101
- app.warmup_thread = warmup_thread
1189
+ if server_args.tokenizer_worker_num > 1:
1190
+ port_args_shm, server_args_shm, scheduler_info_shm = (
1191
+ write_data_for_multi_tokenizer(
1192
+ port_args,
1193
+ server_args,
1194
+ scheduler_info,
1195
+ )
1196
+ )
1197
+ else:
1198
+ # Add api key authorization
1199
+ if server_args.api_key:
1200
+ add_api_key_middleware(app, server_args.api_key)
1201
+
1202
+ # Add prometheus middleware
1203
+ if server_args.enable_metrics:
1204
+ add_prometheus_middleware(app)
1205
+ enable_func_timer()
1206
+
1207
+ # Send a warmup request - we will create the thread launch it
1208
+ # in the lifespan after all other warmups have fired.
1209
+ warmup_thread = threading.Thread(
1210
+ target=_wait_and_warmup,
1211
+ args=(
1212
+ server_args,
1213
+ pipe_finish_writer,
1214
+ launch_callback,
1215
+ ),
1216
+ )
1217
+ app.warmup_thread = warmup_thread
1102
1218
 
1103
1219
  try:
1104
1220
  # Update logging configs
1105
1221
  set_uvicorn_logging_configs()
1106
1222
  app.server_args = server_args
1107
1223
  # Listen for HTTP requests
1108
- uvicorn.run(
1109
- app,
1110
- host=server_args.host,
1111
- port=server_args.port,
1112
- log_level=server_args.log_level_http or server_args.log_level,
1113
- timeout_keep_alive=5,
1114
- loop="uvloop",
1115
- )
1224
+ if server_args.tokenizer_worker_num > 1:
1225
+ from uvicorn.config import LOGGING_CONFIG
1226
+
1227
+ LOGGING_CONFIG["loggers"]["sglang.srt.entrypoints.http_server"] = {
1228
+ "handlers": ["default"],
1229
+ "level": "INFO",
1230
+ "propagate": False,
1231
+ }
1232
+ uvicorn.run(
1233
+ "sglang.srt.entrypoints.http_server:app",
1234
+ host=server_args.host,
1235
+ port=server_args.port,
1236
+ log_level=server_args.log_level_http or server_args.log_level,
1237
+ timeout_keep_alive=5,
1238
+ loop="uvloop",
1239
+ workers=server_args.tokenizer_worker_num,
1240
+ )
1241
+ else:
1242
+ uvicorn.run(
1243
+ app,
1244
+ host=server_args.host,
1245
+ port=server_args.port,
1246
+ log_level=server_args.log_level_http or server_args.log_level,
1247
+ timeout_keep_alive=5,
1248
+ loop="uvloop",
1249
+ )
1116
1250
  finally:
1117
- warmup_thread.join()
1251
+ if server_args.tokenizer_worker_num > 1:
1252
+ port_args_shm.unlink()
1253
+ server_args_shm.unlink()
1254
+ scheduler_info_shm.unlink()
1255
+ _global_state.tokenizer_manager.clear_tokenizer_mapping()
1256
+ else:
1257
+ warmup_thread.join()
1118
1258
 
1119
1259
 
1120
1260
  def _execute_server_warmup(
@@ -35,6 +35,8 @@ from pydantic import (
35
35
  )
36
36
  from typing_extensions import Literal
37
37
 
38
+ DEFAULT_MODEL_NAME = "default"
39
+
38
40
 
39
41
  class ModelCard(BaseModel):
40
42
  """Model cards."""
@@ -108,6 +110,23 @@ class JsonSchemaResponseFormat(BaseModel):
108
110
  strict: Optional[bool] = False
109
111
 
110
112
 
113
+ class ResponseFormat(BaseModel):
114
+ type: Literal["text", "json_object", "json_schema"]
115
+ json_schema: Optional[JsonSchemaResponseFormat] = None
116
+
117
+
118
+ class StructuresResponseFormat(BaseModel):
119
+ begin: str
120
+ schema_: Optional[Dict[str, object]] = Field(alias="schema", default=None)
121
+ end: str
122
+
123
+
124
+ class StructuralTagResponseFormat(BaseModel):
125
+ type: Literal["structural_tag"]
126
+ structures: List[StructuresResponseFormat]
127
+ triggers: List[str]
128
+
129
+
111
130
  class FileRequest(BaseModel):
112
131
  # https://platform.openai.com/docs/api-reference/files/create
113
132
  file: bytes # The File object (not file name) to be uploaded
@@ -166,7 +185,7 @@ class BatchResponse(BaseModel):
166
185
  class CompletionRequest(BaseModel):
167
186
  # Ordered by official OpenAI API documentation
168
187
  # https://platform.openai.com/docs/api-reference/completions/create
169
- model: str
188
+ model: str = DEFAULT_MODEL_NAME
170
189
  prompt: Union[List[int], List[List[int]], str, List[str]]
171
190
  best_of: Optional[int] = None
172
191
  echo: bool = False
@@ -200,6 +219,7 @@ class CompletionRequest(BaseModel):
200
219
  skip_special_tokens: bool = True
201
220
  lora_path: Optional[Union[List[Optional[str]], Optional[str]]] = None
202
221
  session_params: Optional[Dict] = None
222
+ response_format: Optional[Union[ResponseFormat, StructuralTagResponseFormat]] = None
203
223
 
204
224
  # For PD disaggregation
205
225
  bootstrap_host: Optional[Union[List[str], str]] = None
@@ -327,7 +347,7 @@ class ToolCall(BaseModel):
327
347
 
328
348
 
329
349
  class ChatCompletionMessageGenericParam(BaseModel):
330
- role: Literal["system", "assistant", "tool"]
350
+ role: Literal["system", "assistant", "tool", "function"]
331
351
  content: Union[str, List[ChatCompletionMessageContentTextPart], None] = Field(
332
352
  default=None
333
353
  )
@@ -341,9 +361,9 @@ class ChatCompletionMessageGenericParam(BaseModel):
341
361
  def _normalize_role(cls, v):
342
362
  if isinstance(v, str):
343
363
  v_lower = v.lower()
344
- if v_lower not in {"system", "assistant", "tool"}:
364
+ if v_lower not in {"system", "assistant", "tool", "function"}:
345
365
  raise ValueError(
346
- "'role' must be one of 'system', 'assistant', or 'tool' (case-insensitive)."
366
+ "'role' must be one of 'system', 'assistant', 'tool', or 'function' (case-insensitive)."
347
367
  )
348
368
  return v_lower
349
369
  raise ValueError("'role' must be a string")
@@ -359,23 +379,6 @@ ChatCompletionMessageParam = Union[
359
379
  ]
360
380
 
361
381
 
362
- class ResponseFormat(BaseModel):
363
- type: Literal["text", "json_object", "json_schema"]
364
- json_schema: Optional[JsonSchemaResponseFormat] = None
365
-
366
-
367
- class StructuresResponseFormat(BaseModel):
368
- begin: str
369
- schema_: Optional[Dict[str, object]] = Field(alias="schema", default=None)
370
- end: str
371
-
372
-
373
- class StructuralTagResponseFormat(BaseModel):
374
- type: Literal["structural_tag"]
375
- structures: List[StructuresResponseFormat]
376
- triggers: List[str]
377
-
378
-
379
382
  class Function(BaseModel):
380
383
  """Function descriptions."""
381
384
 
@@ -409,7 +412,7 @@ class ChatCompletionRequest(BaseModel):
409
412
  # Ordered by official OpenAI API documentation
410
413
  # https://platform.openai.com/docs/api-reference/chat/create
411
414
  messages: List[ChatCompletionMessageParam]
412
- model: str
415
+ model: str = DEFAULT_MODEL_NAME
413
416
  frequency_penalty: float = 0.0
414
417
  logit_bias: Optional[Dict[str, float]] = None
415
418
  logprobs: bool = False
@@ -457,6 +460,66 @@ class ChatCompletionRequest(BaseModel):
457
460
  values["tool_choice"] = "auto"
458
461
  return values
459
462
 
463
+ @model_validator(mode="before")
464
+ @classmethod
465
+ def normalize_reasoning_inputs(cls, values: Dict):
466
+ r = values.get("reasoning")
467
+ if r is None:
468
+ return values
469
+
470
+ if isinstance(r, dict):
471
+ effort = r.get("effort") or r.get("reasoning_effort")
472
+ if effort in {"low", "medium", "high"}:
473
+ values["reasoning_effort"] = effort
474
+
475
+ enabled = (
476
+ r.get("enabled")
477
+ if r.get("enabled") is not None
478
+ else r.get("enable", False)
479
+ )
480
+ if isinstance(enabled, str):
481
+ enabled = enabled.strip().lower() in {"1", "true", "yes", "y", "on"}
482
+ if enabled:
483
+ ctk = values.get("chat_template_kwargs")
484
+ if not isinstance(ctk, dict):
485
+ ctk = {}
486
+ ctk.setdefault("thinking", True)
487
+ values["chat_template_kwargs"] = ctk
488
+
489
+ return values
490
+
491
+ @model_validator(mode="before")
492
+ @classmethod
493
+ def set_json_schema(cls, values):
494
+ response_format = values.get("response_format")
495
+ if not response_format:
496
+ return values
497
+
498
+ if response_format.get("type") != "json_schema":
499
+ return values
500
+
501
+ schema = response_format.pop("schema", None)
502
+ json_schema = response_format.get("json_schema")
503
+
504
+ if json_schema:
505
+ return values
506
+
507
+ if schema:
508
+ name_ = schema.get("title", "Schema")
509
+ strict_ = False
510
+ if "properties" in schema and "strict" in schema["properties"]:
511
+ item = schema["properties"].pop("strict", None)
512
+ if item and item.get("default", False):
513
+ strict_ = True
514
+
515
+ response_format["json_schema"] = {
516
+ "name": name_,
517
+ "schema": schema,
518
+ "strict": strict_,
519
+ }
520
+
521
+ return values
522
+
460
523
  # Extra parameters for SRT backend only and will be ignored by OpenAI models.
461
524
  top_k: int = -1
462
525
  min_p: float = 0.0
@@ -571,7 +634,7 @@ class EmbeddingRequest(BaseModel):
571
634
  # Ordered by official OpenAI API documentation
572
635
  # https://platform.openai.com/docs/api-reference/embeddings/create
573
636
  input: EmbeddingInput
574
- model: str
637
+ model: str = DEFAULT_MODEL_NAME
575
638
  encoding_format: str = "float"
576
639
  dimensions: Optional[int] = None
577
640
  user: Optional[str] = None
@@ -605,7 +668,7 @@ class ScoringRequest(BaseModel):
605
668
  )
606
669
  apply_softmax: bool = False
607
670
  item_first: bool = False
608
- model: str
671
+ model: str = DEFAULT_MODEL_NAME
609
672
 
610
673
 
611
674
  class ScoringResponse(BaseModel):
@@ -148,6 +148,16 @@ class OpenAIServingChat(OpenAIServingBase):
148
148
  self, request: ChatCompletionRequest, is_multimodal: bool
149
149
  ) -> MessageProcessingResult:
150
150
  """Process chat messages and apply chat template"""
151
+ is_gpt_oss = (
152
+ hasattr(self.tokenizer_manager.model_config, "hf_config")
153
+ and hasattr(self.tokenizer_manager.model_config.hf_config, "model_type")
154
+ and self.tokenizer_manager.model_config.hf_config.model_type == "gpt_oss"
155
+ )
156
+
157
+ # GptOss model needs to keep special tokens for harmony parsing
158
+ if is_gpt_oss:
159
+ request.skip_special_tokens = False
160
+
151
161
  tool_call_constraint = None
152
162
 
153
163
  # Apply chat template and its stop strings
@@ -207,6 +217,25 @@ class OpenAIServingChat(OpenAIServingBase):
207
217
  audio_data,
208
218
  modalities,
209
219
  )
220
+
221
+ # per the Transformers docs & maintainers, tool call arguments in
222
+ # assistant-role messages with tool_calls need to be dicts not JSON str -
223
+ # this is how tool-use chat templates will expect them moving forwards
224
+ # so, for messages that have tool_calls, parse the string (which we get
225
+ # from openAI format) to dict
226
+ if (
227
+ processed_msg["role"] == "assistant"
228
+ and "tool_calls" in processed_msg
229
+ and isinstance(processed_msg["tool_calls"], list)
230
+ ):
231
+ for item in processed_msg["tool_calls"]:
232
+ if "arguments" in item["function"] and isinstance(
233
+ item["function"]["arguments"], str
234
+ ):
235
+ item["function"]["arguments"] = json.loads(
236
+ item["function"]["arguments"]
237
+ )
238
+
210
239
  openai_compatible_messages.append(processed_msg)
211
240
 
212
241
  # Handle assistant prefix for continue_final_message
@@ -806,15 +835,23 @@ class OpenAIServingChat(OpenAIServingBase):
806
835
  finish_reason["matched"] = None
807
836
  try:
808
837
  text, call_info_list = parser.parse_non_stream(text)
809
- tool_calls = [
810
- ToolCall(
811
- id=f"call_{uuid.uuid4().hex[:24]}",
812
- function=FunctionResponse(
813
- name=call_info.name, arguments=call_info.parameters
814
- ),
838
+ tool_calls = []
839
+ for call_info in call_info_list:
840
+ # For Kimi-K2, align tool_call_id with the model format: functions.{name}:{index}
841
+ if tool_call_parser == "kimi_k2" and call_info.name is not None:
842
+ tool_id = f"functions.{call_info.name}:{call_info.tool_index}"
843
+ else:
844
+ tool_id = f"call_{uuid.uuid4().hex[:24]}"
845
+
846
+ tool_calls.append(
847
+ ToolCall(
848
+ id=tool_id,
849
+ index=getattr(call_info, "tool_index", None),
850
+ function=FunctionResponse(
851
+ name=call_info.name, arguments=call_info.parameters
852
+ ),
853
+ )
815
854
  )
816
- for call_info in call_info_list
817
- ]
818
855
  return tool_calls, text, finish_reason
819
856
  except Exception as e:
820
857
  logger.error(f"Tool call parsing error: {e}")
@@ -925,7 +962,11 @@ class OpenAIServingChat(OpenAIServingBase):
925
962
  # Tool call ID should be generated only once per tool call
926
963
  if call_item.name:
927
964
  # First chunk: include ID and function name
928
- tool_call_id = f"call_{uuid.uuid4().hex[:24]}"
965
+ if self.tokenizer_manager.server_args.tool_call_parser == "kimi_k2":
966
+ # Align with Kimi-K2 format: functions.{name}:{index}
967
+ tool_call_id = f"functions.{call_item.name}:{call_item.tool_index}"
968
+ else:
969
+ tool_call_id = f"call_{uuid.uuid4().hex[:24]}"
929
970
  function_name = call_item.name
930
971
  else:
931
972
  # Subsequent chunks: null ID and name for argument deltas
@@ -23,6 +23,7 @@ from sglang.srt.entrypoints.openai.utils import (
23
23
  from sglang.srt.managers.io_struct import GenerateReqInput
24
24
  from sglang.srt.managers.template_manager import TemplateManager
25
25
  from sglang.srt.managers.tokenizer_manager import TokenizerManager
26
+ from sglang.utils import convert_json_schema_to_str
26
27
 
27
28
  logger = logging.getLogger(__name__)
28
29
 
@@ -125,6 +126,20 @@ class OpenAIServingCompletion(OpenAIServingBase):
125
126
  "logit_bias": request.logit_bias,
126
127
  }
127
128
 
129
+ # Handle response_format constraints
130
+ if request.response_format and request.response_format.type == "json_schema":
131
+ sampling_params["json_schema"] = convert_json_schema_to_str(
132
+ request.response_format.json_schema.schema_
133
+ )
134
+ elif request.response_format and request.response_format.type == "json_object":
135
+ sampling_params["json_schema"] = '{"type": "object"}'
136
+ elif (
137
+ request.response_format and request.response_format.type == "structural_tag"
138
+ ):
139
+ sampling_params["structural_tag"] = convert_json_schema_to_str(
140
+ request.response_format.model_dump(by_alias=True)
141
+ )
142
+
128
143
  return sampling_params
129
144
 
130
145
  async def _handle_streaming_request(
@@ -58,9 +58,18 @@ class EPLBManager:
58
58
  torch.cuda.synchronize()
59
59
  time_start = time.time()
60
60
 
61
- logical_count = get_global_expert_distribution_recorder().dump_record(
61
+ dump_record_output = get_global_expert_distribution_recorder().dump_record(
62
62
  output_mode="object"
63
- )["logical_count"]
63
+ )
64
+ logical_count = dump_record_output["logical_count"]
65
+ average_utilization_rate_over_window = dump_record_output[
66
+ "average_utilization_rate_over_window"
67
+ ]
68
+
69
+ # Check whether rebalancing is needed
70
+ if not self._check_rebalance_needed(average_utilization_rate_over_window):
71
+ return
72
+
64
73
  expert_location_metadata = ExpertLocationMetadata.init_by_eplb(
65
74
  self._server_args, self._model_runner.model_config, logical_count
66
75
  )
@@ -81,6 +90,21 @@ class EPLBManager:
81
90
  msg += f" time={time_end - time_start:.3f}s"
82
91
  logger.info(msg)
83
92
 
93
+ def _check_rebalance_needed(self, average_utilization_rate_over_window):
94
+ if average_utilization_rate_over_window is None:
95
+ return True
96
+
97
+ if (
98
+ average_utilization_rate_over_window
99
+ > self._server_args.eplb_min_rebalancing_utilization_threshold
100
+ ):
101
+ logger.info(
102
+ f"[EPLBManager] Skipped ep rebalancing: current GPU utilization {average_utilization_rate_over_window:.2f} > minimum rebalance threshold {self._server_args.eplb_min_rebalancing_utilization_threshold:.2f}"
103
+ )
104
+ return False
105
+
106
+ return True
107
+
84
108
  def _compute_update_layer_ids_chunks(self) -> List[List[int]]:
85
109
  all_layer_ids = sorted(
86
110
  list(self._model_runner.model.routed_experts_weights_of_layer.keys())
@@ -12,6 +12,7 @@
12
12
  # limitations under the License.
13
13
  # ==============================================================================
14
14
  import logging
15
+ import math
15
16
  import os
16
17
  import time
17
18
  from abc import ABC
@@ -614,8 +615,8 @@ class _UtilizationRateAccumulatorMixin(_Accumulator):
614
615
  self._enable = self._server_args.enable_expert_distribution_metrics
615
616
 
616
617
  if self._enable:
617
- window_sizes = [10, 100, 1000]
618
- self._history = _DequeCollection(maxlens=window_sizes)
618
+ self.window_sizes = [10, 100, 1000]
619
+ self._history = _DequeCollection(maxlens=self.window_sizes)
619
620
  self._rank = torch.distributed.get_rank()
620
621
 
621
622
  def append(
@@ -787,6 +788,7 @@ class _StatAccumulator(_UtilizationRateAccumulatorMixin):
787
788
  output = dict(
788
789
  rank=self._rank,
789
790
  logical_count=logical_count_of_buffered_step,
791
+ average_utilization_rate_over_window=self._get_global_average_utilization_rate(),
790
792
  )
791
793
 
792
794
  if output_mode == "file":
@@ -797,6 +799,31 @@ class _StatAccumulator(_UtilizationRateAccumulatorMixin):
797
799
  else:
798
800
  raise NotImplementedError
799
801
 
802
+ def _get_global_average_utilization_rate(self):
803
+ if not self._enable or math.isclose(
804
+ self._server_args.eplb_min_rebalancing_utilization_threshold, 1.0
805
+ ):
806
+ return None
807
+
808
+ if self._rank == 0:
809
+ utilization_mean_rates = self._history.mean()
810
+ window_index = self.window_sizes[-1]
811
+ average_utilization_rate_over_window = (
812
+ utilization_mean_rates[window_index]
813
+ if window_index in utilization_mean_rates
814
+ else 0
815
+ )
816
+
817
+ avg_rate_tensor = torch.tensor(
818
+ [average_utilization_rate_over_window],
819
+ dtype=torch.float32,
820
+ device="cuda",
821
+ )
822
+ else:
823
+ avg_rate_tensor = torch.empty(1, dtype=torch.float32, device="cuda")
824
+ torch.distributed.broadcast(avg_rate_tensor, src=0)
825
+ return avg_rate_tensor.item()
826
+
800
827
 
801
828
  def _dump_to_file(name, data):
802
829
  save_dir = Path(os.environ.get("SGLANG_EXPERT_DISTRIBUTION_RECORDER_DIR", "/tmp"))