sglang 0.5.0rc1__py3-none-any.whl → 0.5.0rc2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +0 -1
- sglang/srt/configs/model_config.py +1 -0
- sglang/srt/disaggregation/decode.py +0 -1
- sglang/srt/entrypoints/engine.py +2 -2
- sglang/srt/entrypoints/http_server.py +64 -0
- sglang/srt/entrypoints/openai/protocol.py +2 -0
- sglang/srt/entrypoints/openai/serving_chat.py +1 -0
- sglang/srt/entrypoints/openai/serving_completions.py +1 -0
- sglang/srt/layers/attention/flashinfer_backend.py +3 -0
- sglang/srt/layers/attention/flashinfer_mla_backend.py +1 -0
- sglang/srt/layers/attention/triton_backend.py +24 -27
- sglang/srt/layers/attention/trtllm_mha_backend.py +8 -6
- sglang/srt/layers/attention/trtllm_mla_backend.py +10 -3
- sglang/srt/layers/communicator.py +7 -7
- sglang/srt/layers/dp_attention.py +118 -27
- sglang/srt/layers/logits_processor.py +12 -18
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_2_0/E=129,N=352,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_2_0/E=161,N=192,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_3_0/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_3_1/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_3_1/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_3_1/E=160,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_3_1/E=257,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_3_1/E=257,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_3_1/E=257,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_3_1/E=257,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_3_1/E=257,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/multimodal.py +156 -40
- sglang/srt/layers/quantization/__init__.py +5 -32
- sglang/srt/layers/quantization/awq.py +15 -16
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +0 -1
- sglang/srt/layers/quantization/gptq.py +12 -17
- sglang/srt/layers/quantization/marlin_utils.py +15 -5
- sglang/srt/layers/quantization/modelopt_quant.py +52 -30
- sglang/srt/layers/quantization/mxfp4.py +16 -2
- sglang/srt/layers/quantization/utils.py +52 -2
- sglang/srt/layers/sampler.py +5 -2
- sglang/srt/lora/layers.py +6 -2
- sglang/srt/managers/cache_controller.py +4 -1
- sglang/srt/managers/io_struct.py +14 -0
- sglang/srt/managers/schedule_batch.py +18 -39
- sglang/srt/managers/scheduler.py +3 -4
- sglang/srt/managers/tokenizer_manager.py +28 -18
- sglang/srt/mem_cache/allocator.py +8 -157
- sglang/srt/mem_cache/allocator_ascend.py +158 -0
- sglang/srt/mem_cache/chunk_cache.py +1 -1
- sglang/srt/model_executor/cuda_graph_runner.py +8 -21
- sglang/srt/model_executor/forward_batch_info.py +8 -10
- sglang/srt/model_executor/model_runner.py +57 -53
- sglang/srt/models/deepseek_nextn.py +2 -1
- sglang/srt/models/deepseek_v2.py +5 -3
- sglang/srt/models/glm4_moe.py +2 -2
- sglang/srt/models/glm4_moe_nextn.py +2 -1
- sglang/srt/models/gpt_oss.py +7 -2
- sglang/srt/models/llama.py +10 -2
- sglang/srt/models/llama4.py +18 -5
- sglang/srt/models/qwen2.py +2 -2
- sglang/srt/models/qwen2_moe.py +20 -5
- sglang/srt/models/qwen3_classification.py +78 -0
- sglang/srt/models/qwen3_moe.py +18 -5
- sglang/srt/models/step3_vl.py +6 -2
- sglang/srt/operations.py +17 -2
- sglang/srt/sampling/sampling_batch_info.py +7 -4
- sglang/srt/server_args.py +33 -7
- sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +7 -21
- sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +7 -21
- sglang/srt/two_batch_overlap.py +4 -8
- sglang/test/test_marlin_moe.py +1 -1
- sglang/test/test_marlin_utils.py +1 -1
- sglang/version.py +1 -1
- {sglang-0.5.0rc1.dist-info → sglang-0.5.0rc2.dist-info}/METADATA +5 -5
- {sglang-0.5.0rc1.dist-info → sglang-0.5.0rc2.dist-info}/RECORD +75 -63
- sglang/srt/layers/quantization/scalar_type.py +0 -352
- {sglang-0.5.0rc1.dist-info → sglang-0.5.0rc2.dist-info}/WHEEL +0 -0
- {sglang-0.5.0rc1.dist-info → sglang-0.5.0rc2.dist-info}/licenses/LICENSE +0 -0
- {sglang-0.5.0rc1.dist-info → sglang-0.5.0rc2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,146 @@
|
|
1
|
+
{
|
2
|
+
"1": {
|
3
|
+
"BLOCK_SIZE_M": 16,
|
4
|
+
"BLOCK_SIZE_N": 128,
|
5
|
+
"BLOCK_SIZE_K": 128,
|
6
|
+
"GROUP_SIZE_M": 16,
|
7
|
+
"num_warps": 4,
|
8
|
+
"num_stages": 3
|
9
|
+
},
|
10
|
+
"2": {
|
11
|
+
"BLOCK_SIZE_M": 16,
|
12
|
+
"BLOCK_SIZE_N": 64,
|
13
|
+
"BLOCK_SIZE_K": 128,
|
14
|
+
"GROUP_SIZE_M": 1,
|
15
|
+
"num_warps": 4,
|
16
|
+
"num_stages": 4
|
17
|
+
},
|
18
|
+
"4": {
|
19
|
+
"BLOCK_SIZE_M": 16,
|
20
|
+
"BLOCK_SIZE_N": 128,
|
21
|
+
"BLOCK_SIZE_K": 64,
|
22
|
+
"GROUP_SIZE_M": 1,
|
23
|
+
"num_warps": 4,
|
24
|
+
"num_stages": 5
|
25
|
+
},
|
26
|
+
"8": {
|
27
|
+
"BLOCK_SIZE_M": 16,
|
28
|
+
"BLOCK_SIZE_N": 64,
|
29
|
+
"BLOCK_SIZE_K": 128,
|
30
|
+
"GROUP_SIZE_M": 64,
|
31
|
+
"num_warps": 4,
|
32
|
+
"num_stages": 4
|
33
|
+
},
|
34
|
+
"16": {
|
35
|
+
"BLOCK_SIZE_M": 16,
|
36
|
+
"BLOCK_SIZE_N": 128,
|
37
|
+
"BLOCK_SIZE_K": 128,
|
38
|
+
"GROUP_SIZE_M": 1,
|
39
|
+
"num_warps": 4,
|
40
|
+
"num_stages": 3
|
41
|
+
},
|
42
|
+
"24": {
|
43
|
+
"BLOCK_SIZE_M": 16,
|
44
|
+
"BLOCK_SIZE_N": 128,
|
45
|
+
"BLOCK_SIZE_K": 128,
|
46
|
+
"GROUP_SIZE_M": 32,
|
47
|
+
"num_warps": 4,
|
48
|
+
"num_stages": 4
|
49
|
+
},
|
50
|
+
"32": {
|
51
|
+
"BLOCK_SIZE_M": 16,
|
52
|
+
"BLOCK_SIZE_N": 128,
|
53
|
+
"BLOCK_SIZE_K": 128,
|
54
|
+
"GROUP_SIZE_M": 32,
|
55
|
+
"num_warps": 4,
|
56
|
+
"num_stages": 4
|
57
|
+
},
|
58
|
+
"48": {
|
59
|
+
"BLOCK_SIZE_M": 16,
|
60
|
+
"BLOCK_SIZE_N": 128,
|
61
|
+
"BLOCK_SIZE_K": 128,
|
62
|
+
"GROUP_SIZE_M": 64,
|
63
|
+
"num_warps": 4,
|
64
|
+
"num_stages": 4
|
65
|
+
},
|
66
|
+
"64": {
|
67
|
+
"BLOCK_SIZE_M": 16,
|
68
|
+
"BLOCK_SIZE_N": 128,
|
69
|
+
"BLOCK_SIZE_K": 128,
|
70
|
+
"GROUP_SIZE_M": 1,
|
71
|
+
"num_warps": 4,
|
72
|
+
"num_stages": 3
|
73
|
+
},
|
74
|
+
"96": {
|
75
|
+
"BLOCK_SIZE_M": 16,
|
76
|
+
"BLOCK_SIZE_N": 128,
|
77
|
+
"BLOCK_SIZE_K": 128,
|
78
|
+
"GROUP_SIZE_M": 64,
|
79
|
+
"num_warps": 4,
|
80
|
+
"num_stages": 3
|
81
|
+
},
|
82
|
+
"128": {
|
83
|
+
"BLOCK_SIZE_M": 16,
|
84
|
+
"BLOCK_SIZE_N": 128,
|
85
|
+
"BLOCK_SIZE_K": 128,
|
86
|
+
"GROUP_SIZE_M": 64,
|
87
|
+
"num_warps": 4,
|
88
|
+
"num_stages": 3
|
89
|
+
},
|
90
|
+
"256": {
|
91
|
+
"BLOCK_SIZE_M": 16,
|
92
|
+
"BLOCK_SIZE_N": 128,
|
93
|
+
"BLOCK_SIZE_K": 128,
|
94
|
+
"GROUP_SIZE_M": 1,
|
95
|
+
"num_warps": 4,
|
96
|
+
"num_stages": 3
|
97
|
+
},
|
98
|
+
"512": {
|
99
|
+
"BLOCK_SIZE_M": 16,
|
100
|
+
"BLOCK_SIZE_N": 128,
|
101
|
+
"BLOCK_SIZE_K": 128,
|
102
|
+
"GROUP_SIZE_M": 1,
|
103
|
+
"num_warps": 4,
|
104
|
+
"num_stages": 3
|
105
|
+
},
|
106
|
+
"1024": {
|
107
|
+
"BLOCK_SIZE_M": 64,
|
108
|
+
"BLOCK_SIZE_N": 128,
|
109
|
+
"BLOCK_SIZE_K": 128,
|
110
|
+
"GROUP_SIZE_M": 16,
|
111
|
+
"num_warps": 4,
|
112
|
+
"num_stages": 3
|
113
|
+
},
|
114
|
+
"1536": {
|
115
|
+
"BLOCK_SIZE_M": 64,
|
116
|
+
"BLOCK_SIZE_N": 128,
|
117
|
+
"BLOCK_SIZE_K": 128,
|
118
|
+
"GROUP_SIZE_M": 16,
|
119
|
+
"num_warps": 4,
|
120
|
+
"num_stages": 4
|
121
|
+
},
|
122
|
+
"2048": {
|
123
|
+
"BLOCK_SIZE_M": 64,
|
124
|
+
"BLOCK_SIZE_N": 128,
|
125
|
+
"BLOCK_SIZE_K": 128,
|
126
|
+
"GROUP_SIZE_M": 16,
|
127
|
+
"num_warps": 4,
|
128
|
+
"num_stages": 3
|
129
|
+
},
|
130
|
+
"3072": {
|
131
|
+
"BLOCK_SIZE_M": 64,
|
132
|
+
"BLOCK_SIZE_N": 128,
|
133
|
+
"BLOCK_SIZE_K": 128,
|
134
|
+
"GROUP_SIZE_M": 1,
|
135
|
+
"num_warps": 4,
|
136
|
+
"num_stages": 3
|
137
|
+
},
|
138
|
+
"4096": {
|
139
|
+
"BLOCK_SIZE_M": 64,
|
140
|
+
"BLOCK_SIZE_N": 128,
|
141
|
+
"BLOCK_SIZE_K": 128,
|
142
|
+
"GROUP_SIZE_M": 32,
|
143
|
+
"num_warps": 4,
|
144
|
+
"num_stages": 3
|
145
|
+
}
|
146
|
+
}
|
@@ -0,0 +1,146 @@
|
|
1
|
+
{
|
2
|
+
"1": {
|
3
|
+
"BLOCK_SIZE_M": 16,
|
4
|
+
"BLOCK_SIZE_N": 128,
|
5
|
+
"BLOCK_SIZE_K": 128,
|
6
|
+
"GROUP_SIZE_M": 16,
|
7
|
+
"num_warps": 4,
|
8
|
+
"num_stages": 3
|
9
|
+
},
|
10
|
+
"2": {
|
11
|
+
"BLOCK_SIZE_M": 16,
|
12
|
+
"BLOCK_SIZE_N": 64,
|
13
|
+
"BLOCK_SIZE_K": 128,
|
14
|
+
"GROUP_SIZE_M": 1,
|
15
|
+
"num_warps": 4,
|
16
|
+
"num_stages": 4
|
17
|
+
},
|
18
|
+
"4": {
|
19
|
+
"BLOCK_SIZE_M": 16,
|
20
|
+
"BLOCK_SIZE_N": 128,
|
21
|
+
"BLOCK_SIZE_K": 128,
|
22
|
+
"GROUP_SIZE_M": 1,
|
23
|
+
"num_warps": 4,
|
24
|
+
"num_stages": 3
|
25
|
+
},
|
26
|
+
"8": {
|
27
|
+
"BLOCK_SIZE_M": 16,
|
28
|
+
"BLOCK_SIZE_N": 64,
|
29
|
+
"BLOCK_SIZE_K": 128,
|
30
|
+
"GROUP_SIZE_M": 64,
|
31
|
+
"num_warps": 4,
|
32
|
+
"num_stages": 4
|
33
|
+
},
|
34
|
+
"16": {
|
35
|
+
"BLOCK_SIZE_M": 16,
|
36
|
+
"BLOCK_SIZE_N": 128,
|
37
|
+
"BLOCK_SIZE_K": 128,
|
38
|
+
"GROUP_SIZE_M": 1,
|
39
|
+
"num_warps": 4,
|
40
|
+
"num_stages": 3
|
41
|
+
},
|
42
|
+
"24": {
|
43
|
+
"BLOCK_SIZE_M": 16,
|
44
|
+
"BLOCK_SIZE_N": 128,
|
45
|
+
"BLOCK_SIZE_K": 128,
|
46
|
+
"GROUP_SIZE_M": 1,
|
47
|
+
"num_warps": 4,
|
48
|
+
"num_stages": 3
|
49
|
+
},
|
50
|
+
"32": {
|
51
|
+
"BLOCK_SIZE_M": 16,
|
52
|
+
"BLOCK_SIZE_N": 128,
|
53
|
+
"BLOCK_SIZE_K": 128,
|
54
|
+
"GROUP_SIZE_M": 32,
|
55
|
+
"num_warps": 4,
|
56
|
+
"num_stages": 4
|
57
|
+
},
|
58
|
+
"48": {
|
59
|
+
"BLOCK_SIZE_M": 16,
|
60
|
+
"BLOCK_SIZE_N": 128,
|
61
|
+
"BLOCK_SIZE_K": 128,
|
62
|
+
"GROUP_SIZE_M": 64,
|
63
|
+
"num_warps": 4,
|
64
|
+
"num_stages": 4
|
65
|
+
},
|
66
|
+
"64": {
|
67
|
+
"BLOCK_SIZE_M": 16,
|
68
|
+
"BLOCK_SIZE_N": 128,
|
69
|
+
"BLOCK_SIZE_K": 128,
|
70
|
+
"GROUP_SIZE_M": 1,
|
71
|
+
"num_warps": 4,
|
72
|
+
"num_stages": 3
|
73
|
+
},
|
74
|
+
"96": {
|
75
|
+
"BLOCK_SIZE_M": 16,
|
76
|
+
"BLOCK_SIZE_N": 128,
|
77
|
+
"BLOCK_SIZE_K": 128,
|
78
|
+
"GROUP_SIZE_M": 64,
|
79
|
+
"num_warps": 4,
|
80
|
+
"num_stages": 3
|
81
|
+
},
|
82
|
+
"128": {
|
83
|
+
"BLOCK_SIZE_M": 16,
|
84
|
+
"BLOCK_SIZE_N": 128,
|
85
|
+
"BLOCK_SIZE_K": 128,
|
86
|
+
"GROUP_SIZE_M": 64,
|
87
|
+
"num_warps": 4,
|
88
|
+
"num_stages": 3
|
89
|
+
},
|
90
|
+
"256": {
|
91
|
+
"BLOCK_SIZE_M": 16,
|
92
|
+
"BLOCK_SIZE_N": 128,
|
93
|
+
"BLOCK_SIZE_K": 128,
|
94
|
+
"GROUP_SIZE_M": 16,
|
95
|
+
"num_warps": 4,
|
96
|
+
"num_stages": 3
|
97
|
+
},
|
98
|
+
"512": {
|
99
|
+
"BLOCK_SIZE_M": 16,
|
100
|
+
"BLOCK_SIZE_N": 128,
|
101
|
+
"BLOCK_SIZE_K": 128,
|
102
|
+
"GROUP_SIZE_M": 1,
|
103
|
+
"num_warps": 4,
|
104
|
+
"num_stages": 3
|
105
|
+
},
|
106
|
+
"1024": {
|
107
|
+
"BLOCK_SIZE_M": 64,
|
108
|
+
"BLOCK_SIZE_N": 128,
|
109
|
+
"BLOCK_SIZE_K": 128,
|
110
|
+
"GROUP_SIZE_M": 1,
|
111
|
+
"num_warps": 4,
|
112
|
+
"num_stages": 3
|
113
|
+
},
|
114
|
+
"1536": {
|
115
|
+
"BLOCK_SIZE_M": 64,
|
116
|
+
"BLOCK_SIZE_N": 128,
|
117
|
+
"BLOCK_SIZE_K": 128,
|
118
|
+
"GROUP_SIZE_M": 16,
|
119
|
+
"num_warps": 4,
|
120
|
+
"num_stages": 3
|
121
|
+
},
|
122
|
+
"2048": {
|
123
|
+
"BLOCK_SIZE_M": 64,
|
124
|
+
"BLOCK_SIZE_N": 128,
|
125
|
+
"BLOCK_SIZE_K": 128,
|
126
|
+
"GROUP_SIZE_M": 1,
|
127
|
+
"num_warps": 4,
|
128
|
+
"num_stages": 3
|
129
|
+
},
|
130
|
+
"3072": {
|
131
|
+
"BLOCK_SIZE_M": 64,
|
132
|
+
"BLOCK_SIZE_N": 128,
|
133
|
+
"BLOCK_SIZE_K": 128,
|
134
|
+
"GROUP_SIZE_M": 1,
|
135
|
+
"num_warps": 4,
|
136
|
+
"num_stages": 3
|
137
|
+
},
|
138
|
+
"4096": {
|
139
|
+
"BLOCK_SIZE_M": 64,
|
140
|
+
"BLOCK_SIZE_N": 128,
|
141
|
+
"BLOCK_SIZE_K": 128,
|
142
|
+
"GROUP_SIZE_M": 1,
|
143
|
+
"num_warps": 4,
|
144
|
+
"num_stages": 3
|
145
|
+
}
|
146
|
+
}
|
@@ -0,0 +1,146 @@
|
|
1
|
+
{
|
2
|
+
"1": {
|
3
|
+
"BLOCK_SIZE_M": 16,
|
4
|
+
"BLOCK_SIZE_N": 128,
|
5
|
+
"BLOCK_SIZE_K": 128,
|
6
|
+
"GROUP_SIZE_M": 16,
|
7
|
+
"num_warps": 4,
|
8
|
+
"num_stages": 4
|
9
|
+
},
|
10
|
+
"2": {
|
11
|
+
"BLOCK_SIZE_M": 16,
|
12
|
+
"BLOCK_SIZE_N": 128,
|
13
|
+
"BLOCK_SIZE_K": 128,
|
14
|
+
"GROUP_SIZE_M": 16,
|
15
|
+
"num_warps": 4,
|
16
|
+
"num_stages": 4
|
17
|
+
},
|
18
|
+
"4": {
|
19
|
+
"BLOCK_SIZE_M": 16,
|
20
|
+
"BLOCK_SIZE_N": 128,
|
21
|
+
"BLOCK_SIZE_K": 128,
|
22
|
+
"GROUP_SIZE_M": 64,
|
23
|
+
"num_warps": 4,
|
24
|
+
"num_stages": 4
|
25
|
+
},
|
26
|
+
"8": {
|
27
|
+
"BLOCK_SIZE_M": 16,
|
28
|
+
"BLOCK_SIZE_N": 128,
|
29
|
+
"BLOCK_SIZE_K": 128,
|
30
|
+
"GROUP_SIZE_M": 16,
|
31
|
+
"num_warps": 4,
|
32
|
+
"num_stages": 4
|
33
|
+
},
|
34
|
+
"16": {
|
35
|
+
"BLOCK_SIZE_M": 16,
|
36
|
+
"BLOCK_SIZE_N": 128,
|
37
|
+
"BLOCK_SIZE_K": 128,
|
38
|
+
"GROUP_SIZE_M": 16,
|
39
|
+
"num_warps": 4,
|
40
|
+
"num_stages": 3
|
41
|
+
},
|
42
|
+
"24": {
|
43
|
+
"BLOCK_SIZE_M": 16,
|
44
|
+
"BLOCK_SIZE_N": 128,
|
45
|
+
"BLOCK_SIZE_K": 128,
|
46
|
+
"GROUP_SIZE_M": 16,
|
47
|
+
"num_warps": 4,
|
48
|
+
"num_stages": 4
|
49
|
+
},
|
50
|
+
"32": {
|
51
|
+
"BLOCK_SIZE_M": 16,
|
52
|
+
"BLOCK_SIZE_N": 128,
|
53
|
+
"BLOCK_SIZE_K": 128,
|
54
|
+
"GROUP_SIZE_M": 16,
|
55
|
+
"num_warps": 4,
|
56
|
+
"num_stages": 5
|
57
|
+
},
|
58
|
+
"48": {
|
59
|
+
"BLOCK_SIZE_M": 16,
|
60
|
+
"BLOCK_SIZE_N": 128,
|
61
|
+
"BLOCK_SIZE_K": 128,
|
62
|
+
"GROUP_SIZE_M": 64,
|
63
|
+
"num_warps": 4,
|
64
|
+
"num_stages": 3
|
65
|
+
},
|
66
|
+
"64": {
|
67
|
+
"BLOCK_SIZE_M": 16,
|
68
|
+
"BLOCK_SIZE_N": 128,
|
69
|
+
"BLOCK_SIZE_K": 128,
|
70
|
+
"GROUP_SIZE_M": 64,
|
71
|
+
"num_warps": 4,
|
72
|
+
"num_stages": 3
|
73
|
+
},
|
74
|
+
"96": {
|
75
|
+
"BLOCK_SIZE_M": 16,
|
76
|
+
"BLOCK_SIZE_N": 128,
|
77
|
+
"BLOCK_SIZE_K": 128,
|
78
|
+
"GROUP_SIZE_M": 16,
|
79
|
+
"num_warps": 4,
|
80
|
+
"num_stages": 3
|
81
|
+
},
|
82
|
+
"128": {
|
83
|
+
"BLOCK_SIZE_M": 16,
|
84
|
+
"BLOCK_SIZE_N": 128,
|
85
|
+
"BLOCK_SIZE_K": 128,
|
86
|
+
"GROUP_SIZE_M": 32,
|
87
|
+
"num_warps": 4,
|
88
|
+
"num_stages": 3
|
89
|
+
},
|
90
|
+
"256": {
|
91
|
+
"BLOCK_SIZE_M": 16,
|
92
|
+
"BLOCK_SIZE_N": 128,
|
93
|
+
"BLOCK_SIZE_K": 128,
|
94
|
+
"GROUP_SIZE_M": 32,
|
95
|
+
"num_warps": 4,
|
96
|
+
"num_stages": 3
|
97
|
+
},
|
98
|
+
"512": {
|
99
|
+
"BLOCK_SIZE_M": 16,
|
100
|
+
"BLOCK_SIZE_N": 128,
|
101
|
+
"BLOCK_SIZE_K": 128,
|
102
|
+
"GROUP_SIZE_M": 16,
|
103
|
+
"num_warps": 4,
|
104
|
+
"num_stages": 3
|
105
|
+
},
|
106
|
+
"1024": {
|
107
|
+
"BLOCK_SIZE_M": 64,
|
108
|
+
"BLOCK_SIZE_N": 128,
|
109
|
+
"BLOCK_SIZE_K": 128,
|
110
|
+
"GROUP_SIZE_M": 32,
|
111
|
+
"num_warps": 4,
|
112
|
+
"num_stages": 4
|
113
|
+
},
|
114
|
+
"1536": {
|
115
|
+
"BLOCK_SIZE_M": 64,
|
116
|
+
"BLOCK_SIZE_N": 128,
|
117
|
+
"BLOCK_SIZE_K": 128,
|
118
|
+
"GROUP_SIZE_M": 32,
|
119
|
+
"num_warps": 4,
|
120
|
+
"num_stages": 4
|
121
|
+
},
|
122
|
+
"2048": {
|
123
|
+
"BLOCK_SIZE_M": 64,
|
124
|
+
"BLOCK_SIZE_N": 128,
|
125
|
+
"BLOCK_SIZE_K": 128,
|
126
|
+
"GROUP_SIZE_M": 32,
|
127
|
+
"num_warps": 4,
|
128
|
+
"num_stages": 4
|
129
|
+
},
|
130
|
+
"3072": {
|
131
|
+
"BLOCK_SIZE_M": 64,
|
132
|
+
"BLOCK_SIZE_N": 128,
|
133
|
+
"BLOCK_SIZE_K": 128,
|
134
|
+
"GROUP_SIZE_M": 32,
|
135
|
+
"num_warps": 4,
|
136
|
+
"num_stages": 4
|
137
|
+
},
|
138
|
+
"4096": {
|
139
|
+
"BLOCK_SIZE_M": 64,
|
140
|
+
"BLOCK_SIZE_N": 128,
|
141
|
+
"BLOCK_SIZE_K": 128,
|
142
|
+
"GROUP_SIZE_M": 16,
|
143
|
+
"num_warps": 4,
|
144
|
+
"num_stages": 3
|
145
|
+
}
|
146
|
+
}
|
sglang/srt/layers/multimodal.py
CHANGED
@@ -17,57 +17,173 @@ import torch
|
|
17
17
|
import triton
|
18
18
|
import triton.language as tl
|
19
19
|
|
20
|
+
FMIX32_C1 = 0x85EBCA6B
|
21
|
+
FMIX32_C2 = 0xC2B2AE35
|
22
|
+
POS_C1 = 0x27D4EB2D
|
23
|
+
POS_C2 = 0x165667B1
|
24
|
+
|
25
|
+
|
26
|
+
@triton.jit
|
27
|
+
def _rotl32(x, r: tl.constexpr):
|
28
|
+
return (x << r) | (x >> (32 - r))
|
29
|
+
|
30
|
+
|
31
|
+
@triton.jit
|
32
|
+
def _fmix32(x, C1: tl.constexpr, C2: tl.constexpr):
|
33
|
+
c1 = tl.full((), C1, tl.uint32)
|
34
|
+
c2 = tl.full((), C2, tl.uint32)
|
35
|
+
x ^= x >> 16
|
36
|
+
x = x * c1
|
37
|
+
x ^= x >> 13
|
38
|
+
x = x * c2
|
39
|
+
x ^= x >> 16
|
40
|
+
return x
|
41
|
+
|
20
42
|
|
21
43
|
@triton.jit
|
22
|
-
def
|
23
|
-
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
|
28
|
-
|
44
|
+
def hash_tiles32_kernel_blocked(
|
45
|
+
in_ptr,
|
46
|
+
out_ptr,
|
47
|
+
n_u32,
|
48
|
+
seed1,
|
49
|
+
seed2,
|
50
|
+
FM_C1: tl.constexpr,
|
51
|
+
FM_C2: tl.constexpr,
|
52
|
+
POS_A: tl.constexpr,
|
53
|
+
POS_B: tl.constexpr,
|
54
|
+
TILE: tl.constexpr,
|
55
|
+
BLOCK: tl.constexpr,
|
56
|
+
USE_CG: tl.constexpr,
|
29
57
|
):
|
30
58
|
pid = tl.program_id(axis=0)
|
31
|
-
|
32
|
-
|
33
|
-
|
59
|
+
base = pid * TILE
|
60
|
+
|
61
|
+
s1 = tl.full((), seed1, tl.uint32)
|
62
|
+
s2 = tl.full((), seed2, tl.uint32)
|
63
|
+
posA = tl.full((), POS_A, tl.uint32)
|
64
|
+
posB = tl.full((), POS_B, tl.uint32)
|
65
|
+
|
66
|
+
h1 = tl.zeros((), dtype=tl.uint32)
|
67
|
+
h2 = tl.zeros((), dtype=tl.uint32)
|
68
|
+
|
69
|
+
for off in tl.static_range(0, TILE, BLOCK):
|
70
|
+
idx = base + off + tl.arange(0, BLOCK)
|
71
|
+
m = idx < n_u32
|
34
72
|
|
35
|
-
|
36
|
-
|
37
|
-
|
38
|
-
|
39
|
-
|
40
|
-
|
73
|
+
if USE_CG:
|
74
|
+
v = tl.load(in_ptr + idx, mask=m, other=0, cache_modifier=".cg")
|
75
|
+
else:
|
76
|
+
v = tl.load(in_ptr + idx, mask=m, other=0)
|
77
|
+
v = v.to(tl.uint32)
|
78
|
+
|
79
|
+
iu = idx.to(tl.uint32)
|
80
|
+
p1 = (iu * posA + s1) ^ _rotl32(iu, 15)
|
81
|
+
p2 = (iu * posB + s2) ^ _rotl32(iu, 13)
|
82
|
+
|
83
|
+
k1 = _fmix32(v ^ p1, C1=FM_C1, C2=FM_C2)
|
84
|
+
k2 = _fmix32(v ^ p2, C1=FM_C1, C2=FM_C2)
|
85
|
+
|
86
|
+
zero32 = tl.zeros_like(k1)
|
87
|
+
k1 = tl.where(m, k1, zero32)
|
88
|
+
k2 = tl.where(m, k2, zero32)
|
89
|
+
|
90
|
+
h1 += tl.sum(k1, axis=0).to(tl.uint32)
|
91
|
+
h2 += tl.sum(k2, axis=0).to(tl.uint32)
|
92
|
+
|
93
|
+
nbytes = tl.full((), n_u32 * 4, tl.uint32)
|
94
|
+
h1 ^= nbytes
|
95
|
+
h2 ^= nbytes
|
96
|
+
h1 = _fmix32(h1, C1=FM_C1, C2=FM_C2)
|
97
|
+
h2 = (
|
98
|
+
_fmix32(h2, C1=FMIX32_C1, C2=FMIX32_C2)
|
99
|
+
if False
|
100
|
+
else _fmix32(h2, C1=FM_C1, C2=FM_C2)
|
101
|
+
)
|
102
|
+
|
103
|
+
out = (h1.to(tl.uint64) << 32) | h2.to(tl.uint64)
|
104
|
+
tl.store(out_ptr + pid, out)
|
105
|
+
|
106
|
+
|
107
|
+
@triton.jit
|
108
|
+
def add_tree_reduce_u64_kernel(in_ptr, out_ptr, n_elems, CHUNK: tl.constexpr):
|
109
|
+
pid = tl.program_id(axis=0)
|
110
|
+
start = pid * CHUNK
|
111
|
+
h = tl.zeros((), dtype=tl.uint64)
|
112
|
+
for i in tl.static_range(0, CHUNK):
|
113
|
+
idx = start + i
|
114
|
+
m = idx < n_elems
|
115
|
+
v = tl.load(in_ptr + idx, mask=m, other=0).to(tl.uint64)
|
116
|
+
h += v
|
117
|
+
tl.store(out_ptr + pid, h)
|
41
118
|
|
42
|
-
tl.store(output_ptr + offsets, hash_val, mask=mask)
|
43
119
|
|
120
|
+
def _as_uint32_words(t: torch.Tensor) -> torch.Tensor:
|
121
|
+
assert t.is_cuda, "Use .cuda() first"
|
122
|
+
tb = t.contiguous().view(torch.uint8)
|
123
|
+
nbytes = tb.numel()
|
124
|
+
pad = (4 - (nbytes & 3)) & 3
|
125
|
+
if pad:
|
126
|
+
tb_p = torch.empty(nbytes + pad, dtype=torch.uint8, device=tb.device)
|
127
|
+
tb_p[:nbytes].copy_(tb)
|
128
|
+
tb_p[nbytes:].zero_()
|
129
|
+
tb = tb_p
|
130
|
+
return tb.view(torch.uint32)
|
44
131
|
|
45
|
-
PRIME_1 = -(11400714785074694791 ^ 0xFFFFFFFFFFFFFFFF) - 1
|
46
|
-
PRIME_2 = -(14029467366897019727 ^ 0xFFFFFFFFFFFFFFFF) - 1
|
47
132
|
|
133
|
+
def _final_splitmix64(x: int) -> int:
|
134
|
+
mask = (1 << 64) - 1
|
135
|
+
x &= mask
|
136
|
+
x ^= x >> 30
|
137
|
+
x = (x * 0xBF58476D1CE4E5B9) & mask
|
138
|
+
x ^= x >> 27
|
139
|
+
x = (x * 0x94D049BB133111EB) & mask
|
140
|
+
x ^= x >> 31
|
141
|
+
return x
|
48
142
|
|
49
|
-
def gpu_tensor_hash(tensor: torch.Tensor) -> int:
|
50
|
-
assert tensor.is_cuda
|
51
|
-
tensor = tensor.contiguous().view(torch.int32)
|
52
|
-
n = tensor.numel()
|
53
|
-
BLOCK_SIZE = 1024
|
54
|
-
grid = (triton.cdiv(n, BLOCK_SIZE),)
|
55
143
|
|
56
|
-
|
144
|
+
@torch.inference_mode()
|
145
|
+
def gpu_tensor_hash(
|
146
|
+
tensor: torch.Tensor,
|
147
|
+
*,
|
148
|
+
seed: int = 0x243F6A88,
|
149
|
+
tile_words: int = 8192,
|
150
|
+
block_words: int = 256,
|
151
|
+
reduce_chunk: int = 1024,
|
152
|
+
num_warps: int = 4,
|
153
|
+
num_stages: int = 4,
|
154
|
+
use_cg: bool = True,
|
155
|
+
) -> int:
|
156
|
+
assert tensor.is_cuda, "Use .cuda() first"
|
157
|
+
u32 = _as_uint32_words(tensor)
|
158
|
+
n = u32.numel()
|
159
|
+
if n == 0:
|
160
|
+
return 0
|
57
161
|
|
58
|
-
|
59
|
-
|
60
|
-
|
61
|
-
|
62
|
-
|
63
|
-
|
64
|
-
|
65
|
-
|
66
|
-
|
67
|
-
|
68
|
-
|
162
|
+
grid1 = (triton.cdiv(n, tile_words),)
|
163
|
+
partials = torch.empty(grid1[0], dtype=torch.uint64, device=u32.device)
|
164
|
+
hash_tiles32_kernel_blocked[grid1](
|
165
|
+
u32,
|
166
|
+
partials,
|
167
|
+
n,
|
168
|
+
seed1=seed & 0xFFFFFFFF,
|
169
|
+
seed2=((seed * 0x9E3779B1) ^ 0xDEADBEEF) & 0xFFFFFFFF,
|
170
|
+
FM_C1=FMIX32_C1,
|
171
|
+
FM_C2=FMIX32_C2,
|
172
|
+
POS_A=POS_C1,
|
173
|
+
POS_B=POS_C2,
|
174
|
+
TILE=tile_words,
|
175
|
+
BLOCK=block_words,
|
176
|
+
USE_CG=use_cg,
|
177
|
+
num_warps=num_warps,
|
178
|
+
num_stages=num_stages,
|
179
|
+
)
|
69
180
|
|
70
|
-
|
71
|
-
|
181
|
+
cur = partials
|
182
|
+
while cur.numel() > 1:
|
183
|
+
n_elems = cur.numel()
|
184
|
+
grid2 = (triton.cdiv(n_elems, reduce_chunk),)
|
185
|
+
nxt = torch.empty(grid2[0], dtype=torch.uint64, device=cur.device)
|
186
|
+
add_tree_reduce_u64_kernel[grid2](cur, nxt, n_elems, CHUNK=reduce_chunk)
|
187
|
+
cur = nxt
|
72
188
|
|
73
|
-
return
|
189
|
+
return _final_splitmix64(int(cur.item()))
|