sglang 0.5.0rc0__py3-none-any.whl → 0.5.0rc2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/__init__.py +8 -3
- sglang/bench_one_batch.py +6 -1
- sglang/lang/chat_template.py +18 -0
- sglang/srt/bench_utils.py +137 -0
- sglang/srt/configs/model_config.py +8 -7
- sglang/srt/disaggregation/decode.py +8 -4
- sglang/srt/disaggregation/mooncake/conn.py +43 -25
- sglang/srt/disaggregation/mooncake/transfer_engine.py +29 -0
- sglang/srt/distributed/parallel_state.py +4 -2
- sglang/srt/entrypoints/context.py +3 -20
- sglang/srt/entrypoints/engine.py +13 -8
- sglang/srt/entrypoints/harmony_utils.py +2 -0
- sglang/srt/entrypoints/http_server.py +68 -5
- sglang/srt/entrypoints/openai/protocol.py +2 -9
- sglang/srt/entrypoints/openai/serving_chat.py +60 -265
- sglang/srt/entrypoints/openai/serving_completions.py +1 -0
- sglang/srt/entrypoints/openai/tool_server.py +4 -3
- sglang/srt/function_call/ebnf_composer.py +1 -0
- sglang/srt/function_call/function_call_parser.py +2 -0
- sglang/srt/function_call/glm4_moe_detector.py +1 -1
- sglang/srt/function_call/gpt_oss_detector.py +331 -0
- sglang/srt/function_call/kimik2_detector.py +3 -3
- sglang/srt/function_call/qwen3_coder_detector.py +219 -9
- sglang/srt/jinja_template_utils.py +6 -0
- sglang/srt/layers/attention/aiter_backend.py +370 -107
- sglang/srt/layers/attention/ascend_backend.py +3 -0
- sglang/srt/layers/attention/dual_chunk_flashattention_backend.py +1 -1
- sglang/srt/layers/attention/flashattention_backend.py +18 -0
- sglang/srt/layers/attention/flashinfer_backend.py +55 -13
- sglang/srt/layers/attention/flashinfer_mla_backend.py +1 -0
- sglang/srt/layers/attention/hybrid_attn_backend.py +1 -1
- sglang/srt/layers/attention/triton_backend.py +24 -27
- sglang/srt/layers/attention/trtllm_mha_backend.py +8 -6
- sglang/srt/layers/attention/trtllm_mla_backend.py +129 -25
- sglang/srt/layers/attention/vision.py +9 -1
- sglang/srt/layers/attention/wave_backend.py +627 -0
- sglang/srt/layers/attention/wave_ops/decode_attention.py +186 -0
- sglang/srt/layers/attention/wave_ops/extend_attention.py +149 -0
- sglang/srt/layers/attention/wave_ops/prefill_attention.py +79 -0
- sglang/srt/layers/communicator.py +11 -13
- sglang/srt/layers/dp_attention.py +118 -27
- sglang/srt/layers/flashinfer_comm_fusion.py +4 -4
- sglang/srt/layers/linear.py +1 -0
- sglang/srt/layers/logits_processor.py +12 -18
- sglang/srt/layers/moe/cutlass_moe.py +11 -16
- sglang/srt/layers/moe/cutlass_w4a8_moe.py +4 -5
- sglang/srt/layers/moe/ep_moe/kernels.py +43 -0
- sglang/srt/layers/moe/ep_moe/layer.py +60 -2
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_2_0/E=129,N=352,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_2_0/E=161,N=192,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_3_0/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_3_1/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_3_1/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_3_1/E=160,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_3_1/E=257,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_3_1/E=257,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_3_1/E=257,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_3_1/E=257,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_3_1/E=257,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/layer.py +7 -9
- sglang/srt/layers/moe/token_dispatcher/deepep.py +61 -24
- sglang/srt/layers/moe/topk.py +4 -1
- sglang/srt/layers/multimodal.py +156 -40
- sglang/srt/layers/quantization/__init__.py +10 -35
- sglang/srt/layers/quantization/awq.py +15 -16
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +0 -1
- sglang/srt/layers/quantization/fp8_kernel.py +277 -0
- sglang/srt/layers/quantization/fp8_utils.py +22 -10
- sglang/srt/layers/quantization/gptq.py +12 -17
- sglang/srt/layers/quantization/marlin_utils.py +15 -5
- sglang/srt/layers/quantization/modelopt_quant.py +58 -41
- sglang/srt/layers/quantization/mxfp4.py +20 -3
- sglang/srt/layers/quantization/utils.py +52 -2
- sglang/srt/layers/quantization/w4afp8.py +20 -11
- sglang/srt/layers/quantization/w8a8_int8.py +48 -34
- sglang/srt/layers/rotary_embedding.py +281 -2
- sglang/srt/layers/sampler.py +5 -2
- sglang/srt/lora/backend/base_backend.py +3 -23
- sglang/srt/lora/layers.py +66 -116
- sglang/srt/lora/lora.py +17 -62
- sglang/srt/lora/lora_manager.py +12 -48
- sglang/srt/lora/lora_registry.py +20 -9
- sglang/srt/lora/mem_pool.py +20 -63
- sglang/srt/lora/triton_ops/qkv_lora_b.py +1 -1
- sglang/srt/lora/utils.py +25 -58
- sglang/srt/managers/cache_controller.py +24 -29
- sglang/srt/managers/detokenizer_manager.py +1 -1
- sglang/srt/managers/io_struct.py +20 -6
- sglang/srt/managers/mm_utils.py +1 -2
- sglang/srt/managers/multimodal_processor.py +1 -1
- sglang/srt/managers/schedule_batch.py +43 -49
- sglang/srt/managers/schedule_policy.py +6 -6
- sglang/srt/managers/scheduler.py +18 -11
- sglang/srt/managers/scheduler_profiler_mixin.py +28 -8
- sglang/srt/managers/tokenizer_manager.py +53 -44
- sglang/srt/mem_cache/allocator.py +39 -214
- sglang/srt/mem_cache/allocator_ascend.py +158 -0
- sglang/srt/mem_cache/chunk_cache.py +1 -1
- sglang/srt/mem_cache/hicache_storage.py +1 -1
- sglang/srt/mem_cache/hiradix_cache.py +34 -24
- sglang/srt/mem_cache/lora_radix_cache.py +421 -0
- sglang/srt/mem_cache/memory_pool_host.py +33 -35
- sglang/srt/mem_cache/radix_cache.py +2 -5
- sglang/srt/mem_cache/storage/hf3fs/mini_3fs_metadata_server.py +443 -0
- sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +139 -67
- sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +6 -9
- sglang/srt/model_executor/cuda_graph_runner.py +29 -23
- sglang/srt/model_executor/forward_batch_info.py +33 -14
- sglang/srt/model_executor/model_runner.py +179 -81
- sglang/srt/model_loader/loader.py +18 -6
- sglang/srt/models/deepseek_nextn.py +2 -1
- sglang/srt/models/deepseek_v2.py +79 -38
- sglang/srt/models/gemma2.py +0 -34
- sglang/srt/models/gemma3n_mm.py +8 -9
- sglang/srt/models/glm4.py +6 -0
- sglang/srt/models/glm4_moe.py +11 -11
- sglang/srt/models/glm4_moe_nextn.py +2 -1
- sglang/srt/models/glm4v.py +589 -0
- sglang/srt/models/glm4v_moe.py +400 -0
- sglang/srt/models/gpt_oss.py +142 -20
- sglang/srt/models/granite.py +0 -25
- sglang/srt/models/llama.py +10 -27
- sglang/srt/models/llama4.py +19 -6
- sglang/srt/models/qwen2.py +2 -2
- sglang/srt/models/qwen2_5_vl.py +7 -3
- sglang/srt/models/qwen2_audio.py +10 -9
- sglang/srt/models/qwen2_moe.py +20 -5
- sglang/srt/models/qwen3.py +0 -24
- sglang/srt/models/qwen3_classification.py +78 -0
- sglang/srt/models/qwen3_moe.py +18 -5
- sglang/srt/models/registry.py +1 -1
- sglang/srt/models/step3_vl.py +6 -2
- sglang/srt/models/torch_native_llama.py +0 -24
- sglang/srt/multimodal/processors/base_processor.py +23 -13
- sglang/srt/multimodal/processors/glm4v.py +132 -0
- sglang/srt/multimodal/processors/qwen_audio.py +4 -2
- sglang/srt/operations.py +17 -2
- sglang/srt/reasoning_parser.py +316 -0
- sglang/srt/sampling/sampling_batch_info.py +7 -4
- sglang/srt/server_args.py +142 -140
- sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +7 -21
- sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +7 -21
- sglang/srt/speculative/eagle_worker.py +16 -0
- sglang/srt/two_batch_overlap.py +16 -12
- sglang/srt/utils.py +3 -3
- sglang/srt/weight_sync/tensor_bucket.py +106 -0
- sglang/test/attention/test_trtllm_mla_backend.py +186 -36
- sglang/test/doc_patch.py +59 -0
- sglang/test/few_shot_gsm8k.py +1 -1
- sglang/test/few_shot_gsm8k_engine.py +1 -1
- sglang/test/run_eval.py +4 -1
- sglang/test/simple_eval_common.py +6 -0
- sglang/test/simple_eval_gpqa.py +2 -0
- sglang/test/test_fp4_moe.py +118 -36
- sglang/test/test_marlin_moe.py +1 -1
- sglang/test/test_marlin_utils.py +1 -1
- sglang/utils.py +1 -1
- sglang/version.py +1 -1
- {sglang-0.5.0rc0.dist-info → sglang-0.5.0rc2.dist-info}/METADATA +27 -31
- {sglang-0.5.0rc0.dist-info → sglang-0.5.0rc2.dist-info}/RECORD +166 -142
- sglang/lang/backend/__init__.py +0 -0
- sglang/srt/function_call/harmony_tool_parser.py +0 -130
- sglang/srt/layers/quantization/scalar_type.py +0 -352
- sglang/srt/lora/backend/flashinfer_backend.py +0 -131
- /sglang/{api.py → lang/api.py} +0 -0
- {sglang-0.5.0rc0.dist-info → sglang-0.5.0rc2.dist-info}/WHEEL +0 -0
- {sglang-0.5.0rc0.dist-info → sglang-0.5.0rc2.dist-info}/licenses/LICENSE +0 -0
- {sglang-0.5.0rc0.dist-info → sglang-0.5.0rc2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,627 @@
|
|
1
|
+
from __future__ import annotations
|
2
|
+
|
3
|
+
import logging
|
4
|
+
from dataclasses import dataclass
|
5
|
+
from typing import TYPE_CHECKING, Optional, Union
|
6
|
+
|
7
|
+
import torch
|
8
|
+
import triton
|
9
|
+
import triton.language as tl
|
10
|
+
|
11
|
+
from sglang.srt.layers.attention.base_attn_backend import AttentionBackend
|
12
|
+
from sglang.srt.layers.attention.utils import create_flashinfer_kv_indices_triton
|
13
|
+
from sglang.srt.layers.dp_attention import get_attention_tp_size
|
14
|
+
from sglang.srt.model_executor.forward_batch_info import ForwardBatch, ForwardMode
|
15
|
+
from sglang.srt.utils import get_bool_env_var, get_device_core_count
|
16
|
+
|
17
|
+
if TYPE_CHECKING:
|
18
|
+
from sglang.srt.layers.radix_attention import RadixAttention
|
19
|
+
from sglang.srt.model_executor.model_runner import ModelRunner
|
20
|
+
from sglang.srt.speculative.eagle_utils import EagleDraftInput, EagleVerifyInput
|
21
|
+
|
22
|
+
logger = logging.getLogger(__name__)
|
23
|
+
|
24
|
+
|
25
|
+
@triton.jit
|
26
|
+
def get_num_kv_splits_triton(
|
27
|
+
num_kv_splits_ptr,
|
28
|
+
seq_lens_ptr,
|
29
|
+
num_seq,
|
30
|
+
num_group,
|
31
|
+
num_head,
|
32
|
+
num_kv_head,
|
33
|
+
max_kv_splits,
|
34
|
+
device_core_count,
|
35
|
+
MAX_NUM_SEQ: tl.constexpr,
|
36
|
+
):
|
37
|
+
# TODO: this method is tunable, we need more online serving data to tune it
|
38
|
+
offs_seq = tl.arange(0, MAX_NUM_SEQ)
|
39
|
+
mask_seq = offs_seq < num_seq
|
40
|
+
|
41
|
+
seq_lens = tl.load(seq_lens_ptr + offs_seq, mask=mask_seq, other=0)
|
42
|
+
max_seq_len = tl.max(seq_lens)
|
43
|
+
seq_lens = tl.load(seq_lens_ptr + offs_seq, mask=mask_seq, other=max_seq_len)
|
44
|
+
min_seq_len = tl.min(seq_lens)
|
45
|
+
if max_seq_len * 8 < min_seq_len * 10:
|
46
|
+
min_seq_len = max_seq_len
|
47
|
+
max_kv_splits_1 = tl.minimum(tl.cdiv(max_seq_len, min_seq_len), max_kv_splits)
|
48
|
+
kv_chunk_size_1 = tl.cdiv(max_seq_len, max_kv_splits_1)
|
49
|
+
|
50
|
+
# NOTE: this is a hack to let num_kv_split grows up with seqlen gradually
|
51
|
+
ext_seq_len = tl.cast(max_seq_len, tl.float32) / 64.0
|
52
|
+
ext_device_core_count = tl.cast(
|
53
|
+
device_core_count * tl.maximum(tl.log2(ext_seq_len), 1.0), tl.int32
|
54
|
+
)
|
55
|
+
block_h, num_kv_group = 16, num_head // num_kv_head
|
56
|
+
if num_kv_group == 1:
|
57
|
+
token_grid = num_seq * num_group * num_head
|
58
|
+
else:
|
59
|
+
# from triton_ops/decode_attention.py:_decode_grouped_att_m_fwd
|
60
|
+
block_h = tl.minimum(block_h, num_kv_group)
|
61
|
+
token_grid = num_seq * num_group * tl.cdiv(num_head, block_h)
|
62
|
+
max_kv_splits_2 = tl.minimum(
|
63
|
+
tl.cdiv(ext_device_core_count, token_grid), max_kv_splits
|
64
|
+
)
|
65
|
+
kv_chunk_size_2 = tl.cdiv(max_seq_len, max_kv_splits_2)
|
66
|
+
|
67
|
+
num_kv_splits = tl.maximum(
|
68
|
+
tl.cdiv(seq_lens, kv_chunk_size_1), tl.cdiv(seq_lens, kv_chunk_size_2)
|
69
|
+
)
|
70
|
+
|
71
|
+
offs_token = offs_seq * num_group
|
72
|
+
mask_token = offs_token < num_seq * num_group
|
73
|
+
for i in range(0, num_group):
|
74
|
+
tl.store(num_kv_splits_ptr + i + offs_token, num_kv_splits, mask=mask_token)
|
75
|
+
|
76
|
+
|
77
|
+
@dataclass
|
78
|
+
class ForwardMetadata:
|
79
|
+
attn_logits: torch.Tensor
|
80
|
+
attn_lse: torch.Tensor
|
81
|
+
max_extend_len: int
|
82
|
+
num_kv_splits: torch.Tensor
|
83
|
+
kv_indptr: torch.Tensor
|
84
|
+
kv_indices: torch.Tensor
|
85
|
+
qo_indptr: torch.Tensor
|
86
|
+
custom_mask: torch.Tensor
|
87
|
+
mask_indptr: torch.Tensor
|
88
|
+
|
89
|
+
|
90
|
+
class WaveAttnBackend(AttentionBackend):
|
91
|
+
def __init__(
|
92
|
+
self,
|
93
|
+
model_runner: ModelRunner,
|
94
|
+
skip_prefill: bool = False,
|
95
|
+
kv_indptr_buf: Optional[torch.Tensor] = None,
|
96
|
+
):
|
97
|
+
# Lazy import to avoid the initialization of cuda context
|
98
|
+
from sglang.srt.layers.attention.wave_ops.decode_attention import (
|
99
|
+
decode_attention_fwd,
|
100
|
+
)
|
101
|
+
from sglang.srt.layers.attention.wave_ops.extend_attention import (
|
102
|
+
extend_attention_wave,
|
103
|
+
)
|
104
|
+
|
105
|
+
super().__init__()
|
106
|
+
|
107
|
+
# Set unique cache dir for each process to avoid cache write races
|
108
|
+
import wave_lang.kernel.wave.cache as cache
|
109
|
+
|
110
|
+
base_cache_dir = cache.CACHE_BASE_DIR
|
111
|
+
new_dir = base_cache_dir / f"worker_{model_runner.tp_rank}"
|
112
|
+
logger.info(f"Setting Wave cache dir: {new_dir}")
|
113
|
+
cache.CACHE_BASE_DIR = new_dir
|
114
|
+
|
115
|
+
self.decode_attention_fwd = decode_attention_fwd
|
116
|
+
self.extend_attention_fwd = extend_attention_wave
|
117
|
+
|
118
|
+
self.skip_prefill = skip_prefill
|
119
|
+
|
120
|
+
max_bs = model_runner.req_to_token_pool.size
|
121
|
+
|
122
|
+
if kv_indptr_buf is None:
|
123
|
+
self.kv_indptr = torch.zeros(
|
124
|
+
(max_bs + 1,), dtype=torch.int32, device=model_runner.device
|
125
|
+
)
|
126
|
+
else:
|
127
|
+
self.kv_indptr = kv_indptr_buf
|
128
|
+
|
129
|
+
self.req_to_token = model_runner.req_to_token_pool.req_to_token
|
130
|
+
|
131
|
+
if not self.skip_prefill:
|
132
|
+
self.qo_indptr = torch.zeros(
|
133
|
+
(max_bs + 1,), dtype=torch.int32, device=model_runner.device
|
134
|
+
)
|
135
|
+
|
136
|
+
self.mask_indptr = torch.zeros(
|
137
|
+
(max_bs + 1,), dtype=torch.int64, device=model_runner.device
|
138
|
+
)
|
139
|
+
|
140
|
+
self.num_draft_tokens = model_runner.server_args.speculative_num_draft_tokens
|
141
|
+
|
142
|
+
self.num_head = (
|
143
|
+
model_runner.model_config.num_attention_heads // get_attention_tp_size()
|
144
|
+
)
|
145
|
+
self.num_kv_head = model_runner.model_config.get_num_kv_heads(
|
146
|
+
get_attention_tp_size()
|
147
|
+
)
|
148
|
+
|
149
|
+
self.static_kv_splits = get_bool_env_var(
|
150
|
+
"SGLANG_TRITON_DECODE_ATTN_STATIC_KV_SPLITS", "false"
|
151
|
+
)
|
152
|
+
self.max_kv_splits = model_runner.server_args.triton_attention_num_kv_splits
|
153
|
+
self.v_head_dim = model_runner.token_to_kv_pool.get_value_buffer(0).shape[-1]
|
154
|
+
|
155
|
+
self.forward_metadata: ForwardMetadata = None
|
156
|
+
|
157
|
+
self.max_context_len = model_runner.model_config.context_len
|
158
|
+
|
159
|
+
self.device = model_runner.device
|
160
|
+
self.device_core_count = get_device_core_count(model_runner.gpu_id)
|
161
|
+
|
162
|
+
def get_num_kv_splits(
|
163
|
+
self,
|
164
|
+
num_kv_splits: torch.Tensor,
|
165
|
+
seq_lens: torch.Tensor,
|
166
|
+
):
|
167
|
+
num_token, num_seq = num_kv_splits.shape[0], seq_lens.shape[0]
|
168
|
+
num_group = num_token // num_seq
|
169
|
+
|
170
|
+
assert (
|
171
|
+
num_group * num_seq == num_token
|
172
|
+
), f"num_seq({num_seq}), num_token({num_token}), something goes wrong!"
|
173
|
+
|
174
|
+
if self.static_kv_splits or self.device_core_count <= 0:
|
175
|
+
num_kv_splits.fill_(self.max_kv_splits)
|
176
|
+
return
|
177
|
+
|
178
|
+
if num_seq < 256:
|
179
|
+
SCHEDULE_SEQ = 256
|
180
|
+
else:
|
181
|
+
SCHEDULE_SEQ = triton.next_power_of_2(num_seq)
|
182
|
+
|
183
|
+
get_num_kv_splits_triton[(1,)](
|
184
|
+
num_kv_splits,
|
185
|
+
seq_lens,
|
186
|
+
num_seq,
|
187
|
+
num_group,
|
188
|
+
self.num_head,
|
189
|
+
self.num_kv_head,
|
190
|
+
self.max_kv_splits,
|
191
|
+
self.device_core_count,
|
192
|
+
MAX_NUM_SEQ=SCHEDULE_SEQ,
|
193
|
+
)
|
194
|
+
|
195
|
+
def init_forward_metadata(self, forward_batch: ForwardBatch):
|
196
|
+
"""Init auxiliary variables for wave attention backend."""
|
197
|
+
|
198
|
+
bs = forward_batch.batch_size
|
199
|
+
kv_indptr = self.kv_indptr
|
200
|
+
spec_info = forward_batch.spec_info
|
201
|
+
|
202
|
+
if forward_batch.forward_mode.is_decode_or_idle():
|
203
|
+
if spec_info is None:
|
204
|
+
kv_indptr[1 : bs + 1] = torch.cumsum(forward_batch.seq_lens, dim=0)
|
205
|
+
kv_indptr = kv_indptr[: bs + 1]
|
206
|
+
kv_indices = torch.empty(
|
207
|
+
forward_batch.seq_lens_sum, dtype=torch.int32, device=self.device
|
208
|
+
)
|
209
|
+
create_flashinfer_kv_indices_triton[(bs,)](
|
210
|
+
self.req_to_token,
|
211
|
+
forward_batch.req_pool_indices,
|
212
|
+
forward_batch.seq_lens,
|
213
|
+
kv_indptr,
|
214
|
+
None,
|
215
|
+
kv_indices,
|
216
|
+
self.req_to_token.stride(0),
|
217
|
+
)
|
218
|
+
else:
|
219
|
+
kv_indptr, kv_indices = spec_info.kv_indptr, spec_info.kv_indices
|
220
|
+
bs = kv_indptr.shape[0] - 1
|
221
|
+
|
222
|
+
from sglang.srt.layers.attention.wave_ops.decode_attention import (
|
223
|
+
decode_attention_intermediate_arrays_shapes,
|
224
|
+
)
|
225
|
+
|
226
|
+
attn_logits_shape, attn_logits_max_shape = (
|
227
|
+
decode_attention_intermediate_arrays_shapes(
|
228
|
+
bs, self.v_head_dim, self.num_head, self.max_kv_splits
|
229
|
+
)
|
230
|
+
)
|
231
|
+
attn_logits = torch.empty(
|
232
|
+
attn_logits_shape,
|
233
|
+
dtype=torch.float32,
|
234
|
+
device=self.device,
|
235
|
+
)
|
236
|
+
attn_lse = torch.empty(
|
237
|
+
attn_logits_max_shape,
|
238
|
+
dtype=torch.float32,
|
239
|
+
device=self.device,
|
240
|
+
)
|
241
|
+
num_kv_splits = torch.empty((bs,), dtype=torch.int32, device=self.device)
|
242
|
+
|
243
|
+
self.get_num_kv_splits(num_kv_splits, forward_batch.seq_lens)
|
244
|
+
|
245
|
+
qo_indptr = None
|
246
|
+
custom_mask = None
|
247
|
+
mask_indptr = None
|
248
|
+
max_extend_len = None
|
249
|
+
elif forward_batch.forward_mode.is_target_verify():
|
250
|
+
bs = len(forward_batch.req_pool_indices)
|
251
|
+
qo_indptr = torch.arange(
|
252
|
+
0,
|
253
|
+
(1 + bs) * self.num_draft_tokens,
|
254
|
+
step=self.num_draft_tokens,
|
255
|
+
dtype=torch.int32,
|
256
|
+
device=self.device,
|
257
|
+
)
|
258
|
+
# Different with flashinfer kv_indptr and kv_indices construction
|
259
|
+
kv_indptr[1 : bs + 1] = torch.cumsum(forward_batch.seq_lens, dim=0)
|
260
|
+
kv_indptr = kv_indptr[: bs + 1]
|
261
|
+
kv_indices = torch.empty(
|
262
|
+
kv_indptr[-1], dtype=torch.int32, device=self.device
|
263
|
+
)
|
264
|
+
create_flashinfer_kv_indices_triton[(bs,)](
|
265
|
+
self.req_to_token,
|
266
|
+
forward_batch.req_pool_indices,
|
267
|
+
forward_batch.seq_lens,
|
268
|
+
kv_indptr,
|
269
|
+
None,
|
270
|
+
kv_indices,
|
271
|
+
self.req_to_token.stride(0),
|
272
|
+
)
|
273
|
+
|
274
|
+
custom_mask = spec_info.custom_mask
|
275
|
+
seq_mask_len = self.num_draft_tokens * (
|
276
|
+
forward_batch.seq_lens + self.num_draft_tokens
|
277
|
+
)
|
278
|
+
mask_indptr = self.mask_indptr
|
279
|
+
mask_indptr[1 : bs + 1] = torch.cumsum(seq_mask_len[:bs], dim=0)
|
280
|
+
mask_indptr = mask_indptr[: bs + 1]
|
281
|
+
max_extend_len = self.num_draft_tokens
|
282
|
+
num_kv_splits = None
|
283
|
+
attn_logits = None
|
284
|
+
attn_lse = None
|
285
|
+
elif forward_batch.forward_mode.is_draft_extend():
|
286
|
+
kv_indices, kv_indptr, qo_indptr, custom_mask = (
|
287
|
+
spec_info.generate_attn_arg_prefill(
|
288
|
+
forward_batch.req_pool_indices,
|
289
|
+
forward_batch.seq_lens,
|
290
|
+
None,
|
291
|
+
self.req_to_token,
|
292
|
+
)
|
293
|
+
)
|
294
|
+
mask_indptr = None
|
295
|
+
# TODO(FIXME): This will trigger an invalid Eagle tree when using
|
296
|
+
# `max(spec_info.accept_length_cpu)`.
|
297
|
+
# It might have been forgotten to update somewhere.
|
298
|
+
max_extend_len = torch.max(spec_info.accept_length).item()
|
299
|
+
num_kv_splits = None
|
300
|
+
attn_logits = None
|
301
|
+
attn_lse = None
|
302
|
+
else:
|
303
|
+
kv_indptr[1 : bs + 1] = torch.cumsum(
|
304
|
+
forward_batch.extend_prefix_lens, dim=0
|
305
|
+
)
|
306
|
+
kv_indptr = kv_indptr[: bs + 1]
|
307
|
+
kv_indices = torch.empty(
|
308
|
+
forward_batch.extend_prefix_lens.sum().item(),
|
309
|
+
dtype=torch.int32,
|
310
|
+
device=self.device,
|
311
|
+
)
|
312
|
+
create_flashinfer_kv_indices_triton[(bs,)](
|
313
|
+
self.req_to_token,
|
314
|
+
forward_batch.req_pool_indices,
|
315
|
+
forward_batch.extend_prefix_lens,
|
316
|
+
kv_indptr,
|
317
|
+
None,
|
318
|
+
kv_indices,
|
319
|
+
self.req_to_token.stride(0),
|
320
|
+
)
|
321
|
+
|
322
|
+
qo_indptr = self.qo_indptr
|
323
|
+
qo_indptr[1 : bs + 1] = torch.cumsum(forward_batch.extend_seq_lens, dim=0)
|
324
|
+
qo_indptr = qo_indptr[: bs + 1]
|
325
|
+
custom_mask = None
|
326
|
+
mask_indptr = None
|
327
|
+
attn_logits = None
|
328
|
+
attn_lse = None
|
329
|
+
max_extend_len = torch.max(forward_batch.extend_seq_lens).item()
|
330
|
+
num_kv_splits = None
|
331
|
+
|
332
|
+
self.forward_metadata = ForwardMetadata(
|
333
|
+
attn_logits,
|
334
|
+
attn_lse,
|
335
|
+
max_extend_len,
|
336
|
+
num_kv_splits,
|
337
|
+
kv_indptr,
|
338
|
+
kv_indices,
|
339
|
+
qo_indptr,
|
340
|
+
custom_mask,
|
341
|
+
mask_indptr,
|
342
|
+
)
|
343
|
+
|
344
|
+
def init_cuda_graph_state(
|
345
|
+
self,
|
346
|
+
max_bs: int,
|
347
|
+
max_num_tokens: int,
|
348
|
+
kv_indices_buf: Optional[torch.Tensor] = None,
|
349
|
+
):
|
350
|
+
from sglang.srt.layers.attention.wave_ops.decode_attention import (
|
351
|
+
decode_attention_intermediate_arrays_shapes,
|
352
|
+
)
|
353
|
+
|
354
|
+
attn_logits_shape, attn_logits_max_shape = (
|
355
|
+
decode_attention_intermediate_arrays_shapes(
|
356
|
+
max_bs, self.v_head_dim, self.num_head, self.max_kv_splits
|
357
|
+
)
|
358
|
+
)
|
359
|
+
self.cuda_graph_attn_logits = torch.zeros(
|
360
|
+
attn_logits_shape,
|
361
|
+
dtype=torch.float32,
|
362
|
+
device=self.device,
|
363
|
+
)
|
364
|
+
self.cuda_graph_attn_lse = torch.zeros(
|
365
|
+
attn_logits_max_shape,
|
366
|
+
dtype=torch.float32,
|
367
|
+
device=self.device,
|
368
|
+
)
|
369
|
+
self.cuda_graph_num_kv_splits = torch.full(
|
370
|
+
(max_bs,), self.max_kv_splits, dtype=torch.int32, device=self.device
|
371
|
+
)
|
372
|
+
if kv_indices_buf is None:
|
373
|
+
self.cuda_graph_kv_indices = torch.zeros(
|
374
|
+
(max_bs * self.max_context_len),
|
375
|
+
dtype=torch.int32,
|
376
|
+
device=self.device,
|
377
|
+
)
|
378
|
+
else:
|
379
|
+
self.cuda_graph_kv_indices = kv_indices_buf
|
380
|
+
|
381
|
+
if not self.skip_prefill:
|
382
|
+
self.cuda_graph_custom_mask = torch.zeros(
|
383
|
+
(max_bs * self.max_context_len),
|
384
|
+
dtype=torch.uint8,
|
385
|
+
device=self.device,
|
386
|
+
)
|
387
|
+
|
388
|
+
def init_forward_metadata_capture_cuda_graph(
|
389
|
+
self,
|
390
|
+
bs: int,
|
391
|
+
num_tokens: int,
|
392
|
+
req_pool_indices: torch.Tensor,
|
393
|
+
seq_lens: torch.Tensor,
|
394
|
+
encoder_lens: Optional[torch.Tensor],
|
395
|
+
forward_mode: ForwardMode,
|
396
|
+
spec_info: Optional[Union[EagleDraftInput, EagleVerifyInput]],
|
397
|
+
):
|
398
|
+
assert encoder_lens is None, "Not supported"
|
399
|
+
|
400
|
+
if forward_mode.is_decode_or_idle():
|
401
|
+
if spec_info is None:
|
402
|
+
kv_indptr = self.kv_indptr
|
403
|
+
kv_indptr[1 : bs + 1] = torch.cumsum(seq_lens, dim=0)
|
404
|
+
kv_indptr = kv_indptr[: bs + 1]
|
405
|
+
kv_indices = self.cuda_graph_kv_indices
|
406
|
+
create_flashinfer_kv_indices_triton[(bs,)](
|
407
|
+
self.req_to_token,
|
408
|
+
req_pool_indices,
|
409
|
+
seq_lens,
|
410
|
+
kv_indptr,
|
411
|
+
None,
|
412
|
+
kv_indices,
|
413
|
+
self.req_to_token.stride(0),
|
414
|
+
)
|
415
|
+
else:
|
416
|
+
kv_indptr, kv_indices = spec_info.kv_indptr, spec_info.kv_indices
|
417
|
+
|
418
|
+
attn_logits = self.cuda_graph_attn_logits
|
419
|
+
attn_lse = self.cuda_graph_attn_lse
|
420
|
+
max_extend_len = None
|
421
|
+
num_kv_splits = self.cuda_graph_num_kv_splits
|
422
|
+
qo_indptr = None
|
423
|
+
custom_mask = None
|
424
|
+
mask_indptr = None
|
425
|
+
elif forward_mode.is_target_verify():
|
426
|
+
qo_indptr = self.qo_indptr[: bs + 1]
|
427
|
+
qo_indptr[: bs + 1] = torch.arange(
|
428
|
+
0,
|
429
|
+
(1 + bs) * self.num_draft_tokens,
|
430
|
+
step=self.num_draft_tokens,
|
431
|
+
dtype=torch.int32,
|
432
|
+
device=self.device,
|
433
|
+
)
|
434
|
+
kv_indptr = self.kv_indptr[: bs + 1]
|
435
|
+
kv_indptr[1 : bs + 1] = torch.cumsum(seq_lens, dim=0)
|
436
|
+
kv_indices = self.cuda_graph_kv_indices
|
437
|
+
create_flashinfer_kv_indices_triton[(bs,)](
|
438
|
+
self.req_to_token,
|
439
|
+
req_pool_indices,
|
440
|
+
seq_lens,
|
441
|
+
kv_indptr,
|
442
|
+
None,
|
443
|
+
kv_indices,
|
444
|
+
self.req_to_token.stride(0),
|
445
|
+
)
|
446
|
+
|
447
|
+
custom_mask = self.cuda_graph_custom_mask
|
448
|
+
seq_mask_len = self.num_draft_tokens * (seq_lens + self.num_draft_tokens)
|
449
|
+
mask_indptr = self.mask_indptr[: bs + 1]
|
450
|
+
mask_indptr[1 : bs + 1] = torch.cumsum(seq_mask_len, dim=0)
|
451
|
+
max_extend_len = self.num_draft_tokens
|
452
|
+
num_kv_splits = None
|
453
|
+
attn_logits = None
|
454
|
+
attn_lse = None
|
455
|
+
else:
|
456
|
+
raise ValueError(
|
457
|
+
f"Invalid forward mode: {forward_mode=} for CUDA Graph capture."
|
458
|
+
)
|
459
|
+
|
460
|
+
self.forward_metadata = ForwardMetadata(
|
461
|
+
attn_logits,
|
462
|
+
attn_lse,
|
463
|
+
max_extend_len,
|
464
|
+
num_kv_splits,
|
465
|
+
kv_indptr,
|
466
|
+
kv_indices,
|
467
|
+
qo_indptr,
|
468
|
+
custom_mask,
|
469
|
+
mask_indptr,
|
470
|
+
)
|
471
|
+
|
472
|
+
def init_forward_metadata_replay_cuda_graph(
|
473
|
+
self,
|
474
|
+
bs: int,
|
475
|
+
req_pool_indices: torch.Tensor,
|
476
|
+
seq_lens: torch.Tensor,
|
477
|
+
seq_lens_sum: int,
|
478
|
+
encoder_lens: Optional[torch.Tensor],
|
479
|
+
forward_mode: ForwardMode,
|
480
|
+
spec_info: Optional[Union[EagleDraftInput, EagleVerifyInput]],
|
481
|
+
seq_lens_cpu: Optional[torch.Tensor],
|
482
|
+
):
|
483
|
+
# NOTE: encoder_lens expected to be zeros or None
|
484
|
+
if forward_mode.is_decode_or_idle():
|
485
|
+
# Update kv_indptr, kv_indices
|
486
|
+
kv_indptr = self.kv_indptr
|
487
|
+
kv_indices = self.cuda_graph_kv_indices
|
488
|
+
num_kv_splits = self.cuda_graph_num_kv_splits
|
489
|
+
if spec_info is None:
|
490
|
+
kv_indptr[1 : bs + 1] = torch.cumsum(seq_lens[:bs], dim=0)
|
491
|
+
kv_indptr = kv_indptr[: bs + 1]
|
492
|
+
create_flashinfer_kv_indices_triton[(bs,)](
|
493
|
+
self.req_to_token,
|
494
|
+
req_pool_indices[:bs],
|
495
|
+
seq_lens[:bs],
|
496
|
+
kv_indptr,
|
497
|
+
None,
|
498
|
+
kv_indices,
|
499
|
+
self.req_to_token.stride(0),
|
500
|
+
)
|
501
|
+
num_token = bs
|
502
|
+
else:
|
503
|
+
kv_indptr[: spec_info.kv_indptr.shape[0]] = spec_info.kv_indptr
|
504
|
+
kv_indices[: spec_info.kv_indices.shape[0]] = spec_info.kv_indices
|
505
|
+
num_token = spec_info.kv_indptr.shape[0] - 1
|
506
|
+
self.get_num_kv_splits(num_kv_splits[:num_token], seq_lens[:bs])
|
507
|
+
elif forward_mode.is_target_verify():
|
508
|
+
# Update qo_indptr, kv_indptr, kv_indices, custom_mask, mask_indptr
|
509
|
+
bs = len(req_pool_indices)
|
510
|
+
qo_indptr = self.qo_indptr[: bs + 1]
|
511
|
+
qo_indptr[: bs + 1] = torch.arange(
|
512
|
+
0,
|
513
|
+
(1 + bs) * self.num_draft_tokens,
|
514
|
+
step=self.num_draft_tokens,
|
515
|
+
dtype=torch.int32,
|
516
|
+
device=self.device,
|
517
|
+
)
|
518
|
+
kv_indptr = self.kv_indptr[: bs + 1]
|
519
|
+
kv_indptr[1 : bs + 1] = torch.cumsum(seq_lens, dim=0)
|
520
|
+
kv_indices = self.cuda_graph_kv_indices
|
521
|
+
create_flashinfer_kv_indices_triton[(bs,)](
|
522
|
+
self.req_to_token,
|
523
|
+
req_pool_indices,
|
524
|
+
seq_lens,
|
525
|
+
kv_indptr,
|
526
|
+
None,
|
527
|
+
kv_indices,
|
528
|
+
self.req_to_token.stride(0),
|
529
|
+
)
|
530
|
+
custom_mask = self.cuda_graph_custom_mask
|
531
|
+
custom_mask[: spec_info.custom_mask.shape[0]] = spec_info.custom_mask
|
532
|
+
seq_mask_len = self.num_draft_tokens * (seq_lens + self.num_draft_tokens)
|
533
|
+
mask_indptr = self.mask_indptr[: bs + 1]
|
534
|
+
mask_indptr[1 : bs + 1] = torch.cumsum(seq_mask_len, dim=0)
|
535
|
+
else:
|
536
|
+
raise ValueError(
|
537
|
+
f"Invalid forward mode: {forward_mode=} for CUDA Graph replay."
|
538
|
+
)
|
539
|
+
|
540
|
+
def get_cuda_graph_seq_len_fill_value(self):
|
541
|
+
return 1
|
542
|
+
|
543
|
+
def forward_extend(
|
544
|
+
self,
|
545
|
+
q: torch.Tensor,
|
546
|
+
k: torch.Tensor,
|
547
|
+
v: torch.Tensor,
|
548
|
+
layer: RadixAttention,
|
549
|
+
forward_batch: ForwardBatch,
|
550
|
+
save_kv_cache=True,
|
551
|
+
):
|
552
|
+
# TODO: reuse the buffer across layers
|
553
|
+
if layer.qk_head_dim != layer.v_head_dim:
|
554
|
+
o = q.new_empty((q.shape[0], layer.tp_q_head_num * layer.v_head_dim))
|
555
|
+
else:
|
556
|
+
o = torch.empty_like(q)
|
557
|
+
|
558
|
+
if save_kv_cache:
|
559
|
+
forward_batch.token_to_kv_pool.set_kv_buffer(
|
560
|
+
layer, forward_batch.out_cache_loc, k, v
|
561
|
+
)
|
562
|
+
|
563
|
+
max_extend_len = self.forward_metadata.max_extend_len
|
564
|
+
computed_max_ext_seq_len = torch.max(forward_batch.extend_seq_lens)
|
565
|
+
if computed_max_ext_seq_len != max_extend_len:
|
566
|
+
assert len(forward_batch.extend_seq_lens) == 1
|
567
|
+
forward_batch.extend_seq_lens[0] = max_extend_len
|
568
|
+
forward_batch.seq_lens = max_extend_len
|
569
|
+
|
570
|
+
self.extend_attention_fwd(
|
571
|
+
q.view(-1, layer.tp_q_head_num, layer.qk_head_dim),
|
572
|
+
k.contiguous(),
|
573
|
+
v.contiguous(),
|
574
|
+
forward_batch.token_to_kv_pool.get_key_buffer(layer.layer_id),
|
575
|
+
forward_batch.token_to_kv_pool.get_value_buffer(layer.layer_id),
|
576
|
+
self.forward_metadata.qo_indptr,
|
577
|
+
self.forward_metadata.kv_indptr,
|
578
|
+
self.forward_metadata.kv_indices,
|
579
|
+
self.forward_metadata.custom_mask,
|
580
|
+
self.forward_metadata.mask_indptr,
|
581
|
+
self.forward_metadata.max_extend_len,
|
582
|
+
o.view(-1, layer.tp_q_head_num, layer.v_head_dim),
|
583
|
+
is_causal=True,
|
584
|
+
layer_scaling=layer.scaling,
|
585
|
+
logit_cap=layer.logit_cap,
|
586
|
+
)
|
587
|
+
return o
|
588
|
+
|
589
|
+
def forward_decode(
|
590
|
+
self,
|
591
|
+
q: torch.Tensor,
|
592
|
+
k: torch.Tensor,
|
593
|
+
v: torch.Tensor,
|
594
|
+
layer: RadixAttention,
|
595
|
+
forward_batch: ForwardBatch,
|
596
|
+
save_kv_cache=True,
|
597
|
+
):
|
598
|
+
# During torch.compile, there is a bug in rotary_emb that causes the
|
599
|
+
# output value to have a 3D tensor shape. This reshapes the output correctly.
|
600
|
+
q = q.reshape(-1, layer.tp_q_head_num * layer.qk_head_dim)
|
601
|
+
|
602
|
+
# TODO: reuse the buffer across layers
|
603
|
+
if layer.qk_head_dim != layer.v_head_dim:
|
604
|
+
o = q.new_empty((q.shape[0], layer.tp_q_head_num * layer.v_head_dim))
|
605
|
+
else:
|
606
|
+
o = torch.empty_like(q)
|
607
|
+
|
608
|
+
if save_kv_cache:
|
609
|
+
forward_batch.token_to_kv_pool.set_kv_buffer(
|
610
|
+
layer, forward_batch.out_cache_loc, k, v
|
611
|
+
)
|
612
|
+
|
613
|
+
self.decode_attention_fwd(
|
614
|
+
q.view(-1, layer.tp_q_head_num, layer.qk_head_dim),
|
615
|
+
forward_batch.token_to_kv_pool.get_key_buffer(layer.layer_id),
|
616
|
+
forward_batch.token_to_kv_pool.get_value_buffer(layer.layer_id),
|
617
|
+
o.view(-1, layer.tp_q_head_num, layer.v_head_dim),
|
618
|
+
self.forward_metadata.kv_indptr,
|
619
|
+
self.forward_metadata.kv_indices,
|
620
|
+
self.forward_metadata.attn_logits,
|
621
|
+
self.forward_metadata.attn_lse,
|
622
|
+
self.forward_metadata.num_kv_splits,
|
623
|
+
self.max_kv_splits,
|
624
|
+
layer.scaling,
|
625
|
+
layer.logit_cap,
|
626
|
+
)
|
627
|
+
return o
|