sglang 0.4.9.post2__py3-none-any.whl → 0.4.9.post3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +2 -1
- sglang/eval/loogle_eval.py +7 -0
- sglang/srt/configs/deepseekvl2.py +11 -2
- sglang/srt/configs/internvl.py +3 -0
- sglang/srt/configs/janus_pro.py +3 -0
- sglang/srt/configs/model_config.py +9 -7
- sglang/srt/configs/update_config.py +3 -1
- sglang/srt/conversation.py +1 -0
- sglang/srt/custom_op.py +5 -2
- sglang/srt/disaggregation/decode.py +9 -1
- sglang/srt/disaggregation/mooncake/conn.py +44 -56
- sglang/srt/distributed/parallel_state.py +33 -0
- sglang/srt/entrypoints/engine.py +30 -26
- sglang/srt/entrypoints/openai/serving_chat.py +21 -2
- sglang/srt/eplb/expert_location_dispatch.py +1 -1
- sglang/srt/function_call/function_call_parser.py +2 -0
- sglang/srt/function_call/qwen3_detector.py +150 -0
- sglang/srt/hf_transformers_utils.py +0 -1
- sglang/srt/layers/activation.py +13 -0
- sglang/srt/layers/attention/flashattention_backend.py +3 -3
- sglang/srt/layers/attention/flashinfer_backend.py +40 -1
- sglang/srt/layers/linear.py +13 -102
- sglang/srt/layers/moe/ep_moe/kernels.py +4 -2
- sglang/srt/layers/moe/ep_moe/layer.py +23 -402
- sglang/srt/layers/moe/fused_moe_native.py +7 -47
- sglang/srt/layers/moe/fused_moe_triton/__init__.py +4 -4
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_3_1/E=384,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_3_1/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_3_1/E=384,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_3_1/E=385,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_3_1/E=385,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +35 -45
- sglang/srt/layers/moe/fused_moe_triton/layer.py +14 -396
- sglang/srt/layers/moe/topk.py +187 -12
- sglang/srt/layers/quantization/__init__.py +20 -134
- sglang/srt/layers/quantization/awq.py +578 -11
- sglang/srt/layers/quantization/awq_triton.py +339 -0
- sglang/srt/layers/quantization/base_config.py +85 -10
- sglang/srt/layers/quantization/blockwise_int8.py +17 -55
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +13 -11
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +24 -73
- sglang/srt/layers/quantization/fp8.py +273 -62
- sglang/srt/layers/quantization/fp8_kernel.py +210 -46
- sglang/srt/layers/quantization/fp8_utils.py +2 -2
- sglang/srt/layers/quantization/gptq.py +501 -143
- sglang/srt/layers/quantization/marlin_utils.py +790 -0
- sglang/srt/layers/quantization/modelopt_quant.py +26 -108
- sglang/srt/layers/quantization/moe_wna16.py +45 -49
- sglang/srt/layers/quantization/petit.py +252 -0
- sglang/srt/layers/quantization/petit_utils.py +104 -0
- sglang/srt/layers/quantization/qoq.py +7 -6
- sglang/srt/layers/quantization/scalar_type.py +352 -0
- sglang/srt/layers/quantization/unquant.py +422 -0
- sglang/srt/layers/quantization/utils.py +343 -3
- sglang/srt/layers/quantization/w4afp8.py +8 -4
- sglang/srt/layers/quantization/w8a8_fp8.py +17 -51
- sglang/srt/layers/quantization/w8a8_int8.py +51 -115
- sglang/srt/layers/vocab_parallel_embedding.py +1 -41
- sglang/srt/lora/lora.py +0 -4
- sglang/srt/lora/lora_manager.py +87 -53
- sglang/srt/lora/mem_pool.py +81 -33
- sglang/srt/lora/utils.py +12 -5
- sglang/srt/managers/cache_controller.py +241 -0
- sglang/srt/managers/io_struct.py +41 -29
- sglang/srt/managers/mm_utils.py +7 -8
- sglang/srt/managers/schedule_batch.py +150 -110
- sglang/srt/managers/schedule_policy.py +68 -27
- sglang/srt/managers/scheduler.py +243 -61
- sglang/srt/managers/scheduler_output_processor_mixin.py +22 -4
- sglang/srt/managers/tokenizer_manager.py +11 -3
- sglang/srt/managers/tp_worker.py +14 -0
- sglang/srt/managers/tp_worker_overlap_thread.py +11 -0
- sglang/srt/mem_cache/allocator.py +7 -16
- sglang/srt/mem_cache/base_prefix_cache.py +14 -2
- sglang/srt/mem_cache/chunk_cache.py +5 -2
- sglang/srt/mem_cache/hicache_storage.py +152 -0
- sglang/srt/mem_cache/hiradix_cache.py +179 -4
- sglang/srt/mem_cache/memory_pool.py +16 -1
- sglang/srt/mem_cache/memory_pool_host.py +41 -2
- sglang/srt/mem_cache/radix_cache.py +26 -0
- sglang/srt/mem_cache/swa_radix_cache.py +1025 -0
- sglang/srt/metrics/collector.py +9 -0
- sglang/srt/model_executor/cuda_graph_runner.py +5 -6
- sglang/srt/model_executor/forward_batch_info.py +14 -1
- sglang/srt/model_executor/model_runner.py +109 -22
- sglang/srt/model_loader/loader.py +7 -1
- sglang/srt/model_loader/utils.py +4 -4
- sglang/srt/models/clip.py +1 -1
- sglang/srt/models/deepseek.py +9 -6
- sglang/srt/models/deepseek_janus_pro.py +1 -1
- sglang/srt/models/deepseek_v2.py +191 -171
- sglang/srt/models/deepseek_vl2.py +5 -5
- sglang/srt/models/gemma.py +48 -0
- sglang/srt/models/gemma2.py +52 -0
- sglang/srt/models/gemma3_causal.py +63 -0
- sglang/srt/models/gemma3_mm.py +1 -1
- sglang/srt/models/gemma3n_mm.py +2 -4
- sglang/srt/models/granitemoe.py +385 -0
- sglang/srt/models/grok.py +9 -3
- sglang/srt/models/hunyuan.py +63 -16
- sglang/srt/models/internvl.py +1 -1
- sglang/srt/models/kimi_vl.py +1 -1
- sglang/srt/models/llama.py +41 -0
- sglang/srt/models/llama4.py +11 -11
- sglang/srt/models/llava.py +2 -2
- sglang/srt/models/llavavid.py +1 -1
- sglang/srt/models/minicpm.py +0 -2
- sglang/srt/models/minicpmo.py +3 -7
- sglang/srt/models/minicpmv.py +1 -1
- sglang/srt/models/mistral.py +1 -1
- sglang/srt/models/mixtral.py +9 -2
- sglang/srt/models/mllama.py +3 -5
- sglang/srt/models/mllama4.py +3 -3
- sglang/srt/models/olmoe.py +8 -5
- sglang/srt/models/persimmon.py +330 -0
- sglang/srt/models/phi.py +321 -0
- sglang/srt/models/phi4mm.py +44 -4
- sglang/srt/models/phi4mm_audio.py +1260 -0
- sglang/srt/models/phi4mm_utils.py +1917 -0
- sglang/srt/models/phimoe.py +9 -3
- sglang/srt/models/qwen.py +37 -0
- sglang/srt/models/qwen2.py +41 -0
- sglang/srt/models/qwen2_5_vl.py +4 -4
- sglang/srt/models/qwen2_audio.py +1 -1
- sglang/srt/models/qwen2_moe.py +53 -5
- sglang/srt/models/qwen2_vl.py +4 -4
- sglang/srt/models/qwen3.py +65 -1
- sglang/srt/models/qwen3_moe.py +56 -18
- sglang/srt/models/vila.py +1 -1
- sglang/srt/multimodal/processors/base_processor.py +91 -97
- sglang/srt/multimodal/processors/clip.py +21 -19
- sglang/srt/multimodal/processors/deepseek_vl_v2.py +8 -26
- sglang/srt/multimodal/processors/gemma3.py +13 -17
- sglang/srt/multimodal/processors/gemma3n.py +19 -23
- sglang/srt/multimodal/processors/internvl.py +9 -10
- sglang/srt/multimodal/processors/janus_pro.py +12 -27
- sglang/srt/multimodal/processors/kimi_vl.py +12 -14
- sglang/srt/multimodal/processors/llava.py +4 -2
- sglang/srt/multimodal/processors/minicpm.py +35 -44
- sglang/srt/multimodal/processors/mlama.py +21 -18
- sglang/srt/multimodal/processors/mllama4.py +4 -5
- sglang/srt/multimodal/processors/phi4mm.py +63 -39
- sglang/srt/multimodal/processors/pixtral.py +14 -35
- sglang/srt/multimodal/processors/qwen_audio.py +65 -0
- sglang/srt/multimodal/processors/qwen_vl.py +16 -21
- sglang/srt/multimodal/processors/vila.py +14 -14
- sglang/srt/sampling/sampling_params.py +8 -1
- sglang/srt/server_args.py +393 -230
- sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +9 -1
- sglang/srt/two_batch_overlap.py +1 -0
- sglang/srt/utils.py +27 -1
- sglang/test/runners.py +14 -3
- sglang/test/test_block_fp8.py +8 -3
- sglang/test/test_block_fp8_ep.py +1 -1
- sglang/test/test_custom_ops.py +12 -7
- sglang/test/test_cutlass_w4a8_moe.py +1 -3
- sglang/test/test_fp4_moe.py +1 -3
- sglang/test/test_marlin_moe.py +286 -0
- sglang/test/test_marlin_utils.py +171 -0
- sglang/test/test_utils.py +35 -0
- sglang/version.py +1 -1
- {sglang-0.4.9.post2.dist-info → sglang-0.4.9.post3.dist-info}/METADATA +8 -8
- {sglang-0.4.9.post2.dist-info → sglang-0.4.9.post3.dist-info}/RECORD +166 -146
- sglang/srt/layers/quantization/quant_utils.py +0 -166
- sglang/srt/managers/multimodal_processors/qwen_audio.py +0 -94
- {sglang-0.4.9.post2.dist-info → sglang-0.4.9.post3.dist-info}/WHEEL +0 -0
- {sglang-0.4.9.post2.dist-info → sglang-0.4.9.post3.dist-info}/licenses/LICENSE +0 -0
- {sglang-0.4.9.post2.dist-info → sglang-0.4.9.post3.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,330 @@
|
|
1
|
+
from collections.abc import Iterable
|
2
|
+
from typing import Optional
|
3
|
+
|
4
|
+
import torch
|
5
|
+
from torch import nn
|
6
|
+
from transformers import PersimmonConfig
|
7
|
+
|
8
|
+
from sglang.srt.distributed import get_pp_group, get_tensor_model_parallel_world_size
|
9
|
+
from sglang.srt.layers.activation import get_act_fn
|
10
|
+
from sglang.srt.layers.linear import (
|
11
|
+
ColumnParallelLinear,
|
12
|
+
QKVParallelLinear,
|
13
|
+
RowParallelLinear,
|
14
|
+
)
|
15
|
+
from sglang.srt.layers.logits_processor import LogitsProcessor, LogitsProcessorOutput
|
16
|
+
from sglang.srt.layers.quantization import QuantizationConfig
|
17
|
+
from sglang.srt.layers.radix_attention import RadixAttention
|
18
|
+
from sglang.srt.layers.rotary_embedding import get_rope
|
19
|
+
from sglang.srt.layers.utils import PPMissingLayer
|
20
|
+
from sglang.srt.layers.vocab_parallel_embedding import (
|
21
|
+
ParallelLMHead,
|
22
|
+
VocabParallelEmbedding,
|
23
|
+
)
|
24
|
+
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
|
25
|
+
from sglang.srt.model_loader.weight_utils import default_weight_loader
|
26
|
+
from sglang.srt.utils import add_prefix, make_layers
|
27
|
+
|
28
|
+
|
29
|
+
class PersimmonMLP(nn.Module):
|
30
|
+
|
31
|
+
def __init__(
|
32
|
+
self, config: PersimmonConfig, quant_config: Optional[QuantizationConfig] = None
|
33
|
+
):
|
34
|
+
super().__init__()
|
35
|
+
self.dense_h_to_4h = ColumnParallelLinear(
|
36
|
+
config.hidden_size, config.intermediate_size, quant_config=quant_config
|
37
|
+
)
|
38
|
+
self.dense_4h_to_h = RowParallelLinear(
|
39
|
+
config.intermediate_size, config.hidden_size, quant_config=quant_config
|
40
|
+
)
|
41
|
+
self.act = get_act_fn(config.hidden_act)
|
42
|
+
|
43
|
+
def forward(self, hidden_states) -> torch.Tensor:
|
44
|
+
hidden_states, _ = self.dense_h_to_4h(hidden_states)
|
45
|
+
hidden_states = self.act(hidden_states)
|
46
|
+
hidden_states, _ = self.dense_4h_to_h(hidden_states)
|
47
|
+
return hidden_states
|
48
|
+
|
49
|
+
|
50
|
+
class PersimmonAttention(nn.Module):
|
51
|
+
|
52
|
+
def __init__(
|
53
|
+
self,
|
54
|
+
config: PersimmonConfig,
|
55
|
+
quant_config: Optional[QuantizationConfig] = None,
|
56
|
+
prefix: str = "",
|
57
|
+
layer_id: int = 0,
|
58
|
+
):
|
59
|
+
super().__init__()
|
60
|
+
self.config = config
|
61
|
+
tensor_parallel_world_size = get_tensor_model_parallel_world_size()
|
62
|
+
|
63
|
+
self.hidden_size = config.hidden_size
|
64
|
+
self.total_num_heads = config.num_attention_heads
|
65
|
+
self.num_heads = self.total_num_heads // tensor_parallel_world_size
|
66
|
+
self.head_dim = self.hidden_size // self.total_num_heads
|
67
|
+
self.max_position_embeddings = config.max_position_embeddings
|
68
|
+
self.rope_theta = config.rope_theta
|
69
|
+
self.partial_rotary_factor = config.partial_rotary_factor
|
70
|
+
self.is_causal = True
|
71
|
+
|
72
|
+
assert (self.head_dim * self.total_num_heads) == self.hidden_size
|
73
|
+
assert self.total_num_heads % tensor_parallel_world_size == 0
|
74
|
+
|
75
|
+
self.query_key_value = QKVParallelLinear(
|
76
|
+
self.hidden_size,
|
77
|
+
self.head_dim,
|
78
|
+
self.total_num_heads,
|
79
|
+
bias=True,
|
80
|
+
quant_config=quant_config,
|
81
|
+
)
|
82
|
+
self.dense = RowParallelLinear(
|
83
|
+
self.total_num_heads * self.head_dim,
|
84
|
+
self.hidden_size,
|
85
|
+
bias=True,
|
86
|
+
quant_config=quant_config,
|
87
|
+
)
|
88
|
+
self.is_qk_layernorm = config.qk_layernorm
|
89
|
+
|
90
|
+
if self.is_qk_layernorm:
|
91
|
+
self.q_layernorm = nn.LayerNorm(self.head_dim)
|
92
|
+
self.k_layernorm = nn.LayerNorm(self.head_dim)
|
93
|
+
|
94
|
+
self.rotary_emb = get_rope(
|
95
|
+
self.head_dim,
|
96
|
+
rotary_dim=self.head_dim,
|
97
|
+
max_position=self.max_position_embeddings,
|
98
|
+
base=self.rope_theta,
|
99
|
+
partial_rotary_factor=self.partial_rotary_factor,
|
100
|
+
)
|
101
|
+
self.scaling = self.head_dim**-0.5
|
102
|
+
self.attn = RadixAttention(
|
103
|
+
self.num_heads,
|
104
|
+
self.head_dim,
|
105
|
+
self.scaling,
|
106
|
+
num_kv_heads=self.num_heads,
|
107
|
+
layer_id=layer_id,
|
108
|
+
quant_config=quant_config,
|
109
|
+
prefix=add_prefix("attn", prefix),
|
110
|
+
)
|
111
|
+
|
112
|
+
def _split_heads(self, x: torch.Tensor) -> torch.Tensor:
|
113
|
+
seq_length = x.shape[0]
|
114
|
+
return x.view(seq_length, self.num_heads, self.head_dim)
|
115
|
+
|
116
|
+
def _merge_heads(self, x: torch.Tensor) -> torch.Tensor:
|
117
|
+
seq_length = x.shape[0]
|
118
|
+
return x.view(seq_length, self.num_heads * self.head_dim)
|
119
|
+
|
120
|
+
def forward(
|
121
|
+
self,
|
122
|
+
position_ids: torch.Tensor,
|
123
|
+
forward_batch: ForwardBatch,
|
124
|
+
hidden_states: torch.Tensor,
|
125
|
+
) -> torch.Tensor:
|
126
|
+
qkv, _ = self.query_key_value(hidden_states)
|
127
|
+
q, k, v = qkv.chunk(chunks=3, dim=-1)
|
128
|
+
|
129
|
+
if self.is_qk_layernorm:
|
130
|
+
q = self._split_heads(q)
|
131
|
+
k = self._split_heads(k)
|
132
|
+
|
133
|
+
q = self.q_layernorm(q)
|
134
|
+
k = self.k_layernorm(k)
|
135
|
+
|
136
|
+
q = self._merge_heads(q)
|
137
|
+
k = self._merge_heads(k)
|
138
|
+
|
139
|
+
q, k = self.rotary_emb(position_ids, q, k)
|
140
|
+
attn_output = self.attn(q, k, v, forward_batch=forward_batch)
|
141
|
+
output, _ = self.dense(attn_output)
|
142
|
+
return output
|
143
|
+
|
144
|
+
|
145
|
+
class PersimmonDecoderLayer(nn.Module):
|
146
|
+
|
147
|
+
def __init__(
|
148
|
+
self,
|
149
|
+
config: PersimmonConfig,
|
150
|
+
quant_config: Optional[QuantizationConfig] = None,
|
151
|
+
prefix: str = "",
|
152
|
+
idx: int = 0,
|
153
|
+
):
|
154
|
+
super().__init__()
|
155
|
+
self.hidden_size = config.hidden_size
|
156
|
+
self.self_attn = PersimmonAttention(
|
157
|
+
config=config,
|
158
|
+
quant_config=quant_config,
|
159
|
+
prefix=add_prefix("self_attn", prefix),
|
160
|
+
layer_id=idx,
|
161
|
+
)
|
162
|
+
self.mlp = PersimmonMLP(config, quant_config=quant_config)
|
163
|
+
self.input_layernorm = nn.LayerNorm(
|
164
|
+
config.hidden_size, eps=config.layer_norm_eps
|
165
|
+
)
|
166
|
+
self.post_attention_layernorm = nn.LayerNorm(
|
167
|
+
config.hidden_size, eps=config.layer_norm_eps
|
168
|
+
)
|
169
|
+
|
170
|
+
def forward(
|
171
|
+
self,
|
172
|
+
position_ids: torch.Tensor,
|
173
|
+
forward_batch: ForwardBatch,
|
174
|
+
hidden_states: torch.Tensor,
|
175
|
+
) -> torch.Tensor:
|
176
|
+
residual = hidden_states
|
177
|
+
|
178
|
+
hidden_states = self.input_layernorm(hidden_states)
|
179
|
+
|
180
|
+
hidden_states = self.self_attn(
|
181
|
+
position_ids=position_ids,
|
182
|
+
hidden_states=hidden_states,
|
183
|
+
forward_batch=forward_batch,
|
184
|
+
)
|
185
|
+
hidden_states = residual + hidden_states
|
186
|
+
|
187
|
+
residual = hidden_states
|
188
|
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
189
|
+
hidden_states = self.mlp(hidden_states)
|
190
|
+
|
191
|
+
hidden_states = hidden_states + residual
|
192
|
+
|
193
|
+
outputs = hidden_states
|
194
|
+
return outputs
|
195
|
+
|
196
|
+
|
197
|
+
class PersimmonModel(nn.Module):
|
198
|
+
|
199
|
+
def __init__(
|
200
|
+
self,
|
201
|
+
config: PersimmonConfig,
|
202
|
+
quant_config: Optional[QuantizationConfig] = None,
|
203
|
+
prefix: str = "",
|
204
|
+
):
|
205
|
+
super().__init__()
|
206
|
+
self.config = config
|
207
|
+
self.pp_group = get_pp_group()
|
208
|
+
|
209
|
+
if self.pp_group.is_first_rank:
|
210
|
+
self.embed_tokens = VocabParallelEmbedding(
|
211
|
+
config.vocab_size, config.hidden_size
|
212
|
+
)
|
213
|
+
else:
|
214
|
+
self.embed_tokens = PPMissingLayer()
|
215
|
+
|
216
|
+
self.layers, self.start_layer, self.end_layer = make_layers(
|
217
|
+
config.num_hidden_layers,
|
218
|
+
lambda idx, prefix: PersimmonDecoderLayer(
|
219
|
+
config, quant_config=quant_config, prefix=prefix, idx=idx
|
220
|
+
),
|
221
|
+
prefix="model.layers",
|
222
|
+
pp_rank=self.pp_group.rank_in_group,
|
223
|
+
pp_size=self.pp_group.world_size,
|
224
|
+
)
|
225
|
+
|
226
|
+
if self.pp_group.is_last_rank:
|
227
|
+
self.final_layernorm = nn.LayerNorm(
|
228
|
+
config.hidden_size, eps=config.layer_norm_eps
|
229
|
+
)
|
230
|
+
else:
|
231
|
+
self.final_layernorm = PPMissingLayer()
|
232
|
+
|
233
|
+
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
234
|
+
return self.embed_tokens(input_ids)
|
235
|
+
|
236
|
+
def forward(
|
237
|
+
self,
|
238
|
+
input_ids: torch.Tensor,
|
239
|
+
forward_batch: ForwardBatch,
|
240
|
+
positions: torch.Tensor,
|
241
|
+
inputs_embeds: Optional[torch.Tensor] = None,
|
242
|
+
) -> torch.Tensor:
|
243
|
+
if self.pp_group.is_first_rank:
|
244
|
+
if inputs_embeds is not None:
|
245
|
+
hidden_states = inputs_embeds
|
246
|
+
else:
|
247
|
+
hidden_states = self.get_input_embeddings(input_ids)
|
248
|
+
else:
|
249
|
+
hidden_states = forward_batch.pp_input_hidden
|
250
|
+
for i in range(self.start_layer, self.end_layer):
|
251
|
+
layer = self.layers[i]
|
252
|
+
hidden_states = layer(
|
253
|
+
position_ids=positions,
|
254
|
+
forward_batch=forward_batch,
|
255
|
+
hidden_states=hidden_states,
|
256
|
+
)
|
257
|
+
return self.final_layernorm(hidden_states)
|
258
|
+
|
259
|
+
|
260
|
+
class PersimmonForCausalLM(nn.Module):
|
261
|
+
|
262
|
+
def __init__(
|
263
|
+
self,
|
264
|
+
config: PersimmonConfig,
|
265
|
+
quant_config: Optional[QuantizationConfig] = None,
|
266
|
+
prefix: str = "",
|
267
|
+
):
|
268
|
+
super().__init__()
|
269
|
+
self.config = config
|
270
|
+
self.quant_config = quant_config
|
271
|
+
self.model = PersimmonModel(
|
272
|
+
config=config, quant_config=quant_config, prefix=add_prefix("model", prefix)
|
273
|
+
)
|
274
|
+
self.lm_head = ParallelLMHead(
|
275
|
+
config.vocab_size,
|
276
|
+
config.hidden_size,
|
277
|
+
bias=False,
|
278
|
+
quant_config=quant_config,
|
279
|
+
)
|
280
|
+
self.logits_processor = LogitsProcessor(config)
|
281
|
+
|
282
|
+
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
283
|
+
return self.model.get_input_embeddings(input_ids)
|
284
|
+
|
285
|
+
def forward(
|
286
|
+
self,
|
287
|
+
input_ids: torch.Tensor,
|
288
|
+
positions: torch.Tensor,
|
289
|
+
forward_batch: ForwardBatch,
|
290
|
+
inputs_embeds: Optional[torch.Tensor] = None,
|
291
|
+
) -> LogitsProcessorOutput:
|
292
|
+
hidden_states = self.model(
|
293
|
+
input_ids=input_ids,
|
294
|
+
forward_batch=forward_batch,
|
295
|
+
positions=positions,
|
296
|
+
inputs_embeds=inputs_embeds,
|
297
|
+
)
|
298
|
+
|
299
|
+
return self.logits_processor(
|
300
|
+
input_ids, hidden_states, self.lm_head, forward_batch
|
301
|
+
)
|
302
|
+
|
303
|
+
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
|
304
|
+
params_dict = dict(self.named_parameters())
|
305
|
+
for name, loaded_weight in weights:
|
306
|
+
if "rotary_emb.inv_freq" in name:
|
307
|
+
continue
|
308
|
+
if name not in params_dict:
|
309
|
+
if name == "lm_head.weight":
|
310
|
+
continue
|
311
|
+
print(f"Warning: weight {name} not found in model.")
|
312
|
+
continue
|
313
|
+
param = params_dict[name]
|
314
|
+
if "query_key_value" in name:
|
315
|
+
output_dim = getattr(param, "output_dim", None)
|
316
|
+
if output_dim is not None:
|
317
|
+
loaded_weight_shape = loaded_weight.shape
|
318
|
+
num_heads = self.config.num_attention_heads
|
319
|
+
loaded_weight = loaded_weight.view(
|
320
|
+
loaded_weight_shape[:output_dim]
|
321
|
+
+ (num_heads, 3, -1)
|
322
|
+
+ loaded_weight_shape[output_dim + 1 :]
|
323
|
+
)
|
324
|
+
loaded_weight = loaded_weight.transpose(output_dim, output_dim + 1)
|
325
|
+
loaded_weight = loaded_weight.reshape(loaded_weight_shape)
|
326
|
+
weight_loader = getattr(param, "weight_loader", default_weight_loader)
|
327
|
+
weight_loader(param, loaded_weight)
|
328
|
+
|
329
|
+
|
330
|
+
EntryClass = PersimmonForCausalLM
|
sglang/srt/models/phi.py
ADDED
@@ -0,0 +1,321 @@
|
|
1
|
+
# Adapted from https://github.com/vllm-project/vllm/blob/main/vllm/model_executor/models/phi.py
|
2
|
+
from typing import Iterable, Optional, Union
|
3
|
+
|
4
|
+
import torch
|
5
|
+
from torch import nn
|
6
|
+
from transformers import PhiConfig
|
7
|
+
|
8
|
+
from sglang.srt.distributed import get_pp_group, get_tensor_model_parallel_world_size
|
9
|
+
from sglang.srt.layers.activation import get_act_fn
|
10
|
+
from sglang.srt.layers.linear import (
|
11
|
+
ColumnParallelLinear,
|
12
|
+
QKVParallelLinear,
|
13
|
+
RowParallelLinear,
|
14
|
+
)
|
15
|
+
from sglang.srt.layers.logits_processor import LogitsProcessor, LogitsProcessorOutput
|
16
|
+
from sglang.srt.layers.quantization.base_config import QuantizationConfig
|
17
|
+
from sglang.srt.layers.radix_attention import RadixAttention
|
18
|
+
from sglang.srt.layers.rotary_embedding import get_rope
|
19
|
+
from sglang.srt.layers.vocab_parallel_embedding import (
|
20
|
+
ParallelLMHead,
|
21
|
+
VocabParallelEmbedding,
|
22
|
+
)
|
23
|
+
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
|
24
|
+
from sglang.srt.model_loader.weight_utils import default_weight_loader
|
25
|
+
from sglang.srt.utils import add_prefix, make_layers
|
26
|
+
|
27
|
+
|
28
|
+
class PhiAttention(nn.Module):
|
29
|
+
|
30
|
+
def __init__(
|
31
|
+
self,
|
32
|
+
config: PhiConfig,
|
33
|
+
quant_config: Optional[QuantizationConfig] = None,
|
34
|
+
prefix: str = "",
|
35
|
+
layer_id: int = 0,
|
36
|
+
):
|
37
|
+
super().__init__()
|
38
|
+
self.total_num_heads = config.num_attention_heads
|
39
|
+
self.hidden_size = config.hidden_size
|
40
|
+
self.head_size = self.hidden_size // self.total_num_heads
|
41
|
+
|
42
|
+
tensor_model_parallel_world_size = get_tensor_model_parallel_world_size()
|
43
|
+
assert self.total_num_heads % tensor_model_parallel_world_size == 0
|
44
|
+
self.num_heads = self.total_num_heads // tensor_model_parallel_world_size
|
45
|
+
|
46
|
+
self.qkv_proj = QKVParallelLinear(
|
47
|
+
self.hidden_size,
|
48
|
+
self.head_size,
|
49
|
+
self.total_num_heads,
|
50
|
+
bias=True,
|
51
|
+
quant_config=quant_config,
|
52
|
+
)
|
53
|
+
self.dense = RowParallelLinear(
|
54
|
+
self.hidden_size,
|
55
|
+
self.hidden_size,
|
56
|
+
quant_config=quant_config,
|
57
|
+
)
|
58
|
+
|
59
|
+
scaling = self.head_size**-0.5
|
60
|
+
rotary_dim = int(
|
61
|
+
config.partial_rotary_factor
|
62
|
+
* (config.hidden_size // config.num_attention_heads)
|
63
|
+
)
|
64
|
+
assert rotary_dim % 2 == 0
|
65
|
+
|
66
|
+
rope_theta = getattr(config, "rope_theta", 10000.0)
|
67
|
+
max_position_embeddings = getattr(config, "max_position_embeddings", 2048)
|
68
|
+
self.rotary_emb = get_rope(
|
69
|
+
self.head_size,
|
70
|
+
rotary_dim=rotary_dim,
|
71
|
+
max_position=max_position_embeddings,
|
72
|
+
base=rope_theta,
|
73
|
+
)
|
74
|
+
self.attn = RadixAttention(
|
75
|
+
self.num_heads,
|
76
|
+
self.head_size,
|
77
|
+
scaling,
|
78
|
+
num_kv_heads=self.num_heads,
|
79
|
+
layer_id=layer_id,
|
80
|
+
quant_config=quant_config,
|
81
|
+
prefix=add_prefix("attn", prefix),
|
82
|
+
)
|
83
|
+
|
84
|
+
def forward(
|
85
|
+
self,
|
86
|
+
position_ids: torch.Tensor,
|
87
|
+
forward_batch: ForwardBatch,
|
88
|
+
hidden_states: torch.Tensor,
|
89
|
+
) -> torch.Tensor:
|
90
|
+
qkv, _ = self.qkv_proj(hidden_states)
|
91
|
+
q, k, v = qkv.chunk(chunks=3, dim=-1)
|
92
|
+
q, k = self.rotary_emb(position_ids, q, k)
|
93
|
+
attn_output = self.attn(q, k, v, forward_batch=forward_batch)
|
94
|
+
output, _ = self.dense(attn_output)
|
95
|
+
return output
|
96
|
+
|
97
|
+
|
98
|
+
class PhiMLP(nn.Module):
|
99
|
+
|
100
|
+
def __init__(
|
101
|
+
self, config: PhiConfig, quant_config: Optional[QuantizationConfig] = None
|
102
|
+
):
|
103
|
+
super().__init__()
|
104
|
+
|
105
|
+
n_inner = getattr(config, "n_inner", None)
|
106
|
+
n_inner = n_inner if n_inner is not None else 4 * config.hidden_size
|
107
|
+
|
108
|
+
self.fc1 = ColumnParallelLinear(
|
109
|
+
config.hidden_size,
|
110
|
+
n_inner,
|
111
|
+
quant_config=quant_config,
|
112
|
+
)
|
113
|
+
self.fc2 = RowParallelLinear(
|
114
|
+
n_inner,
|
115
|
+
config.hidden_size,
|
116
|
+
quant_config=quant_config,
|
117
|
+
)
|
118
|
+
self.act = get_act_fn(config.hidden_act)
|
119
|
+
|
120
|
+
def forward(self, hidden_states):
|
121
|
+
hidden_states, _ = self.fc1(hidden_states)
|
122
|
+
hidden_states = self.act(hidden_states)
|
123
|
+
hidden_states, _ = self.fc2(hidden_states)
|
124
|
+
return hidden_states
|
125
|
+
|
126
|
+
|
127
|
+
class PhiLayer(nn.Module):
|
128
|
+
|
129
|
+
def __init__(
|
130
|
+
self,
|
131
|
+
config: PhiConfig,
|
132
|
+
quant_config: Optional[QuantizationConfig] = None,
|
133
|
+
prefix: str = "",
|
134
|
+
idx: int = 0,
|
135
|
+
):
|
136
|
+
super().__init__()
|
137
|
+
self.input_layernorm = nn.LayerNorm(
|
138
|
+
config.hidden_size, eps=config.layer_norm_eps
|
139
|
+
)
|
140
|
+
self.self_attn = PhiAttention(
|
141
|
+
config,
|
142
|
+
quant_config,
|
143
|
+
prefix=add_prefix("self_attn", prefix),
|
144
|
+
layer_id=idx,
|
145
|
+
)
|
146
|
+
self.mlp = PhiMLP(config, quant_config)
|
147
|
+
|
148
|
+
def forward(
|
149
|
+
self,
|
150
|
+
position_ids: torch.Tensor,
|
151
|
+
forward_batch: ForwardBatch,
|
152
|
+
hidden_states: torch.Tensor,
|
153
|
+
) -> torch.Tensor:
|
154
|
+
residual = hidden_states
|
155
|
+
hidden_states = self.input_layernorm(hidden_states)
|
156
|
+
attn_outputs = self.self_attn(
|
157
|
+
position_ids=position_ids,
|
158
|
+
hidden_states=hidden_states,
|
159
|
+
forward_batch=forward_batch,
|
160
|
+
)
|
161
|
+
feed_forward_hidden_states = self.mlp(hidden_states)
|
162
|
+
hidden_states = attn_outputs + feed_forward_hidden_states + residual
|
163
|
+
return hidden_states
|
164
|
+
|
165
|
+
|
166
|
+
class PhiModel(nn.Module):
|
167
|
+
|
168
|
+
def __init__(
|
169
|
+
self,
|
170
|
+
config: PhiConfig,
|
171
|
+
quant_config: Optional[QuantizationConfig] = None,
|
172
|
+
prefix: str = "",
|
173
|
+
):
|
174
|
+
super().__init__()
|
175
|
+
self.config = config
|
176
|
+
self.embed_tokens = VocabParallelEmbedding(
|
177
|
+
config.vocab_size, config.hidden_size
|
178
|
+
)
|
179
|
+
|
180
|
+
pp_group = get_pp_group()
|
181
|
+
pp_size = pp_group.world_size
|
182
|
+
pp_rank = pp_group.rank
|
183
|
+
|
184
|
+
self.start_layer = pp_rank * config.num_hidden_layers // pp_size
|
185
|
+
self.end_layer = (pp_rank + 1) * config.num_hidden_layers // pp_size
|
186
|
+
|
187
|
+
self.layers = make_layers(
|
188
|
+
config.num_hidden_layers,
|
189
|
+
lambda idx, prefix: PhiLayer(
|
190
|
+
config, quant_config=quant_config, prefix=prefix, idx=idx
|
191
|
+
),
|
192
|
+
prefix=add_prefix("layers", prefix),
|
193
|
+
)
|
194
|
+
|
195
|
+
self.final_layernorm = nn.LayerNorm(
|
196
|
+
config.hidden_size, eps=config.layer_norm_eps
|
197
|
+
)
|
198
|
+
|
199
|
+
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
200
|
+
return self.embed_tokens(input_ids)
|
201
|
+
|
202
|
+
def forward(
|
203
|
+
self,
|
204
|
+
input_ids: torch.Tensor,
|
205
|
+
forward_batch: ForwardBatch,
|
206
|
+
positions: torch.Tensor,
|
207
|
+
inputs_embeds: Optional[torch.Tensor] = None,
|
208
|
+
) -> torch.Tensor:
|
209
|
+
if inputs_embeds is not None:
|
210
|
+
hidden_states = inputs_embeds
|
211
|
+
else:
|
212
|
+
hidden_states = self.get_input_embeddings(input_ids)
|
213
|
+
for i in range(self.start_layer, self.end_layer):
|
214
|
+
layer = self.layers[i]
|
215
|
+
|
216
|
+
hidden_states = layer(
|
217
|
+
position_ids=positions,
|
218
|
+
forward_batch=forward_batch,
|
219
|
+
hidden_states=hidden_states,
|
220
|
+
)
|
221
|
+
hidden_states = self.final_layernorm(hidden_states)
|
222
|
+
return hidden_states
|
223
|
+
|
224
|
+
|
225
|
+
class PhiForCausalLM(nn.Module):
|
226
|
+
packed_modules_mapping = {
|
227
|
+
"qkv_proj": [
|
228
|
+
"q_proj",
|
229
|
+
"k_proj",
|
230
|
+
"v_proj",
|
231
|
+
]
|
232
|
+
}
|
233
|
+
|
234
|
+
def __init__(
|
235
|
+
self,
|
236
|
+
config: PhiConfig,
|
237
|
+
quant_config: Optional[QuantizationConfig] = None,
|
238
|
+
prefix: str = "",
|
239
|
+
):
|
240
|
+
super().__init__()
|
241
|
+
self.config = config
|
242
|
+
self.quant_config = quant_config
|
243
|
+
self.model = PhiModel(
|
244
|
+
config=config,
|
245
|
+
quant_config=quant_config,
|
246
|
+
prefix=add_prefix("model", prefix),
|
247
|
+
)
|
248
|
+
|
249
|
+
self.lm_head = ParallelLMHead(
|
250
|
+
config.vocab_size,
|
251
|
+
config.hidden_size,
|
252
|
+
bias=True,
|
253
|
+
quant_config=quant_config,
|
254
|
+
)
|
255
|
+
self.logits_processor = LogitsProcessor(config)
|
256
|
+
|
257
|
+
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
258
|
+
return self.model.get_input_embeddings(input_ids)
|
259
|
+
|
260
|
+
def forward(
|
261
|
+
self,
|
262
|
+
input_ids: torch.Tensor,
|
263
|
+
positions: torch.Tensor,
|
264
|
+
forward_batch: ForwardBatch,
|
265
|
+
inputs_embeds: Optional[torch.Tensor] = None,
|
266
|
+
) -> LogitsProcessorOutput:
|
267
|
+
|
268
|
+
hidden_states = self.model(
|
269
|
+
input_ids=input_ids,
|
270
|
+
forward_batch=forward_batch,
|
271
|
+
positions=positions,
|
272
|
+
inputs_embeds=inputs_embeds,
|
273
|
+
)
|
274
|
+
|
275
|
+
return self.logits_processor(
|
276
|
+
input_ids, hidden_states, self.lm_head, forward_batch
|
277
|
+
)
|
278
|
+
|
279
|
+
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
|
280
|
+
params_dict = dict(self.named_parameters())
|
281
|
+
weights = dict(weights)
|
282
|
+
loaded_keys = set()
|
283
|
+
|
284
|
+
for name, param in params_dict.items():
|
285
|
+
if name in loaded_keys:
|
286
|
+
continue
|
287
|
+
|
288
|
+
# Handle packed weights
|
289
|
+
is_packed = False
|
290
|
+
for packed_name, src_names in self.packed_modules_mapping.items():
|
291
|
+
if packed_name not in name:
|
292
|
+
continue
|
293
|
+
|
294
|
+
weight_loader = getattr(param, "weight_loader", default_weight_loader)
|
295
|
+
for src_name in src_names:
|
296
|
+
full_src_name = name.replace(packed_name, src_name)
|
297
|
+
if full_src_name in weights:
|
298
|
+
loaded_weight = weights[full_src_name]
|
299
|
+
# The shard_id for QKVParallelLinear is 'q', 'k', 'v'.
|
300
|
+
shard_id = src_name.split("_")[0]
|
301
|
+
weight_loader(param, loaded_weight, shard_id)
|
302
|
+
loaded_keys.add(full_src_name)
|
303
|
+
|
304
|
+
loaded_keys.add(name)
|
305
|
+
is_packed = True
|
306
|
+
break
|
307
|
+
if is_packed:
|
308
|
+
continue
|
309
|
+
|
310
|
+
# Handle non-packed weights
|
311
|
+
if name not in weights:
|
312
|
+
# Redundant with the check in the loop, but good for safety
|
313
|
+
continue
|
314
|
+
|
315
|
+
loaded_weight = weights[name]
|
316
|
+
weight_loader = getattr(param, "weight_loader", default_weight_loader)
|
317
|
+
weight_loader(param, loaded_weight)
|
318
|
+
loaded_keys.add(name)
|
319
|
+
|
320
|
+
|
321
|
+
EntryClass = PhiForCausalLM
|