sglang 0.4.7__py3-none-any.whl → 0.4.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/__init__.py +2 -0
- sglang/api.py +7 -0
- sglang/bench_one_batch.py +8 -6
- sglang/bench_serving.py +1 -1
- sglang/lang/interpreter.py +40 -1
- sglang/lang/ir.py +27 -0
- sglang/math_utils.py +8 -0
- sglang/srt/_custom_ops.py +2 -2
- sglang/srt/code_completion_parser.py +2 -44
- sglang/srt/configs/model_config.py +6 -0
- sglang/srt/constants.py +3 -0
- sglang/srt/conversation.py +19 -3
- sglang/srt/custom_op.py +5 -1
- sglang/srt/disaggregation/base/__init__.py +1 -1
- sglang/srt/disaggregation/base/conn.py +25 -11
- sglang/srt/disaggregation/common/__init__.py +5 -1
- sglang/srt/disaggregation/common/utils.py +42 -0
- sglang/srt/disaggregation/decode.py +211 -72
- sglang/srt/disaggregation/decode_schedule_batch_mixin.py +4 -3
- sglang/srt/disaggregation/fake/__init__.py +1 -1
- sglang/srt/disaggregation/fake/conn.py +15 -9
- sglang/srt/disaggregation/mini_lb.py +34 -4
- sglang/srt/disaggregation/mooncake/__init__.py +1 -1
- sglang/srt/disaggregation/mooncake/conn.py +30 -29
- sglang/srt/disaggregation/nixl/__init__.py +6 -1
- sglang/srt/disaggregation/nixl/conn.py +17 -12
- sglang/srt/disaggregation/prefill.py +144 -55
- sglang/srt/disaggregation/utils.py +155 -123
- sglang/srt/distributed/parallel_state.py +12 -4
- sglang/srt/entrypoints/engine.py +37 -29
- sglang/srt/entrypoints/http_server.py +153 -72
- sglang/srt/entrypoints/http_server_engine.py +0 -3
- sglang/srt/entrypoints/openai/__init__.py +0 -0
- sglang/srt/{openai_api → entrypoints/openai}/protocol.py +84 -10
- sglang/srt/entrypoints/openai/serving_base.py +149 -0
- sglang/srt/entrypoints/openai/serving_chat.py +921 -0
- sglang/srt/entrypoints/openai/serving_completions.py +424 -0
- sglang/srt/entrypoints/openai/serving_embedding.py +169 -0
- sglang/srt/entrypoints/openai/serving_rerank.py +102 -0
- sglang/srt/entrypoints/openai/serving_score.py +61 -0
- sglang/srt/entrypoints/openai/usage_processor.py +81 -0
- sglang/srt/entrypoints/openai/utils.py +72 -0
- sglang/srt/eplb_simulator/__init__.py +1 -0
- sglang/srt/eplb_simulator/reader.py +51 -0
- sglang/srt/function_call/base_format_detector.py +7 -4
- sglang/srt/function_call/deepseekv3_detector.py +1 -1
- sglang/srt/function_call/ebnf_composer.py +64 -10
- sglang/srt/function_call/function_call_parser.py +6 -6
- sglang/srt/function_call/llama32_detector.py +1 -1
- sglang/srt/function_call/mistral_detector.py +1 -1
- sglang/srt/function_call/pythonic_detector.py +1 -1
- sglang/srt/function_call/qwen25_detector.py +1 -1
- sglang/srt/{openai_api/utils.py → jinja_template_utils.py} +6 -5
- sglang/srt/layers/activation.py +40 -3
- sglang/srt/layers/attention/aiter_backend.py +20 -4
- sglang/srt/layers/attention/base_attn_backend.py +1 -1
- sglang/srt/layers/attention/cutlass_mla_backend.py +39 -15
- sglang/srt/layers/attention/flashattention_backend.py +71 -72
- sglang/srt/layers/attention/flashinfer_backend.py +10 -8
- sglang/srt/layers/attention/flashinfer_mla_backend.py +29 -28
- sglang/srt/layers/attention/flashmla_backend.py +7 -12
- sglang/srt/layers/attention/tbo_backend.py +3 -3
- sglang/srt/layers/attention/triton_backend.py +138 -130
- sglang/srt/layers/attention/triton_ops/decode_attention.py +2 -7
- sglang/srt/layers/attention/vision.py +51 -24
- sglang/srt/layers/communicator.py +28 -10
- sglang/srt/layers/dp_attention.py +11 -2
- sglang/srt/layers/layernorm.py +29 -2
- sglang/srt/layers/linear.py +0 -4
- sglang/srt/layers/logits_processor.py +2 -14
- sglang/srt/layers/moe/ep_moe/kernels.py +165 -7
- sglang/srt/layers/moe/ep_moe/layer.py +249 -33
- sglang/srt/layers/moe/ep_moe/token_dispatcher.py +11 -37
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_3_1/E=128,N=384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +7 -4
- sglang/srt/layers/moe/fused_moe_triton/layer.py +75 -12
- sglang/srt/layers/moe/topk.py +107 -12
- sglang/srt/layers/pooler.py +56 -0
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +6 -2
- sglang/srt/layers/quantization/deep_gemm_wrapper/__init__.py +1 -0
- sglang/srt/layers/quantization/{deep_gemm.py → deep_gemm_wrapper/compile_utils.py} +23 -80
- sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +32 -0
- sglang/srt/layers/quantization/deep_gemm_wrapper/entrypoint.py +110 -0
- sglang/srt/layers/quantization/fp8.py +25 -17
- sglang/srt/layers/quantization/fp8_kernel.py +44 -15
- sglang/srt/layers/quantization/fp8_utils.py +87 -22
- sglang/srt/layers/quantization/modelopt_quant.py +62 -8
- sglang/srt/layers/quantization/utils.py +5 -2
- sglang/srt/layers/radix_attention.py +2 -3
- sglang/srt/layers/rotary_embedding.py +42 -2
- sglang/srt/layers/sampler.py +1 -1
- sglang/srt/lora/lora_manager.py +249 -105
- sglang/srt/lora/mem_pool.py +53 -50
- sglang/srt/lora/utils.py +1 -1
- sglang/srt/managers/cache_controller.py +33 -14
- sglang/srt/managers/io_struct.py +31 -10
- sglang/srt/managers/multimodal_processors/base_processor.py +2 -2
- sglang/srt/managers/multimodal_processors/vila.py +85 -0
- sglang/srt/managers/schedule_batch.py +79 -37
- sglang/srt/managers/schedule_policy.py +70 -56
- sglang/srt/managers/scheduler.py +220 -79
- sglang/srt/managers/template_manager.py +226 -0
- sglang/srt/managers/tokenizer_manager.py +40 -10
- sglang/srt/managers/tp_worker.py +12 -2
- sglang/srt/managers/tp_worker_overlap_thread.py +11 -0
- sglang/srt/mem_cache/{paged_allocator.py → allocator.py} +125 -34
- sglang/srt/mem_cache/base_prefix_cache.py +52 -8
- sglang/srt/mem_cache/chunk_cache.py +11 -15
- sglang/srt/mem_cache/hiradix_cache.py +38 -25
- sglang/srt/mem_cache/memory_pool.py +213 -505
- sglang/srt/mem_cache/memory_pool_host.py +380 -0
- sglang/srt/mem_cache/radix_cache.py +56 -28
- sglang/srt/model_executor/cuda_graph_runner.py +198 -100
- sglang/srt/model_executor/forward_batch_info.py +32 -10
- sglang/srt/model_executor/model_runner.py +28 -12
- sglang/srt/model_loader/loader.py +16 -2
- sglang/srt/model_loader/weight_utils.py +11 -2
- sglang/srt/models/bert.py +113 -13
- sglang/srt/models/deepseek_nextn.py +29 -27
- sglang/srt/models/deepseek_v2.py +213 -173
- sglang/srt/models/glm4.py +312 -0
- sglang/srt/models/internvl.py +46 -102
- sglang/srt/models/mimo_mtp.py +2 -18
- sglang/srt/models/roberta.py +117 -9
- sglang/srt/models/vila.py +305 -0
- sglang/srt/reasoning_parser.py +21 -11
- sglang/srt/sampling/sampling_batch_info.py +24 -0
- sglang/srt/sampling/sampling_params.py +2 -0
- sglang/srt/server_args.py +351 -238
- sglang/srt/speculative/build_eagle_tree.py +1 -1
- sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +131 -9
- sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +130 -14
- sglang/srt/speculative/eagle_utils.py +468 -116
- sglang/srt/speculative/eagle_worker.py +258 -84
- sglang/srt/torch_memory_saver_adapter.py +19 -15
- sglang/srt/two_batch_overlap.py +4 -2
- sglang/srt/utils.py +235 -11
- sglang/test/attention/test_prefix_chunk_info.py +2 -0
- sglang/test/runners.py +38 -3
- sglang/test/test_block_fp8.py +1 -0
- sglang/test/test_block_fp8_deep_gemm_blackwell.py +252 -0
- sglang/test/test_block_fp8_ep.py +2 -0
- sglang/test/test_utils.py +4 -1
- sglang/utils.py +9 -0
- sglang/version.py +1 -1
- {sglang-0.4.7.dist-info → sglang-0.4.8.dist-info}/METADATA +8 -14
- {sglang-0.4.7.dist-info → sglang-0.4.8.dist-info}/RECORD +150 -128
- sglang/srt/entrypoints/verl_engine.py +0 -179
- sglang/srt/openai_api/adapter.py +0 -1990
- {sglang-0.4.7.dist-info → sglang-0.4.8.dist-info}/WHEEL +0 -0
- {sglang-0.4.7.dist-info → sglang-0.4.8.dist-info}/licenses/LICENSE +0 -0
- {sglang-0.4.7.dist-info → sglang-0.4.8.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,312 @@
|
|
1
|
+
# Copyright 2023-2024 SGLang Team
|
2
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
3
|
+
# you may not use this file except in compliance with the License.
|
4
|
+
# You may obtain a copy of the License at
|
5
|
+
#
|
6
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
7
|
+
#
|
8
|
+
# Unless required by applicable law or agreed to in writing, software
|
9
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
10
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
11
|
+
# See the License for the specific language governing permissions and
|
12
|
+
# limitations under the License.
|
13
|
+
# ==============================================================================
|
14
|
+
|
15
|
+
# Modeling from:
|
16
|
+
# ./llama.py and
|
17
|
+
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/glm4/modular_glm4.py
|
18
|
+
"""Inference-only GLM4 model compatible with THUDM weights."""
|
19
|
+
|
20
|
+
from typing import Iterable, List, Optional, Tuple, Union
|
21
|
+
|
22
|
+
import torch
|
23
|
+
from torch import nn
|
24
|
+
from transformers import Glm4Config
|
25
|
+
|
26
|
+
from sglang.srt.distributed import get_tensor_model_parallel_world_size
|
27
|
+
from sglang.srt.layers.layernorm import RMSNorm
|
28
|
+
from sglang.srt.layers.linear import QKVParallelLinear, RowParallelLinear
|
29
|
+
from sglang.srt.layers.logits_processor import LogitsProcessor
|
30
|
+
from sglang.srt.layers.quantization.base_config import QuantizationConfig
|
31
|
+
from sglang.srt.layers.radix_attention import RadixAttention
|
32
|
+
from sglang.srt.layers.rotary_embedding import get_rope
|
33
|
+
from sglang.srt.layers.vocab_parallel_embedding import (
|
34
|
+
ParallelLMHead,
|
35
|
+
VocabParallelEmbedding,
|
36
|
+
)
|
37
|
+
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
|
38
|
+
from sglang.srt.model_loader.weight_utils import default_weight_loader
|
39
|
+
from sglang.srt.models.llama import LlamaMLP as Glm4MLP
|
40
|
+
from sglang.srt.utils import add_prefix, make_layers
|
41
|
+
|
42
|
+
|
43
|
+
class Glm4Attention(nn.Module):
|
44
|
+
def __init__(
|
45
|
+
self,
|
46
|
+
config,
|
47
|
+
layer_id: int = 0,
|
48
|
+
quant_config: Optional[QuantizationConfig] = None,
|
49
|
+
prefix: str = "",
|
50
|
+
):
|
51
|
+
super().__init__()
|
52
|
+
self.hidden_size = config.hidden_size
|
53
|
+
tp_size = get_tensor_model_parallel_world_size()
|
54
|
+
self.total_num_heads = config.num_attention_heads
|
55
|
+
assert self.total_num_heads % tp_size == 0
|
56
|
+
self.num_heads = self.total_num_heads // tp_size
|
57
|
+
self.total_num_kv_heads = config.num_key_value_heads
|
58
|
+
if self.total_num_kv_heads >= tp_size:
|
59
|
+
# Number of KV heads is greater than TP size, so we partition
|
60
|
+
# the KV heads across multiple tensor parallel GPUs.
|
61
|
+
assert self.total_num_kv_heads % tp_size == 0
|
62
|
+
else:
|
63
|
+
# Number of KV heads is less than TP size, so we replicate
|
64
|
+
# the KV heads across multiple tensor parallel GPUs.
|
65
|
+
assert tp_size % self.total_num_kv_heads == 0
|
66
|
+
partial_rotary_factor = getattr(config, "partial_rotary_factor", 0.5)
|
67
|
+
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
68
|
+
self.head_dim = config.hidden_size // self.total_num_heads
|
69
|
+
self.q_size = self.num_heads * self.head_dim
|
70
|
+
self.kv_size = self.num_kv_heads * self.head_dim
|
71
|
+
self.scaling = self.head_dim**-0.5
|
72
|
+
self.rope_theta = getattr(config, "rope_theta", 1000000)
|
73
|
+
self.rope_scaling = getattr(config, "rope_scaling", None)
|
74
|
+
|
75
|
+
self.qkv_proj = QKVParallelLinear(
|
76
|
+
self.hidden_size,
|
77
|
+
self.head_dim,
|
78
|
+
self.total_num_heads,
|
79
|
+
self.total_num_kv_heads,
|
80
|
+
bias=config.attention_bias,
|
81
|
+
quant_config=quant_config,
|
82
|
+
prefix=add_prefix("qkv_proj", prefix),
|
83
|
+
)
|
84
|
+
self.o_proj = RowParallelLinear(
|
85
|
+
self.total_num_heads * self.head_dim,
|
86
|
+
self.hidden_size,
|
87
|
+
bias=False,
|
88
|
+
quant_config=quant_config,
|
89
|
+
prefix=add_prefix("o_proj", prefix),
|
90
|
+
)
|
91
|
+
|
92
|
+
self.rotary_emb = get_rope(
|
93
|
+
self.head_dim,
|
94
|
+
rotary_dim=self.head_dim,
|
95
|
+
max_position=config.max_position_embeddings,
|
96
|
+
base=self.rope_theta,
|
97
|
+
rope_scaling=self.rope_scaling,
|
98
|
+
partial_rotary_factor=partial_rotary_factor,
|
99
|
+
is_neox_style=False,
|
100
|
+
)
|
101
|
+
self.attn = RadixAttention(
|
102
|
+
self.num_heads,
|
103
|
+
self.head_dim,
|
104
|
+
self.scaling,
|
105
|
+
num_kv_heads=self.num_kv_heads,
|
106
|
+
layer_id=layer_id,
|
107
|
+
quant_config=quant_config,
|
108
|
+
prefix=add_prefix("attn", prefix),
|
109
|
+
)
|
110
|
+
|
111
|
+
def forward(
|
112
|
+
self,
|
113
|
+
positions: torch.Tensor,
|
114
|
+
hidden_states: torch.Tensor,
|
115
|
+
forward_batch: ForwardBatch,
|
116
|
+
) -> torch.Tensor:
|
117
|
+
qkv, _ = self.qkv_proj(hidden_states)
|
118
|
+
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
119
|
+
q, k = self.rotary_emb(positions, q, k)
|
120
|
+
context_layer = self.attn(
|
121
|
+
q,
|
122
|
+
k,
|
123
|
+
v,
|
124
|
+
forward_batch,
|
125
|
+
)
|
126
|
+
attn_output, _ = self.o_proj(context_layer)
|
127
|
+
return attn_output
|
128
|
+
|
129
|
+
|
130
|
+
class Glm4DecoderLayer(nn.Module):
|
131
|
+
"""A single transformer layer.
|
132
|
+
|
133
|
+
Transformer layer takes input with size [s, b, h] and returns an
|
134
|
+
output of the same size.
|
135
|
+
"""
|
136
|
+
|
137
|
+
def __init__(
|
138
|
+
self,
|
139
|
+
config,
|
140
|
+
layer_id: int,
|
141
|
+
quant_config: Optional[QuantizationConfig] = None,
|
142
|
+
prefix: str = "",
|
143
|
+
):
|
144
|
+
super().__init__()
|
145
|
+
# Self attention.
|
146
|
+
self.self_attn = Glm4Attention(
|
147
|
+
config, layer_id, quant_config, prefix=add_prefix("self_attn", prefix)
|
148
|
+
)
|
149
|
+
|
150
|
+
# MLP
|
151
|
+
self.mlp = Glm4MLP(
|
152
|
+
config.hidden_size,
|
153
|
+
intermediate_size=config.intermediate_size,
|
154
|
+
hidden_act=config.hidden_act,
|
155
|
+
quant_config=quant_config,
|
156
|
+
prefix=add_prefix("mlp", prefix),
|
157
|
+
)
|
158
|
+
|
159
|
+
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
160
|
+
self.post_attention_layernorm = RMSNorm(
|
161
|
+
config.hidden_size, eps=config.rms_norm_eps
|
162
|
+
)
|
163
|
+
self.post_self_attn_layernorm = RMSNorm(
|
164
|
+
config.hidden_size, eps=config.rms_norm_eps
|
165
|
+
)
|
166
|
+
self.post_mlp_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
167
|
+
|
168
|
+
def forward(
|
169
|
+
self,
|
170
|
+
positions: torch.Tensor,
|
171
|
+
hidden_states: torch.Tensor,
|
172
|
+
forward_batch: ForwardBatch,
|
173
|
+
residual: Optional[torch.Tensor],
|
174
|
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
175
|
+
# Self Attention
|
176
|
+
if residual is None:
|
177
|
+
residual = hidden_states
|
178
|
+
hidden_states = self.input_layernorm(hidden_states)
|
179
|
+
else:
|
180
|
+
hidden_states, residual = self.input_layernorm(hidden_states, residual)
|
181
|
+
hidden_states = self.self_attn(
|
182
|
+
positions=positions,
|
183
|
+
hidden_states=hidden_states,
|
184
|
+
forward_batch=forward_batch,
|
185
|
+
)
|
186
|
+
hidden_states = self.post_self_attn_layernorm(hidden_states)
|
187
|
+
|
188
|
+
# Fully Connected
|
189
|
+
hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
|
190
|
+
hidden_states = self.mlp(hidden_states)
|
191
|
+
hidden_states = self.post_mlp_layernorm(hidden_states)
|
192
|
+
|
193
|
+
return hidden_states, residual
|
194
|
+
|
195
|
+
|
196
|
+
class Glm4Model(nn.Module):
|
197
|
+
def __init__(
|
198
|
+
self,
|
199
|
+
config: Glm4Config,
|
200
|
+
quant_config: Optional[QuantizationConfig] = None,
|
201
|
+
prefix: str = "",
|
202
|
+
) -> None:
|
203
|
+
super().__init__()
|
204
|
+
self.config = config
|
205
|
+
self.embed_tokens = VocabParallelEmbedding(
|
206
|
+
config.vocab_size,
|
207
|
+
config.hidden_size,
|
208
|
+
quant_config=quant_config,
|
209
|
+
prefix=add_prefix("embed_tokens", prefix),
|
210
|
+
)
|
211
|
+
self.layers = make_layers(
|
212
|
+
config.num_hidden_layers,
|
213
|
+
lambda idx, prefix: Glm4DecoderLayer(
|
214
|
+
config=config, layer_id=idx, quant_config=quant_config, prefix=prefix
|
215
|
+
),
|
216
|
+
prefix="model.layers",
|
217
|
+
)
|
218
|
+
|
219
|
+
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
220
|
+
|
221
|
+
@torch.no_grad()
|
222
|
+
def forward(
|
223
|
+
self,
|
224
|
+
input_ids: torch.Tensor,
|
225
|
+
positions: torch.Tensor,
|
226
|
+
forward_batch: ForwardBatch,
|
227
|
+
input_embeds: torch.Tensor = None,
|
228
|
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, List[torch.Tensor]]]:
|
229
|
+
if input_embeds is None:
|
230
|
+
hidden_states = self.embed_tokens(input_ids)
|
231
|
+
else:
|
232
|
+
hidden_states = input_embeds
|
233
|
+
residual = None
|
234
|
+
for layer in self.layers:
|
235
|
+
hidden_states, residual = layer(
|
236
|
+
positions,
|
237
|
+
hidden_states,
|
238
|
+
forward_batch,
|
239
|
+
residual,
|
240
|
+
)
|
241
|
+
hidden_states, _ = self.norm(hidden_states, residual)
|
242
|
+
|
243
|
+
return hidden_states
|
244
|
+
|
245
|
+
|
246
|
+
class Glm4ForCausalLM(nn.Module):
|
247
|
+
def __init__(
|
248
|
+
self,
|
249
|
+
config: Glm4Config,
|
250
|
+
quant_config: Optional[QuantizationConfig] = None,
|
251
|
+
prefix: str = "",
|
252
|
+
):
|
253
|
+
super().__init__()
|
254
|
+
self.config: Glm4Config = config
|
255
|
+
self.quant_config = quant_config
|
256
|
+
self.model = Glm4Model(config, quant_config, add_prefix("model", prefix))
|
257
|
+
if config.tie_word_embeddings:
|
258
|
+
self.lm_head = self.model.embed_tokens
|
259
|
+
else:
|
260
|
+
self.lm_head = ParallelLMHead(
|
261
|
+
config.vocab_size,
|
262
|
+
config.hidden_size,
|
263
|
+
quant_config=quant_config,
|
264
|
+
prefix="lm_head",
|
265
|
+
)
|
266
|
+
self.logits_processor = LogitsProcessor(config)
|
267
|
+
|
268
|
+
@torch.no_grad()
|
269
|
+
def forward(
|
270
|
+
self,
|
271
|
+
input_ids: torch.Tensor,
|
272
|
+
positions: torch.Tensor,
|
273
|
+
forward_batch: ForwardBatch,
|
274
|
+
) -> torch.Tensor:
|
275
|
+
hidden_states = self.model(input_ids, positions, forward_batch)
|
276
|
+
return self.logits_processor(
|
277
|
+
input_ids, hidden_states, self.lm_head, forward_batch
|
278
|
+
)
|
279
|
+
|
280
|
+
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
281
|
+
stacked_params_mapping = [
|
282
|
+
# (param_name, weight_name, shard_id)
|
283
|
+
(".qkv_proj", ".q_proj", "q"),
|
284
|
+
(".qkv_proj", ".k_proj", "k"),
|
285
|
+
(".qkv_proj", ".v_proj", "v"),
|
286
|
+
(".gate_up_proj", ".gate_proj", 0),
|
287
|
+
(".gate_up_proj", ".up_proj", 1),
|
288
|
+
]
|
289
|
+
params_dict = dict(self.named_parameters())
|
290
|
+
for name, loaded_weight in weights:
|
291
|
+
if self.config.tie_word_embeddings and "lm_head.weight" in name:
|
292
|
+
continue
|
293
|
+
for param_name, weight_name, shard_id in stacked_params_mapping:
|
294
|
+
if weight_name not in name:
|
295
|
+
continue
|
296
|
+
name = name.replace(weight_name, param_name)
|
297
|
+
param = params_dict[name]
|
298
|
+
weight_loader = param.weight_loader
|
299
|
+
weight_loader(param, loaded_weight, shard_id)
|
300
|
+
break
|
301
|
+
else:
|
302
|
+
if name in params_dict.keys():
|
303
|
+
param = params_dict[name]
|
304
|
+
weight_loader = getattr(
|
305
|
+
param, "weight_loader", default_weight_loader
|
306
|
+
)
|
307
|
+
weight_loader(param, loaded_weight)
|
308
|
+
else:
|
309
|
+
raise KeyError(f"Parameter '{name}' not found in model.")
|
310
|
+
|
311
|
+
|
312
|
+
EntryClass = [Glm4ForCausalLM]
|
sglang/srt/models/internvl.py
CHANGED
@@ -11,21 +11,19 @@
|
|
11
11
|
# See the License for the specific language governing permissions and
|
12
12
|
# limitations under the License.
|
13
13
|
# ==========================582====================================================
|
14
|
-
|
15
|
-
from typing import Iterable, List, Optional, Tuple, Union
|
14
|
+
from typing import Iterable, List, Optional, Set, Tuple, Union
|
16
15
|
|
17
16
|
import torch
|
18
17
|
|
19
18
|
# Adapted from https://raw.githubusercontent.com/vllm-project/vllm/7f62077af5159c625fe3ad1c812e6c1a2b93ba3b/vllm/model_executor/models/internlm2.py
|
20
19
|
# Adapted from https://raw.githubusercontent.com/hehesangsj/sglang/refs/heads/internvl/python/sglang/srt/models/internvl.py
|
21
20
|
import torch.nn.functional as F
|
22
|
-
from einops import rearrange, repeat
|
23
|
-
from sgl_kernel.flash_attn import flash_attn_varlen_func
|
24
21
|
from torch import nn
|
25
22
|
from transformers import PretrainedConfig, PreTrainedModel
|
26
23
|
from transformers.activations import ACT2FN
|
27
24
|
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
|
28
25
|
|
26
|
+
from sglang.srt.layers.attention.vision import SingletonCache, VisionAttention
|
29
27
|
from sglang.srt.layers.quantization.base_config import QuantizationConfig
|
30
28
|
from sglang.srt.managers.mm_utils import (
|
31
29
|
MultiModalityDataPaddingPatternTokenPairs,
|
@@ -40,75 +38,12 @@ from sglang.srt.models.qwen2 import Qwen2ForCausalLM
|
|
40
38
|
from sglang.utils import logger
|
41
39
|
|
42
40
|
|
43
|
-
class
|
44
|
-
"""Implement the scaled dot product attention with softmax.
|
45
|
-
Arguments
|
46
|
-
---------
|
47
|
-
softmax_scale: The temperature to use for the softmax attention.
|
48
|
-
(default: 1/sqrt(d_keys) where d_keys is computed at
|
49
|
-
runtime)
|
50
|
-
attention_dropout: The dropout rate to apply to the attention
|
51
|
-
(default: 0.0)
|
52
|
-
"""
|
53
|
-
|
41
|
+
class InternAttention(nn.Module):
|
54
42
|
def __init__(
|
55
|
-
self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None
|
56
|
-
):
|
57
|
-
super().__init__()
|
58
|
-
self.softmax_scale = softmax_scale
|
59
|
-
self.dropout_p = attention_dropout
|
60
|
-
|
61
|
-
def forward(
|
62
43
|
self,
|
63
|
-
|
64
|
-
|
65
|
-
max_s=None,
|
44
|
+
config,
|
45
|
+
quant_config: QuantizationConfig = None,
|
66
46
|
):
|
67
|
-
"""Implements the multihead softmax attention.
|
68
|
-
Arguments
|
69
|
-
---------
|
70
|
-
qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
|
71
|
-
if unpadded: (nnz, 3, h, d)
|
72
|
-
"""
|
73
|
-
assert qkv.dtype in [torch.float16, torch.bfloat16]
|
74
|
-
assert qkv.is_cuda
|
75
|
-
|
76
|
-
batch_size, seqlen, _, nheads, d = qkv.shape
|
77
|
-
if batch_size == 0 or seqlen == 0:
|
78
|
-
output_shape = (batch_size, seqlen, nheads, d)
|
79
|
-
return (
|
80
|
-
torch.zeros(output_shape, dtype=qkv.dtype, device=qkv.device),
|
81
|
-
None,
|
82
|
-
)
|
83
|
-
|
84
|
-
qkv_reshaped = rearrange(qkv, "b s three h d -> (b s) three h d", three=3)
|
85
|
-
q, k, v = qkv_reshaped.unbind(1)
|
86
|
-
|
87
|
-
max_s = seqlen
|
88
|
-
cu_seqlens = torch.arange(
|
89
|
-
0,
|
90
|
-
(batch_size + 1) * seqlen,
|
91
|
-
step=seqlen,
|
92
|
-
dtype=torch.int32,
|
93
|
-
device=qkv.device,
|
94
|
-
)
|
95
|
-
output_reshaped = flash_attn_varlen_func(
|
96
|
-
q,
|
97
|
-
k,
|
98
|
-
v,
|
99
|
-
cu_seqlens,
|
100
|
-
cu_seqlens,
|
101
|
-
max_s,
|
102
|
-
max_s,
|
103
|
-
softmax_scale=self.softmax_scale,
|
104
|
-
causal=causal,
|
105
|
-
)
|
106
|
-
output = rearrange(output_reshaped, "(b s) h d -> b s h d", b=batch_size)
|
107
|
-
return output, None
|
108
|
-
|
109
|
-
|
110
|
-
class InternAttention(nn.Module):
|
111
|
-
def __init__(self, config):
|
112
47
|
super().__init__()
|
113
48
|
self.config = config
|
114
49
|
self.embed_dim = config.hidden_size
|
@@ -116,7 +51,19 @@ class InternAttention(nn.Module):
|
|
116
51
|
self.head_dim = self.embed_dim // self.num_heads
|
117
52
|
|
118
53
|
self.scale = self.head_dim**-0.5
|
119
|
-
|
54
|
+
|
55
|
+
self.attn = VisionAttention(
|
56
|
+
qkv_backend="fa3",
|
57
|
+
embed_dim=self.embed_dim,
|
58
|
+
num_heads=self.num_heads,
|
59
|
+
projection_size=self.embed_dim,
|
60
|
+
use_qkv_parallel=True,
|
61
|
+
quant_config=quant_config,
|
62
|
+
dropout=getattr(config, "dropout", 0.0),
|
63
|
+
proj_bias=getattr(config, "qkv_bias", True),
|
64
|
+
flatten_batch=False,
|
65
|
+
)
|
66
|
+
|
120
67
|
self.proj_drop = nn.Dropout(config.dropout)
|
121
68
|
|
122
69
|
self.qk_normalization = config.qk_normalization
|
@@ -125,36 +72,15 @@ class InternAttention(nn.Module):
|
|
125
72
|
self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
126
73
|
self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
127
74
|
|
128
|
-
|
129
|
-
|
130
|
-
self.proj = nn.Linear(self.embed_dim, self.embed_dim)
|
131
|
-
|
132
|
-
def _flash_attn(
|
75
|
+
def forward(
|
133
76
|
self,
|
134
|
-
|
135
|
-
|
136
|
-
|
137
|
-
|
138
|
-
|
139
|
-
)
|
140
|
-
|
141
|
-
if self.qk_normalization:
|
142
|
-
q, k, v = qkv.unbind(2)
|
143
|
-
q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
|
144
|
-
k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
|
145
|
-
qkv = torch.stack([q, k, v], dim=2)
|
146
|
-
|
147
|
-
context, _ = self.inner_attn(
|
148
|
-
qkv,
|
149
|
-
)
|
150
|
-
outs = self.proj(rearrange(context, "b s h d -> b s (h d)"))
|
151
|
-
outs = self.proj_drop(outs)
|
77
|
+
hidden_states: torch.Tensor,
|
78
|
+
cu_seqlens: torch.Tensor,
|
79
|
+
) -> torch.Tensor:
|
80
|
+
out = self.attn(hidden_states, cu_seqlens=cu_seqlens)
|
81
|
+
outs = self.proj_drop(out)
|
152
82
|
return outs
|
153
83
|
|
154
|
-
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
155
|
-
x = self._flash_attn(hidden_states)
|
156
|
-
return x
|
157
|
-
|
158
84
|
|
159
85
|
class InternVisionEmbeddings(nn.Module):
|
160
86
|
def __init__(self, config: PretrainedConfig):
|
@@ -286,6 +212,7 @@ class InternVisionEncoderLayer(nn.Module):
|
|
286
212
|
def forward(
|
287
213
|
self,
|
288
214
|
hidden_states: torch.Tensor,
|
215
|
+
cu_seqlens: torch.Tensor,
|
289
216
|
) -> Tuple[
|
290
217
|
torch.FloatTensor,
|
291
218
|
Optional[torch.FloatTensor],
|
@@ -295,8 +222,12 @@ class InternVisionEncoderLayer(nn.Module):
|
|
295
222
|
Args:
|
296
223
|
hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
297
224
|
"""
|
225
|
+
|
298
226
|
hidden_states = hidden_states + self.drop_path1(
|
299
|
-
self.attn(
|
227
|
+
self.attn(
|
228
|
+
self.norm1(hidden_states).to(hidden_states.dtype), cu_seqlens=cu_seqlens
|
229
|
+
)
|
230
|
+
* self.ls1
|
300
231
|
)
|
301
232
|
|
302
233
|
hidden_states = hidden_states + self.drop_path2(
|
@@ -363,12 +294,12 @@ class InternVisionEncoder(nn.Module):
|
|
363
294
|
encoder_states = () if output_hidden_states else None
|
364
295
|
hidden_states = inputs_embeds
|
365
296
|
|
297
|
+
cu_seqlens = SingletonCache()
|
298
|
+
|
366
299
|
for idx, encoder_layer in enumerate(self.layers):
|
367
300
|
if output_hidden_states:
|
368
301
|
encoder_states = encoder_states + (hidden_states,)
|
369
|
-
layer_outputs = encoder_layer(
|
370
|
-
hidden_states,
|
371
|
-
)
|
302
|
+
layer_outputs = encoder_layer(hidden_states, cu_seqlens=cu_seqlens)
|
372
303
|
hidden_states = layer_outputs
|
373
304
|
|
374
305
|
if output_hidden_states:
|
@@ -625,6 +556,7 @@ class InternVLChatModel(nn.Module):
|
|
625
556
|
("gate_up_proj", "up_proj", 1),
|
626
557
|
]
|
627
558
|
params_dict = dict(self.named_parameters())
|
559
|
+
loaded_params: Set[str] = set()
|
628
560
|
|
629
561
|
for name, loaded_weight in weights:
|
630
562
|
if "rotary_emb.inv_freq" in name:
|
@@ -641,6 +573,11 @@ class InternVLChatModel(nn.Module):
|
|
641
573
|
weight_loader(param, loaded_weight, shard_id)
|
642
574
|
break
|
643
575
|
else:
|
576
|
+
if "vision_model" in name:
|
577
|
+
# adapt to VisionAttention
|
578
|
+
name = name.replace(r"attn.", r"attn.attn.")
|
579
|
+
name = name.replace(r"qkv.", r"qkv_proj.")
|
580
|
+
|
644
581
|
# Skip loading extra bias for GPTQ models.
|
645
582
|
if name.endswith(".bias") and name not in params_dict:
|
646
583
|
continue
|
@@ -665,6 +602,13 @@ class InternVLChatModel(nn.Module):
|
|
665
602
|
param, "weight_loader", default_weight_loader
|
666
603
|
)
|
667
604
|
weight_loader(param, loaded_weight)
|
605
|
+
loaded_params.add(name)
|
606
|
+
unloaded_params = params_dict.keys() - loaded_params
|
607
|
+
if unloaded_params:
|
608
|
+
raise RuntimeError(
|
609
|
+
f"Some weights are not initialized from checkpoints: {unloaded_params}"
|
610
|
+
)
|
611
|
+
return loaded_params
|
668
612
|
|
669
613
|
|
670
614
|
EntryClass = InternVLChatModel
|
sglang/srt/models/mimo_mtp.py
CHANGED
@@ -7,33 +7,17 @@ import torch
|
|
7
7
|
from torch import nn
|
8
8
|
from transformers import PretrainedConfig
|
9
9
|
|
10
|
-
from sglang.srt.distributed import
|
11
|
-
get_tensor_model_parallel_rank,
|
12
|
-
get_tensor_model_parallel_world_size,
|
13
|
-
split_tensor_along_last_dim,
|
14
|
-
tensor_model_parallel_all_gather,
|
15
|
-
)
|
10
|
+
from sglang.srt.distributed import get_tensor_model_parallel_world_size
|
16
11
|
from sglang.srt.layers.layernorm import RMSNorm
|
17
|
-
from sglang.srt.layers.linear import QKVParallelLinear, RowParallelLinear
|
18
12
|
from sglang.srt.layers.logits_processor import LogitsProcessor
|
19
|
-
from sglang.srt.layers.pooler import Pooler, PoolingType
|
20
13
|
from sglang.srt.layers.quantization.base_config import QuantizationConfig
|
21
|
-
from sglang.srt.layers.radix_attention import RadixAttention
|
22
|
-
from sglang.srt.layers.rotary_embedding import get_rope
|
23
14
|
from sglang.srt.layers.vocab_parallel_embedding import (
|
24
15
|
ParallelLMHead,
|
25
16
|
VocabParallelEmbedding,
|
26
17
|
)
|
27
18
|
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
|
28
19
|
from sglang.srt.model_loader.weight_utils import default_weight_loader
|
29
|
-
from sglang.srt.models.
|
30
|
-
from sglang.srt.models.qwen2 import (
|
31
|
-
Qwen2Attention,
|
32
|
-
Qwen2DecoderLayer,
|
33
|
-
Qwen2MLP,
|
34
|
-
Qwen2Model,
|
35
|
-
)
|
36
|
-
from sglang.srt.utils import add_prefix
|
20
|
+
from sglang.srt.models.qwen2 import Qwen2DecoderLayer
|
37
21
|
|
38
22
|
|
39
23
|
class MiMoMultiTokenPredictorLayer(nn.Module):
|