sglang 0.4.7.post1__py3-none-any.whl → 0.4.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +8 -6
- sglang/srt/_custom_ops.py +2 -2
- sglang/srt/code_completion_parser.py +2 -44
- sglang/srt/constants.py +3 -0
- sglang/srt/conversation.py +13 -3
- sglang/srt/custom_op.py +5 -1
- sglang/srt/disaggregation/decode.py +22 -28
- sglang/srt/disaggregation/decode_schedule_batch_mixin.py +4 -3
- sglang/srt/disaggregation/mini_lb.py +34 -4
- sglang/srt/disaggregation/mooncake/conn.py +12 -16
- sglang/srt/disaggregation/prefill.py +17 -13
- sglang/srt/disaggregation/utils.py +46 -18
- sglang/srt/distributed/parallel_state.py +12 -4
- sglang/srt/entrypoints/engine.py +22 -28
- sglang/srt/entrypoints/http_server.py +149 -79
- sglang/srt/entrypoints/http_server_engine.py +0 -3
- sglang/srt/entrypoints/openai/__init__.py +0 -0
- sglang/srt/{openai_api → entrypoints/openai}/protocol.py +67 -29
- sglang/srt/entrypoints/openai/serving_base.py +149 -0
- sglang/srt/entrypoints/openai/serving_chat.py +921 -0
- sglang/srt/entrypoints/openai/serving_completions.py +424 -0
- sglang/srt/entrypoints/openai/serving_embedding.py +169 -0
- sglang/srt/entrypoints/openai/serving_rerank.py +102 -0
- sglang/srt/entrypoints/openai/serving_score.py +61 -0
- sglang/srt/entrypoints/openai/usage_processor.py +81 -0
- sglang/srt/entrypoints/openai/utils.py +72 -0
- sglang/srt/function_call/base_format_detector.py +7 -4
- sglang/srt/function_call/deepseekv3_detector.py +1 -1
- sglang/srt/function_call/ebnf_composer.py +64 -10
- sglang/srt/function_call/function_call_parser.py +6 -6
- sglang/srt/function_call/llama32_detector.py +1 -1
- sglang/srt/function_call/mistral_detector.py +1 -1
- sglang/srt/function_call/pythonic_detector.py +1 -1
- sglang/srt/function_call/qwen25_detector.py +1 -1
- sglang/srt/{openai_api/utils.py → jinja_template_utils.py} +6 -5
- sglang/srt/layers/activation.py +21 -3
- sglang/srt/layers/attention/aiter_backend.py +5 -2
- sglang/srt/layers/attention/base_attn_backend.py +1 -1
- sglang/srt/layers/attention/cutlass_mla_backend.py +1 -0
- sglang/srt/layers/attention/flashattention_backend.py +19 -9
- sglang/srt/layers/attention/flashinfer_backend.py +9 -6
- sglang/srt/layers/attention/flashinfer_mla_backend.py +7 -4
- sglang/srt/layers/attention/flashmla_backend.py +5 -2
- sglang/srt/layers/attention/tbo_backend.py +3 -3
- sglang/srt/layers/attention/triton_backend.py +19 -11
- sglang/srt/layers/communicator.py +5 -5
- sglang/srt/layers/dp_attention.py +11 -2
- sglang/srt/layers/layernorm.py +29 -2
- sglang/srt/layers/logits_processor.py +2 -2
- sglang/srt/layers/moe/ep_moe/kernels.py +159 -2
- sglang/srt/layers/moe/ep_moe/layer.py +207 -1
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_3_1/E=128,N=384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +6 -0
- sglang/srt/layers/moe/fused_moe_triton/layer.py +75 -12
- sglang/srt/layers/moe/topk.py +91 -4
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +6 -2
- sglang/srt/layers/quantization/fp8.py +25 -17
- sglang/srt/layers/quantization/modelopt_quant.py +62 -8
- sglang/srt/layers/quantization/utils.py +5 -2
- sglang/srt/layers/rotary_embedding.py +42 -2
- sglang/srt/layers/sampler.py +1 -1
- sglang/srt/lora/lora_manager.py +173 -74
- sglang/srt/lora/mem_pool.py +49 -45
- sglang/srt/lora/utils.py +1 -1
- sglang/srt/managers/cache_controller.py +33 -15
- sglang/srt/managers/io_struct.py +9 -12
- sglang/srt/managers/schedule_batch.py +40 -31
- sglang/srt/managers/schedule_policy.py +70 -56
- sglang/srt/managers/scheduler.py +147 -62
- sglang/srt/managers/template_manager.py +226 -0
- sglang/srt/managers/tokenizer_manager.py +11 -8
- sglang/srt/managers/tp_worker.py +12 -2
- sglang/srt/managers/tp_worker_overlap_thread.py +11 -0
- sglang/srt/mem_cache/{paged_allocator.py → allocator.py} +125 -34
- sglang/srt/mem_cache/base_prefix_cache.py +52 -8
- sglang/srt/mem_cache/chunk_cache.py +11 -16
- sglang/srt/mem_cache/hiradix_cache.py +34 -23
- sglang/srt/mem_cache/memory_pool.py +118 -114
- sglang/srt/mem_cache/radix_cache.py +20 -16
- sglang/srt/model_executor/cuda_graph_runner.py +76 -45
- sglang/srt/model_executor/forward_batch_info.py +18 -5
- sglang/srt/model_executor/model_runner.py +22 -6
- sglang/srt/model_loader/loader.py +8 -1
- sglang/srt/model_loader/weight_utils.py +11 -2
- sglang/srt/models/deepseek_nextn.py +29 -27
- sglang/srt/models/deepseek_v2.py +108 -26
- sglang/srt/models/glm4.py +312 -0
- sglang/srt/models/mimo_mtp.py +2 -18
- sglang/srt/reasoning_parser.py +21 -11
- sglang/srt/server_args.py +36 -8
- sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +131 -10
- sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +125 -12
- sglang/srt/speculative/eagle_utils.py +80 -8
- sglang/srt/speculative/eagle_worker.py +124 -41
- sglang/srt/torch_memory_saver_adapter.py +19 -15
- sglang/srt/utils.py +177 -11
- sglang/test/test_block_fp8_ep.py +1 -0
- sglang/test/test_utils.py +1 -0
- sglang/version.py +1 -1
- {sglang-0.4.7.post1.dist-info → sglang-0.4.8.dist-info}/METADATA +4 -10
- {sglang-0.4.7.post1.dist-info → sglang-0.4.8.dist-info}/RECORD +104 -93
- sglang/srt/entrypoints/verl_engine.py +0 -179
- sglang/srt/openai_api/adapter.py +0 -2148
- {sglang-0.4.7.post1.dist-info → sglang-0.4.8.dist-info}/WHEEL +0 -0
- {sglang-0.4.7.post1.dist-info → sglang-0.4.8.dist-info}/licenses/LICENSE +0 -0
- {sglang-0.4.7.post1.dist-info → sglang-0.4.8.dist-info}/top_level.txt +0 -0
sglang/srt/openai_api/adapter.py
DELETED
@@ -1,2148 +0,0 @@
|
|
1
|
-
# Copyright 2023-2024 SGLang Team
|
2
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
3
|
-
# you may not use this file except in compliance with the License.
|
4
|
-
# You may obtain a copy of the License at
|
5
|
-
#
|
6
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
7
|
-
#
|
8
|
-
# Unless required by applicable law or agreed to in writing, software
|
9
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
10
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
11
|
-
# See the License for the specific language governing permissions and
|
12
|
-
# limitations under the License.
|
13
|
-
# ==============================================================================
|
14
|
-
"""Conversion between OpenAI APIs and native SRT APIs"""
|
15
|
-
|
16
|
-
import asyncio
|
17
|
-
import base64
|
18
|
-
import json
|
19
|
-
import logging
|
20
|
-
import os
|
21
|
-
import time
|
22
|
-
import uuid
|
23
|
-
from http import HTTPStatus
|
24
|
-
from typing import Dict, List
|
25
|
-
|
26
|
-
from fastapi import HTTPException, Request, UploadFile
|
27
|
-
from fastapi.responses import ORJSONResponse, StreamingResponse
|
28
|
-
from pydantic import ValidationError
|
29
|
-
|
30
|
-
from sglang.srt.code_completion_parser import (
|
31
|
-
generate_completion_prompt_from_request,
|
32
|
-
is_completion_template_defined,
|
33
|
-
)
|
34
|
-
from sglang.srt.conversation import (
|
35
|
-
Conversation,
|
36
|
-
SeparatorStyle,
|
37
|
-
chat_template_exists,
|
38
|
-
generate_chat_conv,
|
39
|
-
generate_embedding_convs,
|
40
|
-
get_conv_template_by_model_path,
|
41
|
-
register_conv_template,
|
42
|
-
)
|
43
|
-
from sglang.srt.function_call.function_call_parser import FunctionCallParser
|
44
|
-
from sglang.srt.managers.io_struct import (
|
45
|
-
EmbeddingReqInput,
|
46
|
-
GenerateReqInput,
|
47
|
-
V1RerankReqInput,
|
48
|
-
)
|
49
|
-
from sglang.srt.openai_api.protocol import (
|
50
|
-
BatchRequest,
|
51
|
-
BatchResponse,
|
52
|
-
ChatCompletionRequest,
|
53
|
-
ChatCompletionResponse,
|
54
|
-
ChatCompletionResponseChoice,
|
55
|
-
ChatCompletionResponseStreamChoice,
|
56
|
-
ChatCompletionStreamResponse,
|
57
|
-
ChatCompletionTokenLogprob,
|
58
|
-
ChatMessage,
|
59
|
-
ChoiceLogprobs,
|
60
|
-
CompletionRequest,
|
61
|
-
CompletionResponse,
|
62
|
-
CompletionResponseChoice,
|
63
|
-
CompletionResponseStreamChoice,
|
64
|
-
CompletionStreamResponse,
|
65
|
-
DeltaMessage,
|
66
|
-
EmbeddingObject,
|
67
|
-
EmbeddingRequest,
|
68
|
-
EmbeddingResponse,
|
69
|
-
ErrorResponse,
|
70
|
-
FileDeleteResponse,
|
71
|
-
FileRequest,
|
72
|
-
FileResponse,
|
73
|
-
FunctionResponse,
|
74
|
-
LogProbs,
|
75
|
-
MultimodalEmbeddingInput,
|
76
|
-
RerankResponse,
|
77
|
-
ScoringRequest,
|
78
|
-
ScoringResponse,
|
79
|
-
ToolCall,
|
80
|
-
TopLogprob,
|
81
|
-
UsageInfo,
|
82
|
-
)
|
83
|
-
from sglang.srt.openai_api.utils import (
|
84
|
-
detect_template_content_format,
|
85
|
-
process_content_for_template_format,
|
86
|
-
)
|
87
|
-
from sglang.srt.reasoning_parser import ReasoningParser
|
88
|
-
from sglang.utils import convert_json_schema_to_str, get_exception_traceback
|
89
|
-
|
90
|
-
logger = logging.getLogger(__name__)
|
91
|
-
|
92
|
-
chat_template_name = None
|
93
|
-
|
94
|
-
# Global cache for template content format detection (one model/template per instance)
|
95
|
-
# NOTE: A better approach would be to initialize the chat template format when the endpoint is created
|
96
|
-
_cached_chat_template = None
|
97
|
-
_cached_template_format = None
|
98
|
-
|
99
|
-
|
100
|
-
class FileMetadata:
|
101
|
-
def __init__(self, filename: str, purpose: str):
|
102
|
-
self.filename = filename
|
103
|
-
self.purpose = purpose
|
104
|
-
|
105
|
-
|
106
|
-
# In-memory storage for batch jobs and files
|
107
|
-
batch_storage: Dict[str, BatchResponse] = {}
|
108
|
-
file_id_request: Dict[str, FileMetadata] = {}
|
109
|
-
file_id_response: Dict[str, FileResponse] = {}
|
110
|
-
# map file id to file path in SGLang backend
|
111
|
-
file_id_storage: Dict[str, str] = {}
|
112
|
-
|
113
|
-
# backend storage directory
|
114
|
-
storage_dir = None
|
115
|
-
|
116
|
-
|
117
|
-
def create_error_response(
|
118
|
-
message: str,
|
119
|
-
err_type: str = "BadRequestError",
|
120
|
-
status_code: HTTPStatus = HTTPStatus.BAD_REQUEST,
|
121
|
-
):
|
122
|
-
error = ErrorResponse(message=message, type=err_type, code=status_code.value)
|
123
|
-
return ORJSONResponse(content=error.model_dump(), status_code=error.code)
|
124
|
-
|
125
|
-
|
126
|
-
def create_streaming_error_response(
|
127
|
-
message: str,
|
128
|
-
err_type: str = "BadRequestError",
|
129
|
-
status_code: HTTPStatus = HTTPStatus.BAD_REQUEST,
|
130
|
-
) -> str:
|
131
|
-
error = ErrorResponse(message=message, type=err_type, code=status_code.value)
|
132
|
-
json_str = json.dumps({"error": error.model_dump()})
|
133
|
-
return json_str
|
134
|
-
|
135
|
-
|
136
|
-
def load_chat_template_for_openai_api(tokenizer_manager, chat_template_arg, model_path):
|
137
|
-
global chat_template_name
|
138
|
-
|
139
|
-
logger.info(
|
140
|
-
f"Use chat template for the OpenAI-compatible API server: {chat_template_arg}"
|
141
|
-
)
|
142
|
-
|
143
|
-
if not chat_template_exists(chat_template_arg):
|
144
|
-
if not os.path.exists(chat_template_arg):
|
145
|
-
raise RuntimeError(
|
146
|
-
f"Chat template {chat_template_arg} is not a built-in template name "
|
147
|
-
"or a valid chat template file path."
|
148
|
-
)
|
149
|
-
if chat_template_arg.endswith(".jinja"):
|
150
|
-
with open(chat_template_arg, "r") as f:
|
151
|
-
chat_template = "".join(f.readlines()).strip("\n")
|
152
|
-
tokenizer_manager.tokenizer.chat_template = chat_template.replace(
|
153
|
-
"\\n", "\n"
|
154
|
-
)
|
155
|
-
chat_template_name = None
|
156
|
-
else:
|
157
|
-
assert chat_template_arg.endswith(
|
158
|
-
".json"
|
159
|
-
), "unrecognized format of chat template file"
|
160
|
-
with open(chat_template_arg, "r") as filep:
|
161
|
-
template = json.load(filep)
|
162
|
-
try:
|
163
|
-
sep_style = SeparatorStyle[template["sep_style"]]
|
164
|
-
except KeyError:
|
165
|
-
raise ValueError(
|
166
|
-
f"Unknown separator style: {template['sep_style']}"
|
167
|
-
) from None
|
168
|
-
register_conv_template(
|
169
|
-
Conversation(
|
170
|
-
name=template["name"],
|
171
|
-
system_template=template["system"] + "\n{system_message}",
|
172
|
-
system_message=template.get("system_message", ""),
|
173
|
-
roles=(template["user"], template["assistant"]),
|
174
|
-
sep_style=sep_style,
|
175
|
-
sep=template.get("sep", "\n"),
|
176
|
-
stop_str=template["stop_str"],
|
177
|
-
),
|
178
|
-
override=True,
|
179
|
-
)
|
180
|
-
chat_template_name = template["name"]
|
181
|
-
else:
|
182
|
-
chat_template_name = chat_template_arg
|
183
|
-
|
184
|
-
|
185
|
-
def guess_chat_template_name_from_model_path(model_path):
|
186
|
-
global chat_template_name
|
187
|
-
chat_template_name = get_conv_template_by_model_path(model_path)
|
188
|
-
if chat_template_name is not None:
|
189
|
-
logger.info(
|
190
|
-
f"Infer the chat template name from the model path and obtain the result: {chat_template_name}."
|
191
|
-
)
|
192
|
-
|
193
|
-
|
194
|
-
def _validate_prompt(prompt: str):
|
195
|
-
"""Validate that the prompt is not empty or whitespace only."""
|
196
|
-
is_invalid = False
|
197
|
-
|
198
|
-
# Check for empty/whitespace string
|
199
|
-
if isinstance(prompt, str):
|
200
|
-
is_invalid = not prompt.strip()
|
201
|
-
# Check for various invalid list cases: [], [""], [" "], [[]]
|
202
|
-
elif isinstance(prompt, list):
|
203
|
-
is_invalid = not prompt or (
|
204
|
-
len(prompt) == 1
|
205
|
-
and (
|
206
|
-
(isinstance(prompt[0], str) and not prompt[0].strip())
|
207
|
-
or (isinstance(prompt[0], list) and not prompt[0])
|
208
|
-
)
|
209
|
-
)
|
210
|
-
|
211
|
-
if is_invalid:
|
212
|
-
raise HTTPException(
|
213
|
-
status_code=400,
|
214
|
-
detail="Input cannot be empty or contain only whitespace.",
|
215
|
-
)
|
216
|
-
|
217
|
-
return prompt
|
218
|
-
|
219
|
-
|
220
|
-
async def v1_files_create(
|
221
|
-
file: UploadFile, purpose: str, file_storage_path: str = None
|
222
|
-
):
|
223
|
-
try:
|
224
|
-
global storage_dir
|
225
|
-
if file_storage_path:
|
226
|
-
storage_dir = file_storage_path
|
227
|
-
# Read the file content
|
228
|
-
file_content = await file.read()
|
229
|
-
|
230
|
-
# Create an instance of RequestBody
|
231
|
-
request_body = FileRequest(file=file_content, purpose=purpose)
|
232
|
-
|
233
|
-
# Save the file to the sglang_oai_storage directory
|
234
|
-
os.makedirs(storage_dir, exist_ok=True)
|
235
|
-
file_id = f"backend_input_file-{uuid.uuid4()}"
|
236
|
-
filename = f"{file_id}.jsonl"
|
237
|
-
file_path = os.path.join(storage_dir, filename)
|
238
|
-
|
239
|
-
with open(file_path, "wb") as f:
|
240
|
-
f.write(request_body.file)
|
241
|
-
|
242
|
-
# add info to global file map
|
243
|
-
file_id_request[file_id] = FileMetadata(filename=file.filename, purpose=purpose)
|
244
|
-
file_id_storage[file_id] = file_path
|
245
|
-
|
246
|
-
# Return the response in the required format
|
247
|
-
response = FileResponse(
|
248
|
-
id=file_id,
|
249
|
-
bytes=len(request_body.file),
|
250
|
-
created_at=int(time.time()),
|
251
|
-
filename=file.filename,
|
252
|
-
purpose=request_body.purpose,
|
253
|
-
)
|
254
|
-
file_id_response[file_id] = response
|
255
|
-
|
256
|
-
return response
|
257
|
-
except ValidationError as e:
|
258
|
-
return {"error": "Invalid input", "details": e.errors()}
|
259
|
-
|
260
|
-
|
261
|
-
async def v1_delete_file(file_id: str):
|
262
|
-
# Retrieve the file job from the in-memory storage
|
263
|
-
file_response = file_id_response.get(file_id)
|
264
|
-
if file_response is None:
|
265
|
-
raise HTTPException(status_code=404, detail="File not found")
|
266
|
-
file_path = file_id_storage.get(file_id)
|
267
|
-
if file_path is None:
|
268
|
-
raise HTTPException(status_code=404, detail="File not found")
|
269
|
-
os.remove(file_path)
|
270
|
-
del file_id_response[file_id]
|
271
|
-
del file_id_storage[file_id]
|
272
|
-
return FileDeleteResponse(id=file_id, deleted=True)
|
273
|
-
|
274
|
-
|
275
|
-
async def v1_batches(tokenizer_manager, raw_request: Request):
|
276
|
-
try:
|
277
|
-
body = await raw_request.json()
|
278
|
-
|
279
|
-
batch_request = BatchRequest(**body)
|
280
|
-
|
281
|
-
batch_id = f"batch_{uuid.uuid4()}"
|
282
|
-
|
283
|
-
# Create an instance of BatchResponse
|
284
|
-
batch_response = BatchResponse(
|
285
|
-
id=batch_id,
|
286
|
-
endpoint=batch_request.endpoint,
|
287
|
-
input_file_id=batch_request.input_file_id,
|
288
|
-
completion_window=batch_request.completion_window,
|
289
|
-
created_at=int(time.time()),
|
290
|
-
metadata=batch_request.metadata,
|
291
|
-
)
|
292
|
-
|
293
|
-
batch_storage[batch_id] = batch_response
|
294
|
-
|
295
|
-
# Start processing the batch asynchronously
|
296
|
-
asyncio.create_task(process_batch(tokenizer_manager, batch_id, batch_request))
|
297
|
-
|
298
|
-
# Return the initial batch_response
|
299
|
-
return batch_response
|
300
|
-
|
301
|
-
except ValidationError as e:
|
302
|
-
return {"error": "Invalid input", "details": e.errors()}
|
303
|
-
except Exception as e:
|
304
|
-
return {"error": str(e)}
|
305
|
-
|
306
|
-
|
307
|
-
async def process_batch(tokenizer_manager, batch_id: str, batch_request: BatchRequest):
|
308
|
-
try:
|
309
|
-
# Update the batch status to "in_progress"
|
310
|
-
batch_storage[batch_id].status = "in_progress"
|
311
|
-
batch_storage[batch_id].in_progress_at = int(time.time())
|
312
|
-
|
313
|
-
# Retrieve the input file content
|
314
|
-
input_file_request = file_id_request.get(batch_request.input_file_id)
|
315
|
-
if not input_file_request:
|
316
|
-
raise ValueError("Input file not found")
|
317
|
-
|
318
|
-
# Parse the JSONL file and process each request
|
319
|
-
input_file_path = file_id_storage.get(batch_request.input_file_id)
|
320
|
-
with open(input_file_path, "r", encoding="utf-8") as f:
|
321
|
-
lines = f.readlines()
|
322
|
-
|
323
|
-
total_requests = len(lines)
|
324
|
-
completed_requests = 0
|
325
|
-
failed_requests = 0
|
326
|
-
|
327
|
-
all_ret = []
|
328
|
-
end_point = batch_storage[batch_id].endpoint
|
329
|
-
file_request_list = []
|
330
|
-
all_requests = []
|
331
|
-
request_ids = []
|
332
|
-
for line_id, line in enumerate(lines):
|
333
|
-
request_data = json.loads(line)
|
334
|
-
file_request_list.append(request_data)
|
335
|
-
body = request_data["body"]
|
336
|
-
request_ids.append(f"{batch_id}-req_{line_id}")
|
337
|
-
|
338
|
-
# Although streaming is supported for standalone completions, it is not supported in
|
339
|
-
# batch mode (multiple completions in single request).
|
340
|
-
if body.get("stream", False):
|
341
|
-
raise ValueError("Streaming requests are not supported in batch mode")
|
342
|
-
|
343
|
-
if end_point == "/v1/chat/completions":
|
344
|
-
all_requests.append(ChatCompletionRequest(**body))
|
345
|
-
elif end_point == "/v1/completions":
|
346
|
-
all_requests.append(CompletionRequest(**body))
|
347
|
-
|
348
|
-
if end_point == "/v1/chat/completions":
|
349
|
-
adapted_request, request = v1_chat_generate_request(
|
350
|
-
all_requests, tokenizer_manager, request_ids=request_ids
|
351
|
-
)
|
352
|
-
elif end_point == "/v1/completions":
|
353
|
-
adapted_request, request = v1_generate_request(
|
354
|
-
all_requests, request_ids=request_ids
|
355
|
-
)
|
356
|
-
|
357
|
-
try:
|
358
|
-
created = int(time.time())
|
359
|
-
ret = await tokenizer_manager.generate_request(adapted_request).__anext__()
|
360
|
-
if not isinstance(ret, list):
|
361
|
-
ret = [ret]
|
362
|
-
if end_point == "/v1/chat/completions":
|
363
|
-
responses = v1_chat_generate_response(
|
364
|
-
request,
|
365
|
-
ret,
|
366
|
-
created,
|
367
|
-
to_file=True,
|
368
|
-
cache_report=tokenizer_manager.server_args.enable_cache_report,
|
369
|
-
tool_call_parser=tokenizer_manager.server_args.tool_call_parser,
|
370
|
-
)
|
371
|
-
else:
|
372
|
-
responses = v1_generate_response(
|
373
|
-
request,
|
374
|
-
ret,
|
375
|
-
tokenizer_manager,
|
376
|
-
created,
|
377
|
-
to_file=True,
|
378
|
-
cache_report=tokenizer_manager.server_args.enable_cache_report,
|
379
|
-
)
|
380
|
-
|
381
|
-
except Exception as e:
|
382
|
-
logger.error(f"error: {get_exception_traceback()}")
|
383
|
-
responses = []
|
384
|
-
error_json = {
|
385
|
-
"id": f"batch_req_{uuid.uuid4()}",
|
386
|
-
"custom_id": request_data.get("custom_id"),
|
387
|
-
"response": None,
|
388
|
-
"error": {"message": str(e)},
|
389
|
-
}
|
390
|
-
all_ret.append(error_json)
|
391
|
-
failed_requests += len(file_request_list)
|
392
|
-
|
393
|
-
for idx, response in enumerate(responses):
|
394
|
-
# the batch_req here can be changed to be named within a batch granularity
|
395
|
-
response_json = {
|
396
|
-
"id": f"batch_req_{uuid.uuid4()}",
|
397
|
-
"custom_id": file_request_list[idx].get("custom_id"),
|
398
|
-
"response": response,
|
399
|
-
"error": None,
|
400
|
-
}
|
401
|
-
all_ret.append(response_json)
|
402
|
-
completed_requests += 1
|
403
|
-
|
404
|
-
# Write results to a new file
|
405
|
-
output_file_id = f"backend_result_file-{uuid.uuid4()}"
|
406
|
-
global storage_dir
|
407
|
-
output_file_path = os.path.join(storage_dir, f"{output_file_id}.jsonl")
|
408
|
-
with open(output_file_path, "w", encoding="utf-8") as f:
|
409
|
-
for ret in all_ret:
|
410
|
-
f.write(json.dumps(ret) + "\n")
|
411
|
-
|
412
|
-
# Update batch response with output file information
|
413
|
-
retrieve_batch = batch_storage[batch_id]
|
414
|
-
retrieve_batch.output_file_id = output_file_id
|
415
|
-
file_id_storage[output_file_id] = output_file_path
|
416
|
-
file_id_response[output_file_id] = FileResponse(
|
417
|
-
id=output_file_id,
|
418
|
-
bytes=os.path.getsize(output_file_path),
|
419
|
-
created_at=int(time.time()),
|
420
|
-
filename=f"{output_file_id}.jsonl",
|
421
|
-
purpose="batch_result",
|
422
|
-
)
|
423
|
-
# Update batch status to "completed"
|
424
|
-
retrieve_batch.status = "completed"
|
425
|
-
retrieve_batch.completed_at = int(time.time())
|
426
|
-
retrieve_batch.request_counts = {
|
427
|
-
"total": total_requests,
|
428
|
-
"completed": completed_requests,
|
429
|
-
"failed": failed_requests,
|
430
|
-
}
|
431
|
-
|
432
|
-
except Exception as e:
|
433
|
-
logger.error(f"error: {e}")
|
434
|
-
# Update batch status to "failed"
|
435
|
-
retrieve_batch = batch_storage[batch_id]
|
436
|
-
retrieve_batch.status = "failed"
|
437
|
-
retrieve_batch.failed_at = int(time.time())
|
438
|
-
retrieve_batch.errors = {"message": str(e)}
|
439
|
-
|
440
|
-
|
441
|
-
async def v1_retrieve_batch(batch_id: str):
|
442
|
-
# Retrieve the batch job from the in-memory storage
|
443
|
-
batch_response = batch_storage.get(batch_id)
|
444
|
-
if batch_response is None:
|
445
|
-
raise HTTPException(status_code=404, detail="Batch not found")
|
446
|
-
|
447
|
-
return batch_response
|
448
|
-
|
449
|
-
|
450
|
-
async def v1_cancel_batch(tokenizer_manager, batch_id: str):
|
451
|
-
# Retrieve the batch job from the in-memory storage
|
452
|
-
batch_response = batch_storage.get(batch_id)
|
453
|
-
if batch_response is None:
|
454
|
-
raise HTTPException(status_code=404, detail="Batch not found")
|
455
|
-
|
456
|
-
# Only do cancal when status is "validating" or "in_progress"
|
457
|
-
if batch_response.status in ["validating", "in_progress"]:
|
458
|
-
# Start cancelling the batch asynchronously
|
459
|
-
asyncio.create_task(
|
460
|
-
cancel_batch(
|
461
|
-
tokenizer_manager=tokenizer_manager,
|
462
|
-
batch_id=batch_id,
|
463
|
-
input_file_id=batch_response.input_file_id,
|
464
|
-
)
|
465
|
-
)
|
466
|
-
|
467
|
-
# Update batch status to "cancelling"
|
468
|
-
batch_response.status = "cancelling"
|
469
|
-
|
470
|
-
return batch_response
|
471
|
-
else:
|
472
|
-
raise HTTPException(
|
473
|
-
status_code=500,
|
474
|
-
detail=f"Current status is {batch_response.status}, no need to cancel",
|
475
|
-
)
|
476
|
-
|
477
|
-
|
478
|
-
async def cancel_batch(tokenizer_manager, batch_id: str, input_file_id: str):
|
479
|
-
try:
|
480
|
-
# Update the batch status to "cancelling"
|
481
|
-
batch_storage[batch_id].status = "cancelling"
|
482
|
-
|
483
|
-
# Retrieve the input file content
|
484
|
-
input_file_request = file_id_request.get(input_file_id)
|
485
|
-
if not input_file_request:
|
486
|
-
raise ValueError("Input file not found")
|
487
|
-
|
488
|
-
# Parse the JSONL file and process each request
|
489
|
-
input_file_path = file_id_storage.get(input_file_id)
|
490
|
-
with open(input_file_path, "r", encoding="utf-8") as f:
|
491
|
-
lines = f.readlines()
|
492
|
-
|
493
|
-
# Cancel requests by request_ids
|
494
|
-
for line_id in range(len(lines)):
|
495
|
-
rid = f"{batch_id}-req_{line_id}"
|
496
|
-
tokenizer_manager.abort_request(rid=rid)
|
497
|
-
|
498
|
-
retrieve_batch = batch_storage[batch_id]
|
499
|
-
retrieve_batch.status = "cancelled"
|
500
|
-
|
501
|
-
except Exception as e:
|
502
|
-
logger.error("error in SGLang:", e)
|
503
|
-
# Update batch status to "failed"
|
504
|
-
retrieve_batch = batch_storage[batch_id]
|
505
|
-
retrieve_batch.status = "failed"
|
506
|
-
retrieve_batch.failed_at = int(time.time())
|
507
|
-
retrieve_batch.errors = {"message": str(e)}
|
508
|
-
|
509
|
-
|
510
|
-
async def v1_retrieve_file(file_id: str):
|
511
|
-
# Retrieve the batch job from the in-memory storage
|
512
|
-
file_response = file_id_response.get(file_id)
|
513
|
-
if file_response is None:
|
514
|
-
raise HTTPException(status_code=404, detail="File not found")
|
515
|
-
return file_response
|
516
|
-
|
517
|
-
|
518
|
-
async def v1_retrieve_file_content(file_id: str):
|
519
|
-
file_pth = file_id_storage.get(file_id)
|
520
|
-
if not file_pth or not os.path.exists(file_pth):
|
521
|
-
raise HTTPException(status_code=404, detail="File not found")
|
522
|
-
|
523
|
-
def iter_file():
|
524
|
-
with open(file_pth, mode="rb") as file_like:
|
525
|
-
yield from file_like
|
526
|
-
|
527
|
-
return StreamingResponse(iter_file(), media_type="application/octet-stream")
|
528
|
-
|
529
|
-
|
530
|
-
def v1_generate_request(
|
531
|
-
all_requests: List[CompletionRequest], request_ids: List[str] = None
|
532
|
-
):
|
533
|
-
if len(all_requests) > 1:
|
534
|
-
first_prompt_type = type(all_requests[0].prompt)
|
535
|
-
for request in all_requests:
|
536
|
-
assert (
|
537
|
-
type(request.prompt) is first_prompt_type
|
538
|
-
), "All prompts must be of the same type in file input settings"
|
539
|
-
if request.n > 1:
|
540
|
-
raise ValueError(
|
541
|
-
"Parallel sampling is not supported for completions from files"
|
542
|
-
)
|
543
|
-
|
544
|
-
prompts = []
|
545
|
-
sampling_params_list = []
|
546
|
-
return_logprobs = []
|
547
|
-
logprob_start_lens = []
|
548
|
-
top_logprobs_nums = []
|
549
|
-
lora_paths = []
|
550
|
-
return_hidden_states = []
|
551
|
-
|
552
|
-
for request in all_requests:
|
553
|
-
# NOTE: with openai API, the prompt's logprobs are always not computed
|
554
|
-
if request.echo and request.logprobs:
|
555
|
-
logger.warning(
|
556
|
-
"Echo is not compatible with logprobs. "
|
557
|
-
"To compute logprobs of input prompt, please use the native /generate API."
|
558
|
-
)
|
559
|
-
|
560
|
-
prompt = request.prompt
|
561
|
-
if is_completion_template_defined():
|
562
|
-
prompt = generate_completion_prompt_from_request(request)
|
563
|
-
prompts.append(prompt)
|
564
|
-
|
565
|
-
lora_paths.append(request.lora_path)
|
566
|
-
if request.echo and request.logprobs:
|
567
|
-
current_logprob_start_len = 0
|
568
|
-
else:
|
569
|
-
current_logprob_start_len = -1
|
570
|
-
sampling_params_list.append(
|
571
|
-
{
|
572
|
-
"temperature": request.temperature,
|
573
|
-
"max_new_tokens": request.max_tokens,
|
574
|
-
"min_new_tokens": request.min_tokens,
|
575
|
-
"stop": request.stop,
|
576
|
-
"stop_token_ids": request.stop_token_ids,
|
577
|
-
"top_p": request.top_p,
|
578
|
-
"top_k": request.top_k,
|
579
|
-
"min_p": request.min_p,
|
580
|
-
"presence_penalty": request.presence_penalty,
|
581
|
-
"frequency_penalty": request.frequency_penalty,
|
582
|
-
"repetition_penalty": request.repetition_penalty,
|
583
|
-
"regex": request.regex,
|
584
|
-
"json_schema": request.json_schema,
|
585
|
-
"ebnf": request.ebnf,
|
586
|
-
"n": request.n,
|
587
|
-
"no_stop_trim": request.no_stop_trim,
|
588
|
-
"ignore_eos": request.ignore_eos,
|
589
|
-
"skip_special_tokens": request.skip_special_tokens,
|
590
|
-
"logit_bias": request.logit_bias,
|
591
|
-
}
|
592
|
-
)
|
593
|
-
return_logprobs.append(request.logprobs is not None)
|
594
|
-
logprob_start_lens.append(current_logprob_start_len)
|
595
|
-
top_logprobs_nums.append(
|
596
|
-
request.logprobs if request.logprobs is not None else 0
|
597
|
-
)
|
598
|
-
return_hidden_states.append(request.return_hidden_states)
|
599
|
-
|
600
|
-
if len(all_requests) == 1:
|
601
|
-
if isinstance(prompts[0], str) or isinstance(prompts[0][0], str):
|
602
|
-
prompt_kwargs = {"text": prompts[0]}
|
603
|
-
else:
|
604
|
-
prompt_kwargs = {"input_ids": prompts[0]}
|
605
|
-
sampling_params_list = sampling_params_list[0]
|
606
|
-
return_logprobs = return_logprobs[0]
|
607
|
-
logprob_start_lens = logprob_start_lens[0]
|
608
|
-
top_logprobs_nums = top_logprobs_nums[0]
|
609
|
-
lora_paths = lora_paths[0]
|
610
|
-
return_hidden_states = return_hidden_states[0]
|
611
|
-
else:
|
612
|
-
if isinstance(prompts[0], str) or isinstance(prompts[0][0], str):
|
613
|
-
prompt_kwargs = {"text": prompts}
|
614
|
-
else:
|
615
|
-
prompt_kwargs = {"input_ids": prompts}
|
616
|
-
|
617
|
-
adapted_request = GenerateReqInput(
|
618
|
-
**prompt_kwargs,
|
619
|
-
sampling_params=sampling_params_list,
|
620
|
-
return_logprob=return_logprobs,
|
621
|
-
top_logprobs_num=top_logprobs_nums,
|
622
|
-
logprob_start_len=logprob_start_lens,
|
623
|
-
return_text_in_logprobs=True,
|
624
|
-
stream=all_requests[0].stream,
|
625
|
-
rid=request_ids,
|
626
|
-
lora_path=lora_paths,
|
627
|
-
return_hidden_states=return_hidden_states,
|
628
|
-
bootstrap_host=all_requests[0].bootstrap_host,
|
629
|
-
bootstrap_port=all_requests[0].bootstrap_port,
|
630
|
-
bootstrap_room=all_requests[0].bootstrap_room,
|
631
|
-
)
|
632
|
-
|
633
|
-
return adapted_request, all_requests if len(all_requests) > 1 else all_requests[0]
|
634
|
-
|
635
|
-
|
636
|
-
def v1_generate_response(
|
637
|
-
request, ret, tokenizer_manager, created, to_file=False, cache_report=False
|
638
|
-
):
|
639
|
-
choices = []
|
640
|
-
echo = False
|
641
|
-
|
642
|
-
if (not isinstance(request, list)) and request.echo:
|
643
|
-
# TODO: handle the case prompt is token ids
|
644
|
-
if isinstance(request.prompt, list) and isinstance(request.prompt[0], str):
|
645
|
-
# for the case of multiple str prompts
|
646
|
-
prompts = request.prompt
|
647
|
-
elif isinstance(request.prompt, list) and isinstance(request.prompt[0], list):
|
648
|
-
# for the case of multiple token ids prompts
|
649
|
-
prompts = [
|
650
|
-
tokenizer_manager.tokenizer.decode(prompt, skip_special_tokens=True)
|
651
|
-
for prompt in request.prompt
|
652
|
-
]
|
653
|
-
elif isinstance(request.prompt, list) and isinstance(request.prompt[0], int):
|
654
|
-
# for the case of single token ids prompt
|
655
|
-
prompts = [
|
656
|
-
tokenizer_manager.tokenizer.decode(
|
657
|
-
request.prompt, skip_special_tokens=True
|
658
|
-
)
|
659
|
-
]
|
660
|
-
else:
|
661
|
-
# for the case of single str prompt
|
662
|
-
prompts = [request.prompt]
|
663
|
-
echo = True
|
664
|
-
|
665
|
-
for idx, ret_item in enumerate(ret):
|
666
|
-
text = ret_item["text"]
|
667
|
-
if isinstance(request, list) and request[idx].echo:
|
668
|
-
echo = True
|
669
|
-
text = request[idx].prompt + text
|
670
|
-
if echo and not isinstance(request, list):
|
671
|
-
prompt_index = idx // request.n
|
672
|
-
text = prompts[prompt_index] + text
|
673
|
-
|
674
|
-
logprobs = False
|
675
|
-
if isinstance(request, list) and request[idx].logprobs is not None:
|
676
|
-
logprobs = True
|
677
|
-
elif (not isinstance(request, list)) and request.logprobs is not None:
|
678
|
-
logprobs = True
|
679
|
-
if logprobs:
|
680
|
-
if echo:
|
681
|
-
input_token_logprobs = ret_item["meta_info"]["input_token_logprobs"]
|
682
|
-
input_top_logprobs = ret_item["meta_info"]["input_top_logprobs"]
|
683
|
-
else:
|
684
|
-
input_token_logprobs = None
|
685
|
-
input_top_logprobs = None
|
686
|
-
|
687
|
-
logprobs = to_openai_style_logprobs(
|
688
|
-
input_token_logprobs=input_token_logprobs,
|
689
|
-
input_top_logprobs=input_top_logprobs,
|
690
|
-
output_token_logprobs=ret_item["meta_info"]["output_token_logprobs"],
|
691
|
-
output_top_logprobs=ret_item["meta_info"]["output_top_logprobs"],
|
692
|
-
)
|
693
|
-
else:
|
694
|
-
logprobs = None
|
695
|
-
|
696
|
-
hidden_states = None
|
697
|
-
if isinstance(request, list) and request[idx].return_hidden_states:
|
698
|
-
hidden_states = ret_item["meta_info"].get("hidden_states", None)
|
699
|
-
elif (not isinstance(request, list)) and request.return_hidden_states:
|
700
|
-
hidden_states = ret_item["meta_info"].get("hidden_states", None)
|
701
|
-
if hidden_states is not None:
|
702
|
-
hidden_states = (
|
703
|
-
hidden_states[-1] if hidden_states and len(hidden_states) > 1 else []
|
704
|
-
)
|
705
|
-
|
706
|
-
finish_reason = ret_item["meta_info"]["finish_reason"]
|
707
|
-
|
708
|
-
if to_file:
|
709
|
-
# to make the choice data json serializable
|
710
|
-
choice_data = {
|
711
|
-
"index": 0,
|
712
|
-
"text": text,
|
713
|
-
"logprobs": logprobs,
|
714
|
-
"finish_reason": finish_reason["type"] if finish_reason else None,
|
715
|
-
"matched_stop": (
|
716
|
-
finish_reason["matched"]
|
717
|
-
if finish_reason and "matched" in finish_reason
|
718
|
-
else None
|
719
|
-
),
|
720
|
-
}
|
721
|
-
if hidden_states is not None:
|
722
|
-
choice_data["hidden_states"] = hidden_states
|
723
|
-
else:
|
724
|
-
choice_data = CompletionResponseChoice(
|
725
|
-
index=idx,
|
726
|
-
text=text,
|
727
|
-
logprobs=logprobs,
|
728
|
-
finish_reason=finish_reason["type"] if finish_reason else None,
|
729
|
-
matched_stop=(
|
730
|
-
finish_reason["matched"]
|
731
|
-
if finish_reason and "matched" in finish_reason
|
732
|
-
else None
|
733
|
-
),
|
734
|
-
hidden_states=hidden_states,
|
735
|
-
)
|
736
|
-
|
737
|
-
choices.append(choice_data)
|
738
|
-
|
739
|
-
if to_file:
|
740
|
-
responses = []
|
741
|
-
for i, choice in enumerate(choices):
|
742
|
-
response = {
|
743
|
-
"status_code": 200,
|
744
|
-
"request_id": ret[i]["meta_info"]["id"],
|
745
|
-
"body": {
|
746
|
-
# remain the same but if needed we can change that
|
747
|
-
"id": ret[i]["meta_info"]["id"],
|
748
|
-
"object": "text_completion",
|
749
|
-
"created": created,
|
750
|
-
"model": request[i].model,
|
751
|
-
"choices": choice,
|
752
|
-
"usage": {
|
753
|
-
"prompt_tokens": ret[i]["meta_info"]["prompt_tokens"],
|
754
|
-
"completion_tokens": ret[i]["meta_info"]["completion_tokens"],
|
755
|
-
"total_tokens": ret[i]["meta_info"]["prompt_tokens"]
|
756
|
-
+ ret[i]["meta_info"]["completion_tokens"],
|
757
|
-
},
|
758
|
-
"system_fingerprint": None,
|
759
|
-
},
|
760
|
-
}
|
761
|
-
responses.append(response)
|
762
|
-
return responses
|
763
|
-
else:
|
764
|
-
prompt_tokens = sum(
|
765
|
-
ret[i]["meta_info"]["prompt_tokens"] for i in range(0, len(ret), request.n)
|
766
|
-
)
|
767
|
-
completion_tokens = sum(item["meta_info"]["completion_tokens"] for item in ret)
|
768
|
-
cached_tokens = sum(item["meta_info"].get("cached_tokens", 0) for item in ret)
|
769
|
-
response = CompletionResponse(
|
770
|
-
id=ret[0]["meta_info"]["id"],
|
771
|
-
model=request.model,
|
772
|
-
created=created,
|
773
|
-
choices=choices,
|
774
|
-
usage=UsageInfo(
|
775
|
-
prompt_tokens=prompt_tokens,
|
776
|
-
completion_tokens=completion_tokens,
|
777
|
-
total_tokens=prompt_tokens + completion_tokens,
|
778
|
-
prompt_tokens_details=(
|
779
|
-
{"cached_tokens": cached_tokens} if cache_report else None
|
780
|
-
),
|
781
|
-
),
|
782
|
-
)
|
783
|
-
return response
|
784
|
-
|
785
|
-
|
786
|
-
async def v1_completions(tokenizer_manager, raw_request: Request):
|
787
|
-
try:
|
788
|
-
request_json = await raw_request.json()
|
789
|
-
except Exception as e:
|
790
|
-
return create_error_response("Invalid request body, error: ", str(e))
|
791
|
-
all_requests = [CompletionRequest(**request_json)]
|
792
|
-
created = int(time.time())
|
793
|
-
adapted_request, request = v1_generate_request(all_requests)
|
794
|
-
|
795
|
-
if adapted_request.stream:
|
796
|
-
|
797
|
-
async def generate_stream_resp():
|
798
|
-
stream_buffers = {}
|
799
|
-
n_prev_tokens = {}
|
800
|
-
prompt_tokens = {}
|
801
|
-
completion_tokens = {}
|
802
|
-
cached_tokens = {}
|
803
|
-
hidden_states = {}
|
804
|
-
|
805
|
-
try:
|
806
|
-
async for content in tokenizer_manager.generate_request(
|
807
|
-
adapted_request, raw_request
|
808
|
-
):
|
809
|
-
index = content.get("index", 0)
|
810
|
-
|
811
|
-
stream_buffer = stream_buffers.get(index, "")
|
812
|
-
n_prev_token = n_prev_tokens.get(index, 0)
|
813
|
-
|
814
|
-
text = content["text"]
|
815
|
-
prompt_tokens[index] = content["meta_info"]["prompt_tokens"]
|
816
|
-
completion_tokens[index] = content["meta_info"]["completion_tokens"]
|
817
|
-
cached_tokens[index] = content["meta_info"].get("cached_tokens", 0)
|
818
|
-
hidden_states[index] = content["meta_info"].get(
|
819
|
-
"hidden_states", None
|
820
|
-
) or hidden_states.get(index)
|
821
|
-
|
822
|
-
if not stream_buffer: # The first chunk
|
823
|
-
if request.echo:
|
824
|
-
if isinstance(request.prompt, str):
|
825
|
-
# for the case of single str prompts
|
826
|
-
prompts = request.prompt
|
827
|
-
elif isinstance(request.prompt, list):
|
828
|
-
if isinstance(request.prompt[0], str):
|
829
|
-
# for the case of multiple str prompts
|
830
|
-
prompts = request.prompt[index // request.n]
|
831
|
-
elif isinstance(request.prompt[0], int):
|
832
|
-
# for the case of single token ids prompt
|
833
|
-
prompts = tokenizer_manager.tokenizer.decode(
|
834
|
-
request.prompt, skip_special_tokens=True
|
835
|
-
)
|
836
|
-
elif isinstance(request.prompt[0], list) and isinstance(
|
837
|
-
request.prompt[0][0], int
|
838
|
-
):
|
839
|
-
# for the case of multiple token ids prompts
|
840
|
-
prompts = tokenizer_manager.tokenizer.decode(
|
841
|
-
request.prompt[index // request.n],
|
842
|
-
skip_special_tokens=True,
|
843
|
-
)
|
844
|
-
|
845
|
-
# Prepend prompt in response text.
|
846
|
-
text = prompts + text
|
847
|
-
|
848
|
-
if request.logprobs is not None:
|
849
|
-
# The first chunk and echo is enabled.
|
850
|
-
if not stream_buffer and request.echo:
|
851
|
-
input_token_logprobs = content["meta_info"][
|
852
|
-
"input_token_logprobs"
|
853
|
-
]
|
854
|
-
input_top_logprobs = content["meta_info"][
|
855
|
-
"input_top_logprobs"
|
856
|
-
]
|
857
|
-
else:
|
858
|
-
input_token_logprobs = None
|
859
|
-
input_top_logprobs = None
|
860
|
-
|
861
|
-
logprobs = to_openai_style_logprobs(
|
862
|
-
input_token_logprobs=input_token_logprobs,
|
863
|
-
input_top_logprobs=input_top_logprobs,
|
864
|
-
output_token_logprobs=content["meta_info"][
|
865
|
-
"output_token_logprobs"
|
866
|
-
][n_prev_token:],
|
867
|
-
output_top_logprobs=content["meta_info"][
|
868
|
-
"output_top_logprobs"
|
869
|
-
][n_prev_token:],
|
870
|
-
)
|
871
|
-
n_prev_token = len(
|
872
|
-
content["meta_info"]["output_token_logprobs"]
|
873
|
-
)
|
874
|
-
else:
|
875
|
-
logprobs = None
|
876
|
-
|
877
|
-
delta = text[len(stream_buffer) :]
|
878
|
-
stream_buffer = stream_buffer + delta
|
879
|
-
finish_reason = content["meta_info"]["finish_reason"]
|
880
|
-
choice_data = CompletionResponseStreamChoice(
|
881
|
-
index=index,
|
882
|
-
text=delta,
|
883
|
-
logprobs=logprobs,
|
884
|
-
finish_reason=finish_reason["type"] if finish_reason else None,
|
885
|
-
matched_stop=(
|
886
|
-
finish_reason["matched"]
|
887
|
-
if finish_reason and "matched" in finish_reason
|
888
|
-
else None
|
889
|
-
),
|
890
|
-
)
|
891
|
-
chunk = CompletionStreamResponse(
|
892
|
-
id=content["meta_info"]["id"],
|
893
|
-
created=created,
|
894
|
-
object="text_completion",
|
895
|
-
choices=[choice_data],
|
896
|
-
model=request.model,
|
897
|
-
)
|
898
|
-
|
899
|
-
stream_buffers[index] = stream_buffer
|
900
|
-
n_prev_tokens[index] = n_prev_token
|
901
|
-
|
902
|
-
yield f"data: {chunk.model_dump_json()}\n\n"
|
903
|
-
if request.return_hidden_states and hidden_states:
|
904
|
-
for index, choice_hidden_states in hidden_states.items():
|
905
|
-
last_token_hidden_states = (
|
906
|
-
choice_hidden_states[-1]
|
907
|
-
if choice_hidden_states and len(choice_hidden_states) > 1
|
908
|
-
else []
|
909
|
-
)
|
910
|
-
hidden_states_chunk = CompletionStreamResponse(
|
911
|
-
id=content["meta_info"]["id"],
|
912
|
-
created=created,
|
913
|
-
choices=[
|
914
|
-
CompletionResponseStreamChoice(
|
915
|
-
text="",
|
916
|
-
index=index,
|
917
|
-
hidden_states=last_token_hidden_states,
|
918
|
-
finish_reason=None,
|
919
|
-
)
|
920
|
-
],
|
921
|
-
model=request.model,
|
922
|
-
)
|
923
|
-
yield f"data: {hidden_states_chunk.model_dump_json()}\n\n"
|
924
|
-
if request.stream_options and request.stream_options.include_usage:
|
925
|
-
total_prompt_tokens = sum(
|
926
|
-
tokens
|
927
|
-
for i, tokens in prompt_tokens.items()
|
928
|
-
if i % request.n == 0
|
929
|
-
)
|
930
|
-
total_completion_tokens = sum(
|
931
|
-
tokens for tokens in completion_tokens.values()
|
932
|
-
)
|
933
|
-
cache_report = tokenizer_manager.server_args.enable_cache_report
|
934
|
-
if cache_report:
|
935
|
-
cached_tokens_sum = sum(
|
936
|
-
tokens for tokens in cached_tokens.values()
|
937
|
-
)
|
938
|
-
prompt_tokens_details = {"cached_tokens": cached_tokens_sum}
|
939
|
-
else:
|
940
|
-
prompt_tokens_details = None
|
941
|
-
usage = UsageInfo(
|
942
|
-
prompt_tokens=total_prompt_tokens,
|
943
|
-
completion_tokens=total_completion_tokens,
|
944
|
-
total_tokens=total_prompt_tokens + total_completion_tokens,
|
945
|
-
prompt_tokens_details=prompt_tokens_details,
|
946
|
-
)
|
947
|
-
|
948
|
-
final_usage_chunk = CompletionStreamResponse(
|
949
|
-
id=content["meta_info"]["id"],
|
950
|
-
created=created,
|
951
|
-
choices=[],
|
952
|
-
model=request.model,
|
953
|
-
usage=usage,
|
954
|
-
)
|
955
|
-
final_usage_data = final_usage_chunk.model_dump_json(
|
956
|
-
exclude_none=True
|
957
|
-
)
|
958
|
-
yield f"data: {final_usage_data}\n\n"
|
959
|
-
except ValueError as e:
|
960
|
-
error = create_streaming_error_response(str(e))
|
961
|
-
yield f"data: {error}\n\n"
|
962
|
-
yield "data: [DONE]\n\n"
|
963
|
-
|
964
|
-
return StreamingResponse(
|
965
|
-
generate_stream_resp(),
|
966
|
-
media_type="text/event-stream",
|
967
|
-
background=tokenizer_manager.create_abort_task(adapted_request),
|
968
|
-
)
|
969
|
-
|
970
|
-
# Non-streaming response.
|
971
|
-
try:
|
972
|
-
ret = await tokenizer_manager.generate_request(
|
973
|
-
adapted_request, raw_request
|
974
|
-
).__anext__()
|
975
|
-
except ValueError as e:
|
976
|
-
return create_error_response(str(e))
|
977
|
-
|
978
|
-
if not isinstance(ret, list):
|
979
|
-
ret = [ret]
|
980
|
-
|
981
|
-
response = v1_generate_response(
|
982
|
-
request,
|
983
|
-
ret,
|
984
|
-
tokenizer_manager,
|
985
|
-
created,
|
986
|
-
cache_report=tokenizer_manager.server_args.enable_cache_report,
|
987
|
-
)
|
988
|
-
return response
|
989
|
-
|
990
|
-
|
991
|
-
def _get_enable_thinking_from_request(request_obj):
|
992
|
-
"""Extracts the 'enable_thinking' flag from request chat_template_kwargs.
|
993
|
-
|
994
|
-
Args:
|
995
|
-
request_obj: The request object (or an item from a list of requests).
|
996
|
-
|
997
|
-
Returns:
|
998
|
-
The boolean value of 'enable_thinking' if found and not True, otherwise True.
|
999
|
-
"""
|
1000
|
-
if (
|
1001
|
-
hasattr(request_obj, "chat_template_kwargs")
|
1002
|
-
and request_obj.chat_template_kwargs
|
1003
|
-
and request_obj.chat_template_kwargs.get("enable_thinking") is not None
|
1004
|
-
):
|
1005
|
-
return request_obj.chat_template_kwargs.get("enable_thinking")
|
1006
|
-
return True
|
1007
|
-
|
1008
|
-
|
1009
|
-
def v1_chat_generate_request(
|
1010
|
-
all_requests: List[ChatCompletionRequest],
|
1011
|
-
tokenizer_manager,
|
1012
|
-
request_ids: List[str] = None,
|
1013
|
-
):
|
1014
|
-
input_ids = []
|
1015
|
-
prompts = []
|
1016
|
-
sampling_params_list = []
|
1017
|
-
image_data_list = []
|
1018
|
-
audio_data_list = []
|
1019
|
-
return_logprobs = []
|
1020
|
-
logprob_start_lens = []
|
1021
|
-
top_logprobs_nums = []
|
1022
|
-
modalities_list = []
|
1023
|
-
lora_paths = []
|
1024
|
-
return_hidden_states = []
|
1025
|
-
|
1026
|
-
# NOTE: with openai API, the prompt's logprobs are always not computed
|
1027
|
-
|
1028
|
-
is_multimodal = tokenizer_manager.model_config.is_multimodal
|
1029
|
-
for request in all_requests:
|
1030
|
-
# Prep the data needed for the underlying GenerateReqInput:
|
1031
|
-
# - prompt: The full prompt string.
|
1032
|
-
# - stop: Custom stop tokens.
|
1033
|
-
# - image_data: None or a list of image strings (URLs or base64 strings).
|
1034
|
-
# - audio_data: None or a list of audio strings (URLs).
|
1035
|
-
# None skips any image processing in GenerateReqInput.
|
1036
|
-
tool_call_constraint = None
|
1037
|
-
prompt = ""
|
1038
|
-
prompt_ids = []
|
1039
|
-
if not isinstance(request.messages, str):
|
1040
|
-
# Apply chat template and its stop strings.
|
1041
|
-
tools = None
|
1042
|
-
if request.tools and request.tool_choice != "none":
|
1043
|
-
request.skip_special_tokens = False
|
1044
|
-
if not isinstance(request.tool_choice, str):
|
1045
|
-
tools = [
|
1046
|
-
item.function.model_dump()
|
1047
|
-
for item in request.tools
|
1048
|
-
if item.function.name == request.tool_choice.function.name
|
1049
|
-
]
|
1050
|
-
else:
|
1051
|
-
tools = [item.function.model_dump() for item in request.tools]
|
1052
|
-
|
1053
|
-
tool_call_parser = tokenizer_manager.server_args.tool_call_parser
|
1054
|
-
parser = FunctionCallParser(request.tools, tool_call_parser)
|
1055
|
-
tool_call_constraint = parser.get_structure_constraint(
|
1056
|
-
request.tool_choice
|
1057
|
-
)
|
1058
|
-
|
1059
|
-
if chat_template_name is None:
|
1060
|
-
openai_compatible_messages = []
|
1061
|
-
image_data = []
|
1062
|
-
audio_data = []
|
1063
|
-
modalities = []
|
1064
|
-
|
1065
|
-
# Detect template content format by analyzing the jinja template (cached globally)
|
1066
|
-
global _cached_chat_template, _cached_template_format
|
1067
|
-
current_template = tokenizer_manager.tokenizer.chat_template
|
1068
|
-
|
1069
|
-
if current_template != _cached_chat_template:
|
1070
|
-
# Template changed or first time - analyze it
|
1071
|
-
_cached_chat_template = current_template
|
1072
|
-
_cached_template_format = detect_template_content_format(
|
1073
|
-
current_template
|
1074
|
-
)
|
1075
|
-
logger.info(
|
1076
|
-
f"Detected chat template content format: {_cached_template_format}"
|
1077
|
-
)
|
1078
|
-
|
1079
|
-
template_content_format = _cached_template_format
|
1080
|
-
|
1081
|
-
for message in request.messages:
|
1082
|
-
if message.content is None:
|
1083
|
-
message.content = ""
|
1084
|
-
msg_dict = message.model_dump()
|
1085
|
-
|
1086
|
-
# Process content based on detected template format
|
1087
|
-
processed_msg = process_content_for_template_format(
|
1088
|
-
msg_dict,
|
1089
|
-
template_content_format,
|
1090
|
-
image_data,
|
1091
|
-
audio_data,
|
1092
|
-
modalities,
|
1093
|
-
)
|
1094
|
-
openai_compatible_messages.append(processed_msg)
|
1095
|
-
|
1096
|
-
# Handle assistant prefix for continue_final_message
|
1097
|
-
if (
|
1098
|
-
openai_compatible_messages
|
1099
|
-
and openai_compatible_messages[-1]["role"] == "assistant"
|
1100
|
-
):
|
1101
|
-
if request.continue_final_message:
|
1102
|
-
# Remove the final assistant message so its content can be continued.
|
1103
|
-
assistant_prefix = openai_compatible_messages[-1]["content"]
|
1104
|
-
openai_compatible_messages = openai_compatible_messages[:-1]
|
1105
|
-
else:
|
1106
|
-
assistant_prefix = None
|
1107
|
-
else:
|
1108
|
-
assistant_prefix = None
|
1109
|
-
|
1110
|
-
try:
|
1111
|
-
prompt_ids = tokenizer_manager.tokenizer.apply_chat_template(
|
1112
|
-
openai_compatible_messages,
|
1113
|
-
tokenize=True,
|
1114
|
-
add_generation_prompt=True,
|
1115
|
-
tools=tools,
|
1116
|
-
**(
|
1117
|
-
request.chat_template_kwargs
|
1118
|
-
if request.chat_template_kwargs
|
1119
|
-
else {}
|
1120
|
-
),
|
1121
|
-
)
|
1122
|
-
except:
|
1123
|
-
# This except branch will be triggered when the chosen model
|
1124
|
-
# has a different tools input format that is not compatible
|
1125
|
-
# with openAI's apply_chat_template tool_call format, like Mistral.
|
1126
|
-
tools = [t if "function" in t else {"function": t} for t in tools]
|
1127
|
-
prompt_ids = tokenizer_manager.tokenizer.apply_chat_template(
|
1128
|
-
openai_compatible_messages,
|
1129
|
-
tokenize=True,
|
1130
|
-
add_generation_prompt=True,
|
1131
|
-
tools=tools,
|
1132
|
-
**(
|
1133
|
-
request.chat_template_kwargs
|
1134
|
-
if request.chat_template_kwargs
|
1135
|
-
else {}
|
1136
|
-
),
|
1137
|
-
)
|
1138
|
-
|
1139
|
-
if assistant_prefix:
|
1140
|
-
encoded = tokenizer_manager.tokenizer.encode(assistant_prefix)
|
1141
|
-
if (
|
1142
|
-
encoded
|
1143
|
-
and encoded[0] == tokenizer_manager.tokenizer.bos_token_id
|
1144
|
-
):
|
1145
|
-
encoded = encoded[1:]
|
1146
|
-
prompt_ids += encoded
|
1147
|
-
if is_multimodal:
|
1148
|
-
prompt = tokenizer_manager.tokenizer.decode(prompt_ids)
|
1149
|
-
stop = request.stop
|
1150
|
-
image_data = image_data if image_data else None
|
1151
|
-
audio_data = audio_data if audio_data else None
|
1152
|
-
modalities = modalities if modalities else []
|
1153
|
-
else:
|
1154
|
-
conv = generate_chat_conv(request, chat_template_name)
|
1155
|
-
# If we should continue the final assistant message, adjust the conversation.
|
1156
|
-
if (
|
1157
|
-
request.continue_final_message
|
1158
|
-
and request.messages
|
1159
|
-
and request.messages[-1].role == "assistant"
|
1160
|
-
):
|
1161
|
-
# Remove the auto-added blank assistant turn, if present.
|
1162
|
-
if conv.messages and conv.messages[-1][1] is None:
|
1163
|
-
conv.messages.pop()
|
1164
|
-
# Rebuild the prompt from the conversation.
|
1165
|
-
prompt = conv.get_prompt()
|
1166
|
-
# Strip any trailing stop tokens or separators that indicate end-of-assistant.
|
1167
|
-
if isinstance(conv.stop_str, list):
|
1168
|
-
for stop_token in conv.stop_str:
|
1169
|
-
if prompt.endswith(stop_token):
|
1170
|
-
prompt = prompt[: -len(stop_token)]
|
1171
|
-
elif isinstance(conv.stop_str, str) and prompt.endswith(
|
1172
|
-
conv.stop_str
|
1173
|
-
):
|
1174
|
-
prompt = prompt[: -len(conv.stop_str)]
|
1175
|
-
if conv.sep and prompt.endswith(conv.sep):
|
1176
|
-
prompt = prompt[: -len(conv.sep)]
|
1177
|
-
if getattr(conv, "sep2", None) and prompt.endswith(conv.sep2):
|
1178
|
-
prompt = prompt[: -len(conv.sep2)]
|
1179
|
-
else:
|
1180
|
-
prompt = conv.get_prompt()
|
1181
|
-
|
1182
|
-
image_data = conv.image_data
|
1183
|
-
audio_data = conv.audio_data
|
1184
|
-
modalities = conv.modalities
|
1185
|
-
stop = conv.stop_str or [] if not request.ignore_eos else []
|
1186
|
-
|
1187
|
-
if request.stop:
|
1188
|
-
if isinstance(request.stop, str):
|
1189
|
-
stop.append(request.stop)
|
1190
|
-
else:
|
1191
|
-
stop.extend(request.stop)
|
1192
|
-
|
1193
|
-
if not is_multimodal:
|
1194
|
-
prompt_ids = tokenizer_manager.tokenizer.encode(prompt)
|
1195
|
-
else:
|
1196
|
-
# Use the raw prompt and stop strings if the messages is already a string.
|
1197
|
-
prompt_ids = request.messages
|
1198
|
-
stop = request.stop
|
1199
|
-
image_data = None
|
1200
|
-
audio_data = None
|
1201
|
-
modalities = []
|
1202
|
-
prompt = request.messages
|
1203
|
-
input_ids.append(prompt_ids)
|
1204
|
-
return_logprobs.append(request.logprobs)
|
1205
|
-
logprob_start_lens.append(-1)
|
1206
|
-
top_logprobs_nums.append(request.top_logprobs or 0)
|
1207
|
-
lora_paths.append(request.lora_path)
|
1208
|
-
prompts.append(prompt)
|
1209
|
-
|
1210
|
-
sampling_params = {
|
1211
|
-
"temperature": request.temperature,
|
1212
|
-
"max_new_tokens": request.max_tokens or request.max_completion_tokens,
|
1213
|
-
"min_new_tokens": request.min_tokens,
|
1214
|
-
"stop": stop,
|
1215
|
-
"stop_token_ids": request.stop_token_ids,
|
1216
|
-
"top_p": request.top_p,
|
1217
|
-
"top_k": request.top_k,
|
1218
|
-
"min_p": request.min_p,
|
1219
|
-
"presence_penalty": request.presence_penalty,
|
1220
|
-
"frequency_penalty": request.frequency_penalty,
|
1221
|
-
"repetition_penalty": request.repetition_penalty,
|
1222
|
-
"regex": request.regex,
|
1223
|
-
"ebnf": request.ebnf,
|
1224
|
-
"n": request.n,
|
1225
|
-
"no_stop_trim": request.no_stop_trim,
|
1226
|
-
"ignore_eos": request.ignore_eos,
|
1227
|
-
"skip_special_tokens": request.skip_special_tokens,
|
1228
|
-
"logit_bias": request.logit_bias,
|
1229
|
-
}
|
1230
|
-
|
1231
|
-
if request.response_format and request.response_format.type == "json_schema":
|
1232
|
-
sampling_params["json_schema"] = convert_json_schema_to_str(
|
1233
|
-
request.response_format.json_schema.schema_
|
1234
|
-
)
|
1235
|
-
elif request.response_format and request.response_format.type == "json_object":
|
1236
|
-
sampling_params["json_schema"] = '{"type": "object"}'
|
1237
|
-
elif (
|
1238
|
-
request.response_format and request.response_format.type == "structural_tag"
|
1239
|
-
):
|
1240
|
-
sampling_params["structural_tag"] = convert_json_schema_to_str(
|
1241
|
-
request.response_format.model_dump(by_alias=True)
|
1242
|
-
)
|
1243
|
-
|
1244
|
-
# Check if there are already existing output constraints
|
1245
|
-
has_existing_constraints = (
|
1246
|
-
sampling_params.get("regex")
|
1247
|
-
or sampling_params.get("ebnf")
|
1248
|
-
or sampling_params.get("structural_tag")
|
1249
|
-
or sampling_params.get("json_schema")
|
1250
|
-
)
|
1251
|
-
|
1252
|
-
if tool_call_constraint and has_existing_constraints:
|
1253
|
-
logger.warning("Constrained decoding is not compatible with tool calls.")
|
1254
|
-
elif tool_call_constraint:
|
1255
|
-
constraint_type, constraint_value = tool_call_constraint
|
1256
|
-
if constraint_type == "structural_tag":
|
1257
|
-
sampling_params[constraint_type] = convert_json_schema_to_str(
|
1258
|
-
constraint_value.model_dump(by_alias=True)
|
1259
|
-
)
|
1260
|
-
else:
|
1261
|
-
sampling_params[constraint_type] = constraint_value
|
1262
|
-
|
1263
|
-
sampling_params_list.append(sampling_params)
|
1264
|
-
|
1265
|
-
image_data_list.append(image_data)
|
1266
|
-
audio_data_list.append(audio_data)
|
1267
|
-
modalities_list.append(modalities)
|
1268
|
-
return_hidden_states.append(request.return_hidden_states)
|
1269
|
-
if len(all_requests) == 1:
|
1270
|
-
if is_multimodal:
|
1271
|
-
# processor will need text input
|
1272
|
-
prompt_kwargs = {"text": prompts[0]}
|
1273
|
-
else:
|
1274
|
-
if isinstance(input_ids[0], str):
|
1275
|
-
prompt_kwargs = {"text": input_ids[0]}
|
1276
|
-
else:
|
1277
|
-
prompt_kwargs = {"input_ids": input_ids[0]}
|
1278
|
-
sampling_params_list = sampling_params_list[0]
|
1279
|
-
image_data_list = image_data_list[0]
|
1280
|
-
audio_data_list = audio_data_list[0]
|
1281
|
-
return_logprobs = return_logprobs[0]
|
1282
|
-
logprob_start_lens = logprob_start_lens[0]
|
1283
|
-
top_logprobs_nums = top_logprobs_nums[0]
|
1284
|
-
modalities_list = modalities_list[0]
|
1285
|
-
lora_paths = lora_paths[0]
|
1286
|
-
request_ids = request_ids[0]
|
1287
|
-
return_hidden_states = return_hidden_states[0]
|
1288
|
-
else:
|
1289
|
-
if tokenizer_manager.model_config.is_multimodal:
|
1290
|
-
# processor will need text input
|
1291
|
-
prompt_kwargs = {"text": prompts}
|
1292
|
-
else:
|
1293
|
-
if isinstance(input_ids[0], str):
|
1294
|
-
prompt_kwargs = {"text": input_ids}
|
1295
|
-
else:
|
1296
|
-
prompt_kwargs = {"input_ids": input_ids}
|
1297
|
-
|
1298
|
-
adapted_request = GenerateReqInput(
|
1299
|
-
**prompt_kwargs,
|
1300
|
-
image_data=image_data_list,
|
1301
|
-
audio_data=audio_data_list,
|
1302
|
-
sampling_params=sampling_params_list,
|
1303
|
-
return_logprob=return_logprobs,
|
1304
|
-
logprob_start_len=logprob_start_lens,
|
1305
|
-
top_logprobs_num=top_logprobs_nums,
|
1306
|
-
stream=all_requests[0].stream,
|
1307
|
-
return_text_in_logprobs=True,
|
1308
|
-
rid=request_ids,
|
1309
|
-
modalities=modalities_list,
|
1310
|
-
lora_path=lora_paths,
|
1311
|
-
bootstrap_host=all_requests[0].bootstrap_host,
|
1312
|
-
bootstrap_port=all_requests[0].bootstrap_port,
|
1313
|
-
bootstrap_room=all_requests[0].bootstrap_room,
|
1314
|
-
return_hidden_states=return_hidden_states,
|
1315
|
-
)
|
1316
|
-
|
1317
|
-
return adapted_request, all_requests if len(all_requests) > 1 else all_requests[0]
|
1318
|
-
|
1319
|
-
|
1320
|
-
def v1_chat_generate_response(
|
1321
|
-
request,
|
1322
|
-
ret,
|
1323
|
-
created,
|
1324
|
-
to_file=False,
|
1325
|
-
cache_report=False,
|
1326
|
-
tool_call_parser=None,
|
1327
|
-
reasoning_parser=None,
|
1328
|
-
):
|
1329
|
-
choices = []
|
1330
|
-
|
1331
|
-
for idx, ret_item in enumerate(ret):
|
1332
|
-
logprobs = False
|
1333
|
-
if isinstance(request, list) and request[idx].logprobs:
|
1334
|
-
logprobs = True
|
1335
|
-
elif (not isinstance(request, list)) and request.logprobs:
|
1336
|
-
logprobs = True
|
1337
|
-
if logprobs:
|
1338
|
-
logprobs = to_openai_style_logprobs(
|
1339
|
-
output_token_logprobs=ret_item["meta_info"]["output_token_logprobs"],
|
1340
|
-
output_top_logprobs=ret_item["meta_info"].get(
|
1341
|
-
"output_top_logprobs", None
|
1342
|
-
),
|
1343
|
-
)
|
1344
|
-
token_logprobs = []
|
1345
|
-
for token_idx, (token, logprob) in enumerate(
|
1346
|
-
zip(logprobs.tokens, logprobs.token_logprobs)
|
1347
|
-
):
|
1348
|
-
token_bytes = list(token.encode("utf-8"))
|
1349
|
-
top_logprobs = []
|
1350
|
-
if logprobs.top_logprobs:
|
1351
|
-
for top_token, top_logprob in logprobs.top_logprobs[
|
1352
|
-
token_idx
|
1353
|
-
].items():
|
1354
|
-
top_token_bytes = list(top_token.encode("utf-8"))
|
1355
|
-
top_logprobs.append(
|
1356
|
-
TopLogprob(
|
1357
|
-
token=top_token,
|
1358
|
-
bytes=top_token_bytes,
|
1359
|
-
logprob=top_logprob,
|
1360
|
-
)
|
1361
|
-
)
|
1362
|
-
token_logprobs.append(
|
1363
|
-
ChatCompletionTokenLogprob(
|
1364
|
-
token=token,
|
1365
|
-
bytes=token_bytes,
|
1366
|
-
logprob=logprob,
|
1367
|
-
top_logprobs=top_logprobs,
|
1368
|
-
)
|
1369
|
-
)
|
1370
|
-
|
1371
|
-
choice_logprobs = ChoiceLogprobs(content=token_logprobs)
|
1372
|
-
else:
|
1373
|
-
choice_logprobs = None
|
1374
|
-
|
1375
|
-
if isinstance(request, list) and request[idx].return_hidden_states:
|
1376
|
-
include_hidden_states = True
|
1377
|
-
elif not isinstance(request, list) and request.return_hidden_states:
|
1378
|
-
include_hidden_states = True
|
1379
|
-
else:
|
1380
|
-
include_hidden_states = False
|
1381
|
-
if include_hidden_states and ret_item["meta_info"].get("hidden_states", None):
|
1382
|
-
hidden_states = ret_item["meta_info"]["hidden_states"]
|
1383
|
-
hidden_states = (
|
1384
|
-
hidden_states[-1] if hidden_states and len(hidden_states) > 1 else []
|
1385
|
-
)
|
1386
|
-
else:
|
1387
|
-
hidden_states = None
|
1388
|
-
|
1389
|
-
finish_reason = ret_item["meta_info"]["finish_reason"]
|
1390
|
-
|
1391
|
-
tool_calls = None
|
1392
|
-
text = ret_item["text"]
|
1393
|
-
|
1394
|
-
if isinstance(request, list):
|
1395
|
-
tool_choice = request[idx].tool_choice
|
1396
|
-
tools = request[idx].tools
|
1397
|
-
separate_reasoning = request[idx].separate_reasoning
|
1398
|
-
enable_thinking = _get_enable_thinking_from_request(request[idx])
|
1399
|
-
else:
|
1400
|
-
tool_choice = request.tool_choice
|
1401
|
-
tools = request.tools
|
1402
|
-
separate_reasoning = request.separate_reasoning
|
1403
|
-
enable_thinking = _get_enable_thinking_from_request(request)
|
1404
|
-
|
1405
|
-
reasoning_text = None
|
1406
|
-
if reasoning_parser and separate_reasoning and enable_thinking:
|
1407
|
-
try:
|
1408
|
-
parser = ReasoningParser(
|
1409
|
-
model_type=reasoning_parser, stream_reasoning=False
|
1410
|
-
)
|
1411
|
-
reasoning_text, text = parser.parse_non_stream(text)
|
1412
|
-
except Exception as e:
|
1413
|
-
logger.error(f"Exception: {e}")
|
1414
|
-
return create_error_response(
|
1415
|
-
HTTPStatus.BAD_REQUEST,
|
1416
|
-
"Failed to parse reasoning related info to json format!",
|
1417
|
-
)
|
1418
|
-
|
1419
|
-
if tool_choice != "none" and tools:
|
1420
|
-
parser = FunctionCallParser(tools, tool_call_parser)
|
1421
|
-
if parser.has_tool_call(text):
|
1422
|
-
if finish_reason["type"] == "stop":
|
1423
|
-
finish_reason["type"] = "tool_calls"
|
1424
|
-
finish_reason["matched"] = None
|
1425
|
-
try:
|
1426
|
-
text, call_info_list = parser.parse_non_stream(text)
|
1427
|
-
tool_calls = [
|
1428
|
-
ToolCall(
|
1429
|
-
id=f"call_{base64.urlsafe_b64encode(uuid.uuid4().bytes).rstrip(b'=').decode()}",
|
1430
|
-
function=FunctionResponse(
|
1431
|
-
name=call_info.name, arguments=call_info.parameters
|
1432
|
-
),
|
1433
|
-
)
|
1434
|
-
for call_info in call_info_list
|
1435
|
-
]
|
1436
|
-
except Exception as e:
|
1437
|
-
logger.error(f"Exception: {e}")
|
1438
|
-
return create_error_response(
|
1439
|
-
HTTPStatus.BAD_REQUEST,
|
1440
|
-
"Failed to parse fc related info to json format!",
|
1441
|
-
)
|
1442
|
-
|
1443
|
-
if to_file:
|
1444
|
-
# to make the choice data json serializable
|
1445
|
-
choice_data = {
|
1446
|
-
"index": 0,
|
1447
|
-
"message": {
|
1448
|
-
"role": "assistant",
|
1449
|
-
"content": text if text else None,
|
1450
|
-
"tool_calls": tool_calls,
|
1451
|
-
"reasoning_content": reasoning_text if reasoning_text else None,
|
1452
|
-
},
|
1453
|
-
"logprobs": choice_logprobs.model_dump() if choice_logprobs else None,
|
1454
|
-
"finish_reason": finish_reason["type"] if finish_reason else None,
|
1455
|
-
"matched_stop": (
|
1456
|
-
finish_reason["matched"]
|
1457
|
-
if finish_reason and "matched" in finish_reason
|
1458
|
-
else None
|
1459
|
-
),
|
1460
|
-
}
|
1461
|
-
if hidden_states is not None:
|
1462
|
-
choice_data["hidden_states"] = hidden_states
|
1463
|
-
else:
|
1464
|
-
choice_data = ChatCompletionResponseChoice(
|
1465
|
-
index=idx,
|
1466
|
-
message=ChatMessage(
|
1467
|
-
role="assistant",
|
1468
|
-
content=text if text else None,
|
1469
|
-
tool_calls=tool_calls,
|
1470
|
-
reasoning_content=reasoning_text if reasoning_text else None,
|
1471
|
-
),
|
1472
|
-
logprobs=choice_logprobs,
|
1473
|
-
finish_reason=finish_reason["type"] if finish_reason else None,
|
1474
|
-
matched_stop=(
|
1475
|
-
finish_reason["matched"]
|
1476
|
-
if finish_reason and "matched" in finish_reason
|
1477
|
-
else None
|
1478
|
-
),
|
1479
|
-
hidden_states=hidden_states,
|
1480
|
-
)
|
1481
|
-
|
1482
|
-
choices.append(choice_data)
|
1483
|
-
|
1484
|
-
if to_file:
|
1485
|
-
responses = []
|
1486
|
-
|
1487
|
-
for i, choice in enumerate(choices):
|
1488
|
-
response = {
|
1489
|
-
"status_code": 200,
|
1490
|
-
"request_id": ret[i]["meta_info"]["id"],
|
1491
|
-
"body": {
|
1492
|
-
# remain the same but if needed we can change that
|
1493
|
-
"id": ret[i]["meta_info"]["id"],
|
1494
|
-
"object": "chat.completion",
|
1495
|
-
"created": created,
|
1496
|
-
"model": (
|
1497
|
-
request[i].model if isinstance(request, list) else request.model
|
1498
|
-
),
|
1499
|
-
"choices": choice,
|
1500
|
-
"usage": {
|
1501
|
-
"prompt_tokens": ret[i]["meta_info"]["prompt_tokens"],
|
1502
|
-
"completion_tokens": ret[i]["meta_info"]["completion_tokens"],
|
1503
|
-
"total_tokens": ret[i]["meta_info"]["prompt_tokens"]
|
1504
|
-
+ ret[i]["meta_info"]["completion_tokens"],
|
1505
|
-
},
|
1506
|
-
"system_fingerprint": None,
|
1507
|
-
},
|
1508
|
-
}
|
1509
|
-
responses.append(response)
|
1510
|
-
return responses
|
1511
|
-
else:
|
1512
|
-
prompt_tokens = sum(
|
1513
|
-
ret[i]["meta_info"]["prompt_tokens"] for i in range(0, len(ret), request.n)
|
1514
|
-
)
|
1515
|
-
completion_tokens = sum(item["meta_info"]["completion_tokens"] for item in ret)
|
1516
|
-
cached_tokens = sum(item["meta_info"].get("cached_tokens", 0) for item in ret)
|
1517
|
-
response = ChatCompletionResponse(
|
1518
|
-
id=ret[0]["meta_info"]["id"],
|
1519
|
-
created=created,
|
1520
|
-
model=request.model,
|
1521
|
-
choices=choices,
|
1522
|
-
usage=UsageInfo(
|
1523
|
-
prompt_tokens=prompt_tokens,
|
1524
|
-
completion_tokens=completion_tokens,
|
1525
|
-
total_tokens=prompt_tokens + completion_tokens,
|
1526
|
-
prompt_tokens_details=(
|
1527
|
-
{"cached_tokens": cached_tokens} if cache_report else None
|
1528
|
-
),
|
1529
|
-
),
|
1530
|
-
)
|
1531
|
-
return response
|
1532
|
-
|
1533
|
-
|
1534
|
-
async def v1_chat_completions(
|
1535
|
-
tokenizer_manager, raw_request: Request, cache_report=False
|
1536
|
-
):
|
1537
|
-
try:
|
1538
|
-
request_json = await raw_request.json()
|
1539
|
-
except Exception as e:
|
1540
|
-
return create_error_response("Invalid request body, error: ", str(e))
|
1541
|
-
all_requests = [ChatCompletionRequest(**request_json)]
|
1542
|
-
created = int(time.time())
|
1543
|
-
adapted_request, request = v1_chat_generate_request(
|
1544
|
-
all_requests, tokenizer_manager, request_ids=[all_requests[0].rid]
|
1545
|
-
)
|
1546
|
-
|
1547
|
-
if adapted_request.stream:
|
1548
|
-
parser_dict = {}
|
1549
|
-
reasoning_parser_dict = {}
|
1550
|
-
|
1551
|
-
async def generate_stream_resp():
|
1552
|
-
tool_index_previous = -1
|
1553
|
-
is_firsts = {}
|
1554
|
-
stream_buffers = {}
|
1555
|
-
n_prev_tokens = {}
|
1556
|
-
prompt_tokens = {}
|
1557
|
-
completion_tokens = {}
|
1558
|
-
cached_tokens = {}
|
1559
|
-
hidden_states = {}
|
1560
|
-
try:
|
1561
|
-
async for content in tokenizer_manager.generate_request(
|
1562
|
-
adapted_request, raw_request
|
1563
|
-
):
|
1564
|
-
index = content.get("index", 0)
|
1565
|
-
text = content["text"]
|
1566
|
-
hidden_states[index] = content["meta_info"].get(
|
1567
|
-
"hidden_states", None
|
1568
|
-
) or hidden_states.get(index)
|
1569
|
-
|
1570
|
-
is_first = is_firsts.get(index, True)
|
1571
|
-
stream_buffer = stream_buffers.get(index, "")
|
1572
|
-
n_prev_token = n_prev_tokens.get(index, 0)
|
1573
|
-
|
1574
|
-
prompt_tokens[index] = content["meta_info"]["prompt_tokens"]
|
1575
|
-
completion_tokens[index] = content["meta_info"]["completion_tokens"]
|
1576
|
-
cached_tokens[index] = content["meta_info"].get("cached_tokens", 0)
|
1577
|
-
if request.logprobs:
|
1578
|
-
logprobs = to_openai_style_logprobs(
|
1579
|
-
output_token_logprobs=content["meta_info"][
|
1580
|
-
"output_token_logprobs"
|
1581
|
-
][n_prev_token:],
|
1582
|
-
output_top_logprobs=content["meta_info"].get(
|
1583
|
-
"output_top_logprobs", []
|
1584
|
-
)[n_prev_token:],
|
1585
|
-
)
|
1586
|
-
|
1587
|
-
n_prev_token = len(
|
1588
|
-
content["meta_info"]["output_token_logprobs"]
|
1589
|
-
)
|
1590
|
-
token_logprobs = []
|
1591
|
-
for token, logprob in zip(
|
1592
|
-
logprobs.tokens, logprobs.token_logprobs
|
1593
|
-
):
|
1594
|
-
token_bytes = list(token.encode("utf-8"))
|
1595
|
-
top_logprobs = []
|
1596
|
-
if logprobs.top_logprobs:
|
1597
|
-
for top_token, top_logprob in logprobs.top_logprobs[
|
1598
|
-
0
|
1599
|
-
].items():
|
1600
|
-
top_token_bytes = list(top_token.encode("utf-8"))
|
1601
|
-
top_logprobs.append(
|
1602
|
-
TopLogprob(
|
1603
|
-
token=top_token,
|
1604
|
-
bytes=top_token_bytes,
|
1605
|
-
logprob=top_logprob,
|
1606
|
-
)
|
1607
|
-
)
|
1608
|
-
token_logprobs.append(
|
1609
|
-
ChatCompletionTokenLogprob(
|
1610
|
-
token=token,
|
1611
|
-
bytes=token_bytes,
|
1612
|
-
logprob=logprob,
|
1613
|
-
top_logprobs=top_logprobs,
|
1614
|
-
)
|
1615
|
-
)
|
1616
|
-
|
1617
|
-
choice_logprobs = ChoiceLogprobs(content=token_logprobs)
|
1618
|
-
|
1619
|
-
else:
|
1620
|
-
choice_logprobs = None
|
1621
|
-
|
1622
|
-
finish_reason = content["meta_info"]["finish_reason"]
|
1623
|
-
finish_reason_type = (
|
1624
|
-
finish_reason["type"] if finish_reason else None
|
1625
|
-
)
|
1626
|
-
|
1627
|
-
if is_first:
|
1628
|
-
# First chunk with role
|
1629
|
-
is_first = False
|
1630
|
-
delta = DeltaMessage(role="assistant")
|
1631
|
-
choice_data = ChatCompletionResponseStreamChoice(
|
1632
|
-
index=index,
|
1633
|
-
delta=delta,
|
1634
|
-
finish_reason=finish_reason_type,
|
1635
|
-
matched_stop=(
|
1636
|
-
finish_reason["matched"]
|
1637
|
-
if finish_reason and "matched" in finish_reason
|
1638
|
-
else None
|
1639
|
-
),
|
1640
|
-
logprobs=choice_logprobs,
|
1641
|
-
)
|
1642
|
-
chunk = ChatCompletionStreamResponse(
|
1643
|
-
id=content["meta_info"]["id"],
|
1644
|
-
created=created,
|
1645
|
-
choices=[choice_data],
|
1646
|
-
model=request.model,
|
1647
|
-
)
|
1648
|
-
yield f"data: {chunk.model_dump_json()}\n\n"
|
1649
|
-
|
1650
|
-
text = content["text"]
|
1651
|
-
delta = text[len(stream_buffer) :]
|
1652
|
-
new_stream_buffer = stream_buffer + delta
|
1653
|
-
|
1654
|
-
enable_thinking = _get_enable_thinking_from_request(request)
|
1655
|
-
|
1656
|
-
if (
|
1657
|
-
tokenizer_manager.server_args.reasoning_parser
|
1658
|
-
and request.separate_reasoning
|
1659
|
-
and enable_thinking
|
1660
|
-
):
|
1661
|
-
if index not in reasoning_parser_dict:
|
1662
|
-
reasoning_parser_dict[index] = ReasoningParser(
|
1663
|
-
tokenizer_manager.server_args.reasoning_parser,
|
1664
|
-
request.stream_reasoning,
|
1665
|
-
)
|
1666
|
-
reasoning_parser = reasoning_parser_dict[index]
|
1667
|
-
reasoning_text, delta = reasoning_parser.parse_stream_chunk(
|
1668
|
-
delta
|
1669
|
-
)
|
1670
|
-
if reasoning_text:
|
1671
|
-
choice_data = ChatCompletionResponseStreamChoice(
|
1672
|
-
index=index,
|
1673
|
-
delta=DeltaMessage(
|
1674
|
-
reasoning_content=(
|
1675
|
-
reasoning_text if reasoning_text else None
|
1676
|
-
)
|
1677
|
-
),
|
1678
|
-
finish_reason=finish_reason_type,
|
1679
|
-
)
|
1680
|
-
chunk = ChatCompletionStreamResponse(
|
1681
|
-
id=content["meta_info"]["id"],
|
1682
|
-
created=created,
|
1683
|
-
choices=[choice_data],
|
1684
|
-
model=request.model,
|
1685
|
-
)
|
1686
|
-
yield f"data: {chunk.model_dump_json()}\n\n"
|
1687
|
-
if (delta and len(delta) == 0) or not delta:
|
1688
|
-
stream_buffers[index] = new_stream_buffer
|
1689
|
-
is_firsts[index] = is_first
|
1690
|
-
n_prev_tokens[index] = n_prev_token
|
1691
|
-
continue
|
1692
|
-
|
1693
|
-
if request.tool_choice != "none" and request.tools:
|
1694
|
-
if index not in parser_dict:
|
1695
|
-
parser_dict[index] = FunctionCallParser(
|
1696
|
-
tools=request.tools,
|
1697
|
-
tool_call_parser=tokenizer_manager.server_args.tool_call_parser,
|
1698
|
-
)
|
1699
|
-
parser = parser_dict[index]
|
1700
|
-
|
1701
|
-
# parse_increment => returns (normal_text, calls)
|
1702
|
-
normal_text, calls = parser.parse_stream_chunk(delta)
|
1703
|
-
|
1704
|
-
# 1) if there's normal_text, output it as normal content
|
1705
|
-
if normal_text:
|
1706
|
-
choice_data = ChatCompletionResponseStreamChoice(
|
1707
|
-
index=index,
|
1708
|
-
delta=DeltaMessage(
|
1709
|
-
content=normal_text if normal_text else None
|
1710
|
-
),
|
1711
|
-
finish_reason=finish_reason_type,
|
1712
|
-
)
|
1713
|
-
chunk = ChatCompletionStreamResponse(
|
1714
|
-
id=content["meta_info"]["id"],
|
1715
|
-
created=created,
|
1716
|
-
choices=[choice_data],
|
1717
|
-
model=request.model,
|
1718
|
-
)
|
1719
|
-
yield f"data: {chunk.model_dump_json()}\n\n"
|
1720
|
-
|
1721
|
-
# 2) if we found calls, we output them as separate chunk(s)
|
1722
|
-
for call_item in calls:
|
1723
|
-
tool_index_current = call_item.tool_index
|
1724
|
-
# transform call_item -> FunctionResponse + ToolCall
|
1725
|
-
if finish_reason_type == "stop":
|
1726
|
-
latest_delta_len = 0
|
1727
|
-
if isinstance(call_item.parameters, str):
|
1728
|
-
latest_delta_len = len(call_item.parameters)
|
1729
|
-
|
1730
|
-
expected_call = json.dumps(
|
1731
|
-
parser.detector.prev_tool_call_arr[index].get(
|
1732
|
-
"arguments", {}
|
1733
|
-
),
|
1734
|
-
ensure_ascii=False,
|
1735
|
-
)
|
1736
|
-
actual_call = parser.detector.streamed_args_for_tool[
|
1737
|
-
index
|
1738
|
-
]
|
1739
|
-
if latest_delta_len > 0:
|
1740
|
-
actual_call = actual_call[:-latest_delta_len]
|
1741
|
-
remaining_call = expected_call.replace(
|
1742
|
-
actual_call, "", 1
|
1743
|
-
)
|
1744
|
-
call_item.parameters = remaining_call
|
1745
|
-
|
1746
|
-
finish_reason_type = "tool_calls"
|
1747
|
-
tool_call = ToolCall(
|
1748
|
-
id=(
|
1749
|
-
f"call_{base64.urlsafe_b64encode(uuid.uuid4().bytes).rstrip(b'=').decode()}"
|
1750
|
-
if tool_index_previous != tool_index_current
|
1751
|
-
else None
|
1752
|
-
),
|
1753
|
-
index=call_item.tool_index,
|
1754
|
-
function=FunctionResponse(
|
1755
|
-
name=call_item.name,
|
1756
|
-
arguments=call_item.parameters,
|
1757
|
-
),
|
1758
|
-
)
|
1759
|
-
tool_index_previous = tool_index_current
|
1760
|
-
choice_data = ChatCompletionResponseStreamChoice(
|
1761
|
-
index=index,
|
1762
|
-
delta=DeltaMessage(tool_calls=[tool_call]),
|
1763
|
-
finish_reason=(
|
1764
|
-
None
|
1765
|
-
if request.stream_options
|
1766
|
-
and request.stream_options.include_usage
|
1767
|
-
else finish_reason_type
|
1768
|
-
), # additional chunk will be return
|
1769
|
-
)
|
1770
|
-
chunk = ChatCompletionStreamResponse(
|
1771
|
-
id=content["meta_info"]["id"],
|
1772
|
-
created=created,
|
1773
|
-
choices=[choice_data],
|
1774
|
-
model=request.model,
|
1775
|
-
)
|
1776
|
-
yield f"data: {chunk.model_dump_json()}\n\n"
|
1777
|
-
|
1778
|
-
stream_buffers[index] = new_stream_buffer
|
1779
|
-
is_firsts[index] = is_first
|
1780
|
-
n_prev_tokens[index] = n_prev_token
|
1781
|
-
|
1782
|
-
else:
|
1783
|
-
# No tool calls => just treat this as normal text
|
1784
|
-
if delta or not (
|
1785
|
-
request.stream_options
|
1786
|
-
and request.stream_options.include_usage
|
1787
|
-
):
|
1788
|
-
choice_data = ChatCompletionResponseStreamChoice(
|
1789
|
-
index=index,
|
1790
|
-
delta=DeltaMessage(content=delta if delta else None),
|
1791
|
-
finish_reason=(
|
1792
|
-
None
|
1793
|
-
if request.stream_options
|
1794
|
-
and request.stream_options.include_usage
|
1795
|
-
else finish_reason_type
|
1796
|
-
),
|
1797
|
-
matched_stop=(
|
1798
|
-
finish_reason["matched"]
|
1799
|
-
if finish_reason and "matched" in finish_reason
|
1800
|
-
else None
|
1801
|
-
),
|
1802
|
-
logprobs=choice_logprobs,
|
1803
|
-
)
|
1804
|
-
chunk = ChatCompletionStreamResponse(
|
1805
|
-
id=content["meta_info"]["id"],
|
1806
|
-
created=created,
|
1807
|
-
choices=[choice_data],
|
1808
|
-
model=request.model,
|
1809
|
-
)
|
1810
|
-
yield f"data: {chunk.model_dump_json()}\n\n"
|
1811
|
-
stream_buffers[index] = new_stream_buffer
|
1812
|
-
is_firsts[index] = is_first
|
1813
|
-
n_prev_tokens[index] = n_prev_token
|
1814
|
-
if finish_reason_type == "stop" and request.tool_choice != "none":
|
1815
|
-
parser = FunctionCallParser(
|
1816
|
-
tools=request.tools,
|
1817
|
-
tool_call_parser=tokenizer_manager.server_args.tool_call_parser,
|
1818
|
-
)
|
1819
|
-
if parser.has_tool_call(new_stream_buffer):
|
1820
|
-
# if the stream ends with empty string after tool calls
|
1821
|
-
finish_reason_type = "tool_calls"
|
1822
|
-
|
1823
|
-
if request.stream_options and request.stream_options.include_usage:
|
1824
|
-
total_prompt_tokens = sum(
|
1825
|
-
tokens
|
1826
|
-
for i, tokens in prompt_tokens.items()
|
1827
|
-
if i % request.n == 0
|
1828
|
-
)
|
1829
|
-
total_completion_tokens = sum(
|
1830
|
-
tokens for tokens in completion_tokens.values()
|
1831
|
-
)
|
1832
|
-
cache_report = tokenizer_manager.server_args.enable_cache_report
|
1833
|
-
if cache_report:
|
1834
|
-
cached_tokens_sum = sum(
|
1835
|
-
tokens for tokens in cached_tokens.values()
|
1836
|
-
)
|
1837
|
-
prompt_tokens_details = {"cached_tokens": cached_tokens_sum}
|
1838
|
-
else:
|
1839
|
-
prompt_tokens_details = None
|
1840
|
-
usage = UsageInfo(
|
1841
|
-
prompt_tokens=total_prompt_tokens,
|
1842
|
-
completion_tokens=total_completion_tokens,
|
1843
|
-
total_tokens=total_prompt_tokens + total_completion_tokens,
|
1844
|
-
prompt_tokens_details=prompt_tokens_details,
|
1845
|
-
)
|
1846
|
-
|
1847
|
-
else:
|
1848
|
-
usage = None
|
1849
|
-
if request.return_hidden_states and hidden_states:
|
1850
|
-
for index, choice_hidden_states in hidden_states.items():
|
1851
|
-
last_token_hidden_states = (
|
1852
|
-
choice_hidden_states[-1]
|
1853
|
-
if choice_hidden_states and len(choice_hidden_states) > 1
|
1854
|
-
else []
|
1855
|
-
)
|
1856
|
-
hidden_states_chunk = ChatCompletionStreamResponse(
|
1857
|
-
id=content["meta_info"]["id"],
|
1858
|
-
created=created,
|
1859
|
-
choices=[
|
1860
|
-
ChatCompletionResponseStreamChoice(
|
1861
|
-
index=index,
|
1862
|
-
delta=DeltaMessage(
|
1863
|
-
hidden_states=last_token_hidden_states
|
1864
|
-
),
|
1865
|
-
finish_reason=finish_reason_type,
|
1866
|
-
)
|
1867
|
-
],
|
1868
|
-
model=request.model,
|
1869
|
-
)
|
1870
|
-
yield f"data: {hidden_states_chunk.model_dump_json()}\n\n"
|
1871
|
-
final_usage_chunk = ChatCompletionStreamResponse(
|
1872
|
-
id=content["meta_info"]["id"],
|
1873
|
-
created=created,
|
1874
|
-
choices=[
|
1875
|
-
ChatCompletionResponseStreamChoice(
|
1876
|
-
index=index,
|
1877
|
-
delta=DeltaMessage(),
|
1878
|
-
finish_reason=finish_reason_type,
|
1879
|
-
)
|
1880
|
-
],
|
1881
|
-
model=request.model,
|
1882
|
-
usage=usage,
|
1883
|
-
)
|
1884
|
-
yield f"data: {final_usage_chunk.model_dump_json()}\n\n"
|
1885
|
-
except ValueError as e:
|
1886
|
-
error = create_streaming_error_response(str(e))
|
1887
|
-
yield f"data: {error}\n\n"
|
1888
|
-
yield "data: [DONE]\n\n"
|
1889
|
-
|
1890
|
-
return StreamingResponse(
|
1891
|
-
generate_stream_resp(),
|
1892
|
-
media_type="text/event-stream",
|
1893
|
-
background=tokenizer_manager.create_abort_task(adapted_request),
|
1894
|
-
)
|
1895
|
-
|
1896
|
-
# Non-streaming response.
|
1897
|
-
try:
|
1898
|
-
ret = await tokenizer_manager.generate_request(
|
1899
|
-
adapted_request, raw_request
|
1900
|
-
).__anext__()
|
1901
|
-
except ValueError as e:
|
1902
|
-
return create_error_response(str(e))
|
1903
|
-
if not isinstance(ret, list):
|
1904
|
-
ret = [ret]
|
1905
|
-
|
1906
|
-
response = v1_chat_generate_response(
|
1907
|
-
request,
|
1908
|
-
ret,
|
1909
|
-
created,
|
1910
|
-
cache_report=tokenizer_manager.server_args.enable_cache_report,
|
1911
|
-
tool_call_parser=tokenizer_manager.server_args.tool_call_parser,
|
1912
|
-
reasoning_parser=tokenizer_manager.server_args.reasoning_parser,
|
1913
|
-
)
|
1914
|
-
|
1915
|
-
return response
|
1916
|
-
|
1917
|
-
|
1918
|
-
def v1_embedding_request(all_requests, tokenizer_manager):
|
1919
|
-
prompts = []
|
1920
|
-
sampling_params_list = []
|
1921
|
-
first_prompt_type = type(all_requests[0].input)
|
1922
|
-
|
1923
|
-
for request in all_requests:
|
1924
|
-
prompt = request.input
|
1925
|
-
# Check for empty/whitespace string
|
1926
|
-
prompt = _validate_prompt(request.input)
|
1927
|
-
assert (
|
1928
|
-
type(prompt) is first_prompt_type
|
1929
|
-
), "All prompts must be of the same type in file input settings"
|
1930
|
-
prompts.append(prompt)
|
1931
|
-
|
1932
|
-
if len(all_requests) == 1:
|
1933
|
-
prompt = prompts[0]
|
1934
|
-
if isinstance(prompt, str) or isinstance(prompt[0], str):
|
1935
|
-
prompt_kwargs = {"text": prompt}
|
1936
|
-
elif isinstance(prompt, list) and isinstance(
|
1937
|
-
prompt[0], MultimodalEmbeddingInput
|
1938
|
-
):
|
1939
|
-
texts = []
|
1940
|
-
images = []
|
1941
|
-
for item in prompt:
|
1942
|
-
# TODO simply use padding for text, we should use a better way to handle this
|
1943
|
-
texts.append(item.text if item.text is not None else "padding")
|
1944
|
-
images.append(item.image if item.image is not None else None)
|
1945
|
-
generate_prompts = []
|
1946
|
-
if chat_template_name is not None:
|
1947
|
-
convs = generate_embedding_convs(texts, images, chat_template_name)
|
1948
|
-
for conv in convs:
|
1949
|
-
generate_prompts.append(conv.get_prompt())
|
1950
|
-
else:
|
1951
|
-
generate_prompts = texts
|
1952
|
-
if len(generate_prompts) == 1:
|
1953
|
-
prompt_kwargs = {"text": generate_prompts[0], "image_data": images[0]}
|
1954
|
-
else:
|
1955
|
-
prompt_kwargs = {"text": generate_prompts, "image_data": images}
|
1956
|
-
else:
|
1957
|
-
prompt_kwargs = {"input_ids": prompt}
|
1958
|
-
request_ids = all_requests[0].rid
|
1959
|
-
else:
|
1960
|
-
if isinstance(prompts[0], str) or isinstance(prompts[0][0], str):
|
1961
|
-
prompt_kwargs = {"text": prompts}
|
1962
|
-
elif isinstance(prompts[0], list) and isinstance(
|
1963
|
-
prompts[0][0], MultimodalEmbeddingInput
|
1964
|
-
):
|
1965
|
-
# TODO: multiple requests
|
1966
|
-
raise NotImplementedError(
|
1967
|
-
"Multiple requests with multimodal inputs are not supported yet"
|
1968
|
-
)
|
1969
|
-
else:
|
1970
|
-
prompt_kwargs = {"input_ids": prompts}
|
1971
|
-
request_ids = [req.rid for req in all_requests]
|
1972
|
-
|
1973
|
-
adapted_request = EmbeddingReqInput(
|
1974
|
-
rid=request_ids,
|
1975
|
-
**prompt_kwargs,
|
1976
|
-
)
|
1977
|
-
|
1978
|
-
if len(all_requests) == 1:
|
1979
|
-
return adapted_request, all_requests[0]
|
1980
|
-
return adapted_request, all_requests
|
1981
|
-
|
1982
|
-
|
1983
|
-
def v1_embedding_response(ret, model_path, to_file=False):
|
1984
|
-
embedding_objects = []
|
1985
|
-
prompt_tokens = 0
|
1986
|
-
for idx, ret_item in enumerate(ret):
|
1987
|
-
embedding_objects.append(
|
1988
|
-
EmbeddingObject(
|
1989
|
-
embedding=ret[idx]["embedding"],
|
1990
|
-
index=idx,
|
1991
|
-
)
|
1992
|
-
)
|
1993
|
-
prompt_tokens += ret[idx]["meta_info"]["prompt_tokens"]
|
1994
|
-
|
1995
|
-
return EmbeddingResponse(
|
1996
|
-
data=embedding_objects,
|
1997
|
-
model=model_path,
|
1998
|
-
usage=UsageInfo(
|
1999
|
-
prompt_tokens=prompt_tokens,
|
2000
|
-
total_tokens=prompt_tokens,
|
2001
|
-
),
|
2002
|
-
)
|
2003
|
-
|
2004
|
-
|
2005
|
-
async def v1_embeddings(tokenizer_manager, raw_request: Request):
|
2006
|
-
try:
|
2007
|
-
request_json = await raw_request.json()
|
2008
|
-
except Exception as e:
|
2009
|
-
return create_error_response("Invalid request body, error: ", str(e))
|
2010
|
-
all_requests = [EmbeddingRequest(**request_json)]
|
2011
|
-
adapted_request, request = v1_embedding_request(all_requests, tokenizer_manager)
|
2012
|
-
|
2013
|
-
try:
|
2014
|
-
ret = await tokenizer_manager.generate_request(
|
2015
|
-
adapted_request, raw_request
|
2016
|
-
).__anext__()
|
2017
|
-
except ValueError as e:
|
2018
|
-
return create_error_response(str(e))
|
2019
|
-
|
2020
|
-
if not isinstance(ret, list):
|
2021
|
-
ret = [ret]
|
2022
|
-
|
2023
|
-
response = v1_embedding_response(ret, tokenizer_manager.model_path)
|
2024
|
-
|
2025
|
-
return response
|
2026
|
-
|
2027
|
-
|
2028
|
-
def v1_rerank_request(obj: V1RerankReqInput):
|
2029
|
-
if obj.query is None:
|
2030
|
-
raise ValueError("query is required")
|
2031
|
-
if obj.documents is None or len(obj.documents) == 0:
|
2032
|
-
raise ValueError("documents is required")
|
2033
|
-
|
2034
|
-
pairs = []
|
2035
|
-
for doc in obj.documents:
|
2036
|
-
pairs.append([obj.query, doc])
|
2037
|
-
|
2038
|
-
adapted_request = EmbeddingReqInput(
|
2039
|
-
text=pairs,
|
2040
|
-
is_cross_encoder_request=True,
|
2041
|
-
)
|
2042
|
-
|
2043
|
-
return adapted_request
|
2044
|
-
|
2045
|
-
|
2046
|
-
def v1_rerank_response(ret, obj: V1RerankReqInput):
|
2047
|
-
|
2048
|
-
response = []
|
2049
|
-
for idx, ret_item in enumerate(ret):
|
2050
|
-
response.append(
|
2051
|
-
RerankResponse(
|
2052
|
-
score=ret[idx]["embedding"],
|
2053
|
-
document=obj.documents[idx],
|
2054
|
-
index=idx,
|
2055
|
-
meta_info=ret[idx]["meta_info"],
|
2056
|
-
)
|
2057
|
-
)
|
2058
|
-
|
2059
|
-
response.sort(key=lambda x: x.score, reverse=True)
|
2060
|
-
|
2061
|
-
return response
|
2062
|
-
|
2063
|
-
|
2064
|
-
async def v1_rerank(tokenizer_manager, obj: V1RerankReqInput, raw_request: Request):
|
2065
|
-
adapted_request = v1_rerank_request(obj)
|
2066
|
-
|
2067
|
-
try:
|
2068
|
-
ret = await tokenizer_manager.generate_request(
|
2069
|
-
adapted_request, raw_request
|
2070
|
-
).__anext__()
|
2071
|
-
|
2072
|
-
except ValueError as e:
|
2073
|
-
return create_error_response(str(e))
|
2074
|
-
|
2075
|
-
if not isinstance(ret, list):
|
2076
|
-
ret = [ret]
|
2077
|
-
|
2078
|
-
response = v1_rerank_response(
|
2079
|
-
ret,
|
2080
|
-
obj,
|
2081
|
-
)
|
2082
|
-
|
2083
|
-
return response
|
2084
|
-
|
2085
|
-
|
2086
|
-
def to_openai_style_logprobs(
|
2087
|
-
input_token_logprobs=None,
|
2088
|
-
output_token_logprobs=None,
|
2089
|
-
input_top_logprobs=None,
|
2090
|
-
output_top_logprobs=None,
|
2091
|
-
):
|
2092
|
-
ret_logprobs = LogProbs()
|
2093
|
-
|
2094
|
-
def append_token_logprobs(token_logprobs):
|
2095
|
-
for logprob, _, token_text in token_logprobs:
|
2096
|
-
ret_logprobs.tokens.append(token_text)
|
2097
|
-
ret_logprobs.token_logprobs.append(logprob)
|
2098
|
-
|
2099
|
-
# Not supported yet
|
2100
|
-
ret_logprobs.text_offset.append(-1)
|
2101
|
-
|
2102
|
-
def append_top_logprobs(top_logprobs):
|
2103
|
-
for tokens in top_logprobs:
|
2104
|
-
if tokens is not None:
|
2105
|
-
ret_logprobs.top_logprobs.append(
|
2106
|
-
{token[2]: token[0] for token in tokens}
|
2107
|
-
)
|
2108
|
-
else:
|
2109
|
-
ret_logprobs.top_logprobs.append(None)
|
2110
|
-
|
2111
|
-
if input_token_logprobs is not None:
|
2112
|
-
append_token_logprobs(input_token_logprobs)
|
2113
|
-
if output_token_logprobs is not None:
|
2114
|
-
append_token_logprobs(output_token_logprobs)
|
2115
|
-
if input_top_logprobs is not None:
|
2116
|
-
append_top_logprobs(input_top_logprobs)
|
2117
|
-
if output_top_logprobs is not None:
|
2118
|
-
append_top_logprobs(output_top_logprobs)
|
2119
|
-
|
2120
|
-
return ret_logprobs
|
2121
|
-
|
2122
|
-
|
2123
|
-
async def v1_score(tokenizer_manager, raw_request):
|
2124
|
-
try:
|
2125
|
-
# Parse request
|
2126
|
-
request_data = await raw_request.json()
|
2127
|
-
request = ScoringRequest(**request_data)
|
2128
|
-
|
2129
|
-
# Use tokenizer_manager's score_request method directly
|
2130
|
-
scores = await tokenizer_manager.score_request(
|
2131
|
-
query=request.query,
|
2132
|
-
items=request.items,
|
2133
|
-
label_token_ids=request.label_token_ids,
|
2134
|
-
apply_softmax=request.apply_softmax,
|
2135
|
-
item_first=request.item_first,
|
2136
|
-
request=request,
|
2137
|
-
)
|
2138
|
-
|
2139
|
-
# Create response with just the scores, without usage info
|
2140
|
-
response = ScoringResponse(
|
2141
|
-
scores=scores,
|
2142
|
-
model=request.model,
|
2143
|
-
)
|
2144
|
-
return response
|
2145
|
-
|
2146
|
-
except Exception as e:
|
2147
|
-
logger.error(f"Error in v1_score: {str(e)}")
|
2148
|
-
return create_error_response(str(e))
|